CN211552729U - MEMS multi-beam interference cavity based on plum blossom type optical fiber - Google Patents
MEMS multi-beam interference cavity based on plum blossom type optical fiber Download PDFInfo
- Publication number
- CN211552729U CN211552729U CN202020267968.1U CN202020267968U CN211552729U CN 211552729 U CN211552729 U CN 211552729U CN 202020267968 U CN202020267968 U CN 202020267968U CN 211552729 U CN211552729 U CN 211552729U
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- quincunx
- interference cavity
- guide hole
- reflection layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Micromachines (AREA)
Abstract
本实用新型涉及一种基于梅花型光纤的MEMS多光束干涉腔,包括梅花型光纤、引导孔、支撑框架、孔肩、干涉腔本体、敏感膜片、第一反射层和第二反射层;所述梅花型光纤包括中心光纤和环绕光纤;所述梅花型光纤固接在引导孔中并与第二反射层相连接,所述的中心光纤与第一反射层中心对准,所述的环绕光纤与第二反射层相连接,所述第二反射层设在引导孔底部和干涉腔本体构成的孔肩上,所述干涉腔本体设在引导孔的底部且与引导孔的中心同轴,所述敏感膜片制作在干涉腔本体的底部并与支撑框架连接,所述第一反射层设在敏感膜片上。与现有技术相比,本实用新型具有工艺流程少、加工难度低、结构设计灵活、制作成本低等优点。
The utility model relates to a MEMS multi-beam interference cavity based on a quincunx optical fiber, comprising a quincunx optical fiber, a guide hole, a supporting frame, a hole shoulder, an interference cavity body, a sensitive diaphragm, a first reflection layer and a second reflection layer; The quincunx optical fiber includes a central optical fiber and a surrounding optical fiber; the quincunx optical fiber is fixed in the guide hole and connected with the second reflection layer, the center optical fiber is aligned with the center of the first reflection layer, and the surrounding optical fiber is Connected with the second reflective layer, the second reflective layer is arranged on the hole shoulder formed by the bottom of the guide hole and the interference cavity body, the interference cavity body is arranged at the bottom of the guide hole and is coaxial with the center of the guide hole, so The sensitive diaphragm is fabricated on the bottom of the interference cavity body and connected with the support frame, and the first reflection layer is arranged on the sensitive diaphragm. Compared with the prior art, the utility model has the advantages of less technological process, low processing difficulty, flexible structure design, low manufacturing cost and the like.
Description
技术领域technical field
本实用新型涉及光纤传感领域,尤其是涉及一种基于梅花型光纤的MEMS多光束干涉腔。The utility model relates to the field of optical fiber sensing, in particular to a MEMS multi-beam interference cavity based on a quincunx optical fiber.
背景技术Background technique
随着工业4.0、中国制造2025等概念的提出,工业生产正逐步向智能化、信息化迈进,传感器技术也面临着微型化、智能化、稳定性以及灵敏度等各方面的挑战。基于光纤干涉腔的传感器具有灵敏度高、抗电磁干扰、传输距离远等优点,受到国内外传感领域的极大关注,相关研究众多。微机电系统(Micro-Electro-MechanicalSystem,MEMS)是在半导体工艺基础上发展起来的电子机械器件,具有微型化、集成化、多功能化、智能化等特点,其工艺融合了光刻、腐蚀、薄膜沉积、LIGA、硅微加工、非硅微加工和精密机械加工等技术,在高新技术产业领域具有广泛的应用。基于MEMS工艺的光纤干涉腔具有结构设计多样、敏感膜片材料选择范围广、干涉灵敏度高等独特优势,被广泛的应用于温度、压力、声波、浓度等物理化学量的检测中,已经成为智能传感领域的研究热点。With the introduction of concepts such as Industry 4.0 and Made in China 2025, industrial production is gradually moving towards intelligence and informatization, and sensor technology is also facing challenges in miniaturization, intelligence, stability, and sensitivity. Sensors based on optical fiber interference cavity have the advantages of high sensitivity, anti-electromagnetic interference, and long transmission distance. Micro-Electro-Mechanical System (MEMS) is an electro-mechanical device developed on the basis of semiconductor technology. It has the characteristics of miniaturization, integration, multi-functionalization and intelligence. Technologies such as thin film deposition, LIGA, silicon micromachining, non-silicon micromachining, and precision machining are widely used in high-tech industries. Optical fiber interference cavity based on MEMS technology has the unique advantages of diverse structural design, wide selection of sensitive diaphragm materials, and high interference sensitivity. It is widely used in the detection of physical and chemical quantities such as temperature, pressure, sound wave, concentration, etc. Research hotspots in the field of sense.
2009年,管锡乐等人(光纤动态应变传感技术研究[D].电子科技大学,2009.)提出了一种由两块端面镀有高反射膜并相互严格平行的光学平板组成的珐珀干涉腔,其利用真空镀膜技术在打孔的石英光纤端面和切割打磨后的石英端面上分别镀约0.3μm厚的金属铬(Cr)作为反射薄膜,力求达到最大反射率,提高珐珀腔的干涉品质,但这种增加干涉腔反射率的方法工艺繁琐,难以保证加工一致性,灵活性比较差。2010年,孙东等人提出了一种使用157nm波长激光制造的微型光纤珐珀腔(光子学报,2010,39(07):1239-1242),其利用157nm激光器制造的微通道将所测介质导入位于单模光纤顶端的珐珀腔,为增加珐珀腔的对比度,它同样采用了在珐珀腔的反射面镀高反膜的方法,但这种方法在此加工中工艺难度更大,操作更加复杂。2012年,Akkaya O.C.等人提出了一种用于声波检测的光纤珐珀干涉腔(J.Microelectromech.S.,2012,21(6):1347-1356),它通过在硅膜上刻蚀光子晶体的方法来增加硅表面的反射率,提高珐珀腔的干涉品质,虽然这种设计可减少在硅表面镀膜的工艺,但制备的整体工艺流程较为复杂,工艺难度大,成本高,同时传感器的装配也较为繁琐。In 2009, Guan Xile et al. (Research on Optical Fiber Dynamic Strain Sensing Technology [D]. University of Electronic Science and Technology of China, 2009.) proposed an enamel enamel composed of two optical flat plates with high reflection films on their end faces and strictly parallel to each other. Perspective interference cavity, which uses vacuum coating technology to coat the perforated quartz fiber end face and the cut and polished quartz end face with metallic chromium (Cr) with a thickness of about 0.3 μm as a reflective film, striving to achieve the maximum reflectivity and improve the enamel cavity. However, this method of increasing the reflectivity of the interference cavity is cumbersome, difficult to ensure processing consistency, and has poor flexibility. In 2010, Sun Dong et al. proposed a micro-fiber Fibonacci cavity fabricated with a 157nm wavelength laser (Acta Photonica Sinica, 2010, 39(07): 1239-1242), which utilizes a microchannel fabricated by a 157nm laser to connect the measured medium. Introduce the faeber cavity at the top of the single-mode fiber. In order to increase the contrast of the faeber cavity, it also adopts the method of coating the reflective surface of the faeber cavity with a high-reflection film, but this method is more difficult to process in this process. The operation is more complicated. In 2012, Akkaya O.C. et al. proposed a fiber-optic Fibonacci interference cavity for acoustic wave detection (J.Microelectromech.S., 2012, 21(6):1347-1356), which works by etching photons on a silicon film The crystal method is used to increase the reflectivity of the silicon surface and improve the interference quality of the Fibonacci cavity. Although this design can reduce the process of coating the silicon surface, the overall process of the preparation is complex, the process is difficult, and the cost is high. At the same time, the sensor The assembly is also more complicated.
总之,相关研究在构建光纤干涉腔时,都是通过在干涉腔的两反射面上沉积增反膜来提高干涉腔的干涉品质,其制备流程都较为复杂繁琐、且成本高、工艺难度也相对较大。In short, when constructing optical fiber interference cavity, related researches all improve the interference quality of the interference cavity by depositing reflection enhancement films on the two reflection surfaces of the interference cavity. larger.
实用新型内容Utility model content
本实用新型的目的就是为了克服上述现有技术存在的缺陷而提供一种基于梅花型光纤的MEMS多光束干涉腔。The purpose of the present utility model is to provide a MEMS multi-beam interference cavity based on a quincunx fiber in order to overcome the above-mentioned defects of the prior art.
本实用新型的目的可以通过以下技术方案来实现:The purpose of the present utility model can be achieved through the following technical solutions:
一种基于梅花型光纤的MEMS多光束干涉腔,包括梅花型光纤、引导孔、支撑框架、孔肩、干涉腔本体、敏感膜片、第一反射层和第二反射层;所述梅花型光纤包括中心光纤和环绕光纤;A MEMS multi-beam interference cavity based on a quincunx optical fiber, comprising a quincunx optical fiber, a guide hole, a supporting frame, a hole shoulder, an interference cavity body, a sensitive diaphragm, a first reflection layer and a second reflection layer; the quincunx optical fiber Including center fiber and surround fiber;
所述梅花型光纤固接在引导孔中并与第二反射层相连接,所述的中心光纤与第一反射层中心对准,所述的环绕光纤与第二反射层相连接,所述第二反射层设在引导孔底部和干涉腔本体构成的孔肩上,所述干涉腔本体设在引导孔的底部且与引导孔的中心同轴,所述敏感膜片制作在干涉腔本体的底部并与支撑框架连接,所述第一反射层设在敏感膜片上。The plum-shaped optical fiber is fixed in the guide hole and connected with the second reflection layer, the center optical fiber is aligned with the center of the first reflection layer, the surrounding optical fiber is connected with the second reflection layer, and the Two reflective layers are arranged on the hole shoulder formed by the bottom of the guide hole and the interference cavity body, the interference cavity body is arranged at the bottom of the guide hole and is coaxial with the center of the guide hole, and the sensitive diaphragm is made at the bottom of the interference cavity body and connected with the supporting frame, the first reflective layer is arranged on the sensitive diaphragm.
优选地,所述敏感膜片与梅花型光纤端面之间的距离通过干涉腔本体的长度控制。Preferably, the distance between the sensitive diaphragm and the end face of the quincunx fiber is controlled by the length of the interference cavity body.
优选地,所述梅花型光纤采用N-1根环绕光纤绕1根中心光纤圆周均布的方式排列。Preferably, the quincunx optical fibers are arranged in a manner that N-1 surrounding optical fibers are evenly distributed around the circumference of one central optical fiber.
优选地,所述N为5。Preferably, the N is 5.
优选地,所述N为9。Preferably, the N is 9.
优选地,所述引导孔、支撑框架、孔肩、干涉腔本体、敏感膜片均为通过干法刻蚀或者湿法腐蚀硅片、氧化硅片、氮化硅片、SOI片的材料整体制作而成的部件。Preferably, the guide holes, the support frame, the hole shoulders, the interference cavity body, and the sensitive diaphragm are all made by dry etching or wet etching of silicon wafers, silicon oxide wafers, silicon nitride wafers, and SOI wafers. made parts.
优选地,所述第一反射层为通过蒸镀或磁控溅射金、银、铝的材料制作而成的部件。Preferably, the first reflective layer is a component made of materials of gold, silver and aluminum by evaporation or magnetron sputtering.
优选地,所述第二反射层为通过蒸镀或磁控溅射金、银、铝的材料制作而成的部件。Preferably, the second reflective layer is a component made of materials of gold, silver and aluminum by evaporation or magnetron sputtering.
与现有技术相比,本实用新型通过结合梅花型光纤与高反射率阶梯孔同时实现了光纤干涉腔的构建和其干涉品质的优化,与传统通过沉淀工艺来优化干涉腔干涉品质的方法相比,这种通过增设反射光纤数量与优化调节分光器分光比来优化干涉腔干涉品质的方法,简化了在光纤端面及敏感膜片表面分别镀膜的工艺,只需一次镀膜便可同时增加干涉腔两反射面的反射率,实现干涉腔干涉品质的优化,具有工艺流程少、加工难度低、结构设计灵活、制作成本低等优势;同时,在敏感膜片加工时,一体制作了用于光纤装配的引导定位孔,其可大大提高干涉腔的装配效率;此外,使用MEMS工艺的光纤干涉腔还具有体积小、重量轻、集成化程度高、可批量化生产等优点,因而本实用新型提出的MEMS多光束干涉腔将有助于光纤干涉腔在更多领域的应用推广。Compared with the prior art, the utility model realizes the construction of the optical fiber interference cavity and the optimization of its interference quality by combining the quincunx optical fiber and the high reflectivity stepped hole, which is different from the traditional method of optimizing the interference quality of the interference cavity by the precipitation process. This method of optimizing the interference quality of the interference cavity by increasing the number of reflective fibers and optimizing the splitting ratio of the beam splitter simplifies the process of separately coating the fiber end face and the surface of the sensitive diaphragm, and only needs one coating to increase the interference cavity at the same time. The reflectivity of the two reflective surfaces can optimize the interference quality of the interference cavity, and has the advantages of less process flow, low processing difficulty, flexible structure design, and low production cost. It can greatly improve the assembly efficiency of the interference cavity; in addition, the optical fiber interference cavity using the MEMS process also has the advantages of small size, light weight, high degree of integration, and mass production. MEMS multi-beam interference cavity will contribute to the application and promotion of optical fiber interference cavity in more fields.
附图说明Description of drawings
图1为本实用新型基于梅花型光纤的MEMS多光束干涉腔的结构示意图;1 is a schematic structural diagram of a MEMS multi-beam interference cavity based on a quincunx fiber of the present invention;
图2为1×N分光器的N个分光端口加工制作而成的梅花型光纤的结构示意图;FIG. 2 is a schematic structural diagram of a quincunx optical fiber fabricated by processing N optical splitting ports of a 1×N optical splitter;
图3为图2的B-B方向的剖视结构示意图;Fig. 3 is the sectional structure schematic diagram of the B-B direction of Fig. 2;
图4为1×5分光器的5个分光端口加工制作而成的梅花型光纤的结构示意图;FIG. 4 is a schematic structural diagram of a plum-shaped optical fiber fabricated by processing five optical splitting ports of a 1×5 optical splitter;
图5为图4的B-B方向的剖视结构示意图;Fig. 5 is the sectional structure schematic diagram of the B-B direction of Fig. 4;
图6为1×9分光器的5个分光端口加工制作而成的梅花型光纤的结构示意图;FIG. 6 is a schematic structural diagram of a plum-shaped optical fiber fabricated by processing five optical splitting ports of a 1×9 optical splitter;
图7为图6的B-B方向的剖视结构示意图;FIG. 7 is a schematic cross-sectional structure diagram of the B-B direction of FIG. 6;
图8为氧化硅片上通过湿法腐蚀制作引导孔的示意图;FIG. 8 is a schematic diagram of forming a guide hole on a silicon oxide wafer by wet etching;
图9为在引导孔的底部通过湿法腐蚀制作敏感膜片并形成干涉腔本体的示意图;9 is a schematic diagram of fabricating a sensitive diaphragm and forming an interference cavity body by wet etching at the bottom of the guide hole;
图10为第一反射层和第二反射层的形成示意图。FIG. 10 is a schematic diagram of the formation of the first reflection layer and the second reflection layer.
1为梅花型光纤、2为引导孔、3为支撑框架、4为孔肩、5为干涉腔本体、6为敏感膜片、7为第一反射层、8为第二反射层、9为中心光纤、10为环绕光纤。1 is the plum-shaped fiber, 2 is the guide hole, 3 is the support frame, 4 is the hole shoulder, 5 is the interference cavity body, 6 is the sensitive diaphragm, 7 is the first reflection layer, 8 is the second reflection layer, and 9 is the center Optical fiber, 10 is a surrounding optical fiber.
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型的一部分实施例,而不是全部实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本实用新型保护的范围。The technical solutions in the embodiments of the present utility model will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present utility model. Obviously, the described embodiments are a part of the embodiments of the present utility model, rather than all the embodiments. . Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
实施例1Example 1
本实用新型提出的基于梅花型光纤的MEMS多光束干涉腔,其整体结构参照图1,器件主要包括梅花型光纤1、引导孔2、支撑框架3、孔肩4、干涉腔本体5、敏感膜片6、第一反射层7、第二反射层8、中心光纤9和环绕光纤10。The overall structure of the MEMS multi-beam interference cavity based on the quincunx optical fiber proposed by the present utility model is shown in FIG.
所述梅花型光纤1固接于引导孔2中并与第二反射层8相连接,所述的梅花型光纤1中的中心光纤9与第一反射层7中心对准,所述的梅花型光纤1中的环绕光纤10与第二反射层8相连接,所述第二反射层8制作在引导孔2底部和干涉腔本体5构成的孔肩4上,所述干涉腔本体5制作在引导孔2的底部且与引导孔2的中心同轴,所述敏感膜片6制作在干涉腔本体5的底部并与支撑框架3连接,所述的第一反射层7制作在敏感膜片6上,所述敏感膜片6与梅花型光纤1端面之间的距离通过干涉腔本体5的长度控制。The quincunx
参阅图2,所述梅花型光纤1由1×N分光器的N个分光端口加工制作而成(N=2,3,4……),参阅图3的视图,所述梅花型光纤1内部采用N-1根环绕光纤10绕1根中心光纤9圆周均布的方式排列,分光器的分光个数和分光器的分光比根据实际干涉腔所需的反射率和精细度决定。Referring to FIG. 2 , the
所述引导孔2、支撑框架3、孔肩4、干涉腔本体5和敏感膜片6通过干法刻蚀或者湿法腐蚀硅片、氧化硅片、氮化硅片、SOI(Silicon-On-Insulator)片等材料整体制作而成。The
所述第一反射层7和第二反射层8可通过蒸镀或磁控溅射金、银、铝等材料制作。The first
干涉腔的传感原理是:光源发出的光通过光纤环形器进入分光器,经分光器分成N束光,其中N-1束进入环绕光纤10被引导孔2底部的第二反射层8反射进入光纤,剩余一束光进入中心光纤9被敏感膜片6上的第一反射层7反射重新进入光纤,这N部分光束在分光器中汇聚干涉,汇聚干涉后的光束通过光纤环形器进入后端检测系统。干涉信号与干涉腔本体5的腔长有关,当被检测的信号使敏感膜片6发生轴向变形时,干涉腔本体5腔长发生变化,从而引起干涉信号的变化,通过解调干涉信号就可获得被测物理量的信息。The sensing principle of the interference cavity is: the light emitted by the light source enters the beam splitter through the optical fiber circulator, and is divided into N beams of light by the beam splitter, of which N-1 beams enter the surrounding
干涉腔的基本加工过程如下:The basic machining process of the interference cavity is as follows:
步骤1:参阅图8,在硅片、氧化硅片、氮化硅片、SOI(Silicon-On-Insulator)片等材料上通过干法刻蚀或湿法腐蚀等工艺制作引导孔2;Step 1: Referring to FIG. 8, the guide holes 2 are formed on materials such as silicon wafers, silicon oxide wafers, silicon nitride wafers, SOI (Silicon-On-Insulator) wafers, etc. by dry etching or wet etching;
步骤2:参阅图9,在引导孔2的底部通过干法刻蚀或湿法腐蚀等工艺制作敏感膜片6并形成干涉腔本体5;Step 2: Referring to FIG. 9, at the bottom of the
步骤3:参阅图10,通过蒸镀或磁控溅射金、银、铝等材料在敏感膜片6和孔肩4的上部沉积第一反射层7和第二反射层8;Step 3: Referring to FIG. 10, deposit the first
步骤4:将梅花型光纤1插入引导孔2,通过孔肩4定位光纤端面,使梅花型光纤1内部的中心光纤9与敏感膜片6上的第一反射层7中心对准,梅花型光纤1内部的环绕光纤10与孔肩4上的第二反射层8接触,利用环氧树脂、热熔胶等粘接剂将梅花型光纤1固定在引导孔2中,形成多光束光纤干涉腔。Step 4: Insert the quincunx
实施例2Example 2
本实用新型提出的基于梅花型光纤的MEMS多光束干涉腔,其整体结构参照图1,器件主要包括梅花型光纤1、引导孔2、支撑框架3、孔肩4、干涉腔本体5、敏感膜片6、第一反射层7、第二反射层8、中心光纤9和环绕光纤10。The overall structure of the MEMS multi-beam interference cavity based on the quincunx optical fiber proposed by the present utility model is shown in FIG.
所述梅花型光纤1固接于引导孔2中并与第二反射层8相连接,所述的梅花型光纤1中的中心光纤9与第一反射层7中心对准,所述的梅花型光纤1中的环绕光纤10与第二反射层8相连接,所述第二反射层8制作在引导孔2底部和干涉腔本体5构成的孔肩4上,所述干涉腔本体5制作在引导孔2的底部且与引导孔2的中心同轴,所述敏感膜片6制作在干涉腔本体5的底部并与支撑框架3连接,所述的第一反射层7制作在敏感膜片6上,所述敏感膜片6与梅花型光纤1端面之间的距离通过干涉腔本体5的长度控制。The quincunx
参阅图4,所述梅花型光纤1由1×5分光器的5个分光端口加工制作而成,分光比采用均分方式,参阅图5的视图,所述梅花型光纤1内部采用4根环绕光纤10绕中心光纤9圆周均布的方式排列。Referring to FIG. 4 , the
所述的引导孔2、支撑框架3、孔肩4、干涉腔本体5和敏感膜片6通过干法刻蚀硅片整体制作而成。The
所述第一反射层7和第二反射层8通过蒸镀金制作。The first
干涉腔的传感原理是:光源发出的光通过光纤环形器进入分光器,经分光器分光纤,剩余一束光进入中心光纤9被敏感膜片6上的第一反射层7反射重新进入光纤,这5部分光束在分光器中汇聚干涉,汇聚干涉后的光束通过光纤环形器进入后端检测系统。干涉信号与干涉腔本体5的腔长有关,当被检测的信号使敏感膜片6发生轴向变形时,干涉腔本体5腔长发生变化,从而引起干涉信号的变化,通过解调干涉信号就可获得被测物理量的信息。The sensing principle of the interference cavity is: the light emitted by the light source enters the beam splitter through the optical fiber circulator, and is split into the optical fiber by the optical splitter. , these 5 parts of the beams converge and interfere in the beam splitter, and the beams after the convergence and interference enter the back-end detection system through the fiber circulator. The interference signal is related to the cavity length of the
干涉腔的基本加工过程如下:The basic machining process of the interference cavity is as follows:
步骤1:参阅图8,在硅片上通过干法刻蚀制作引导孔2;Step 1: Referring to FIG. 8 , the
步骤2:参阅图9,在引导孔2的底部通过干法刻蚀制作敏感膜片6并形成干涉腔本体5;Step 2: Referring to FIG. 9 , dry etching is performed to form the
步骤3:参阅图10,通过蒸镀金在敏感膜片6和孔肩4的上部沉积第一反射层7和第二反射层8;Step 3: Referring to FIG. 10 , deposit the first
步骤4:将梅花型光纤1插入引导孔2,通过孔肩4定位光纤端面,使梅花型光纤1的中心光纤9与敏感膜片6上的第一反射层7中心对准,梅花型光纤1的环绕光纤10与孔肩4上的第二反射层8接触,利用环氧树脂将梅花型光纤1固定在引导孔2中,形成多光束光纤干涉腔。Step 4: Insert the quincunx
实施例3:Example 3:
本实用新型提出的基于梅花型光纤的MEMS多光束干涉腔,其整体结构参照图1,器件主要包括梅花型光纤1、引导孔2、支撑框架3、孔肩4、干涉腔本体5、敏感膜片6、第一反射层7、第二反射层8、中心光纤9和环绕光纤10。The overall structure of the MEMS multi-beam interference cavity based on the quincunx optical fiber proposed by the present utility model is shown in FIG.
所述梅花型光纤1固接于引导孔2中并与第二反射层8相连接,所述的梅花型光纤1中的中心光纤9与第一反射层7中心对准,所述的梅花型光纤1中的环绕光纤10与第二反射层8相连接,所述第二反射层8制作在引导孔2底部和干涉腔本体5构成的孔肩4上,所述干涉腔本体5制作在引导孔2的底部且与引导孔2的中心同轴,所述敏感膜片6制作在干涉腔本体5的底部并与支撑框架3连接,所述的第一反射层7制作在敏感膜片6上,所述敏感膜片6与梅花型光纤1端面之间的距离通过干涉腔本体5的长度控制。The quincunx
参阅图6,所述梅花型光纤1由1×9分光器的9个分光端口加工制作而成,分光比采用均分方式,参阅图7的视图,所述梅花型光纤1内部采用9根环绕光纤10绕中心光纤9圆周均布的方式排列。Referring to FIG. 6 , the
所述的引导孔2、支撑框架3、孔肩4、干涉腔本体5和敏感膜片6通过湿法腐蚀氧化硅片整体制作而成。The
所述第一反射层7和第二反射层8可通过磁控溅射金制作。The first
干涉腔的传感原理是:光源发出的光通过光纤环形器进入分光器,经分光器分成9束光,其中8束光进入环绕光纤10被引导孔2底部的第二反射层8反射进入光纤,剩余一束光进入中心光纤9被敏感膜片6上的第一反射层7反射重新进入光纤,这9部分光束在分光器中汇聚干涉,汇聚干涉后的光束通过光纤环形器进入后端检测系统。干涉信号与干涉腔本体5的腔长有关,当被检测的信号使敏感膜片6发生轴向变形时,干涉腔本体5腔长发生变化,从而引起干涉信号的变化,通过解调干涉信号就可获得被测物理量的信息。The sensing principle of the interference cavity is: the light emitted by the light source enters the beam splitter through the optical fiber circulator, and is divided into 9 beams of light by the beam splitter, of which 8 beams enter the surrounding
干涉腔的基本加工过程如下:The basic machining process of the interference cavity is as follows:
步骤1:参阅8,在氧化硅片上通过湿法腐蚀制作引导孔2;Step 1: Referring to 8, make the
步骤2:参阅9,在引导孔2的底部通过湿法腐蚀制作敏感膜片6并形成干涉腔本体5;Step 2: Referring to 9, at the bottom of the
步骤3:参阅10,通过磁控溅射金在敏感膜片6和孔肩4的上部沉积第一反射层7和第二反射层8;Step 3: Referring to 10, deposit the
步骤4:将梅花型光纤1插入引导孔2,通过孔肩4定位光纤端面,使梅花型光纤1的中心光纤9与敏感膜片6上的第一反射层7中心对准,梅花型光纤1的环绕光纤10与孔肩4上的第二反射层8接触,利用热熔胶将梅花型光纤1固定在引导孔2中,形成多光束光纤干涉腔。Step 4: Insert the quincunx
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Equivalent modifications or replacements should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020267968.1U CN211552729U (en) | 2020-03-06 | 2020-03-06 | MEMS multi-beam interference cavity based on plum blossom type optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020267968.1U CN211552729U (en) | 2020-03-06 | 2020-03-06 | MEMS multi-beam interference cavity based on plum blossom type optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211552729U true CN211552729U (en) | 2020-09-22 |
Family
ID=72493918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020267968.1U Active CN211552729U (en) | 2020-03-06 | 2020-03-06 | MEMS multi-beam interference cavity based on plum blossom type optical fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211552729U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111397515A (en) * | 2020-03-06 | 2020-07-10 | 国网上海市电力公司 | MEMS multi-beam interference cavity based on quincunx fiber and its fabrication method |
-
2020
- 2020-03-06 CN CN202020267968.1U patent/CN211552729U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111397515A (en) * | 2020-03-06 | 2020-07-10 | 国网上海市电力公司 | MEMS multi-beam interference cavity based on quincunx fiber and its fabrication method |
CN111397515B (en) * | 2020-03-06 | 2025-03-25 | 国网上海市电力公司 | MEMS multi-beam interference cavity based on plum blossom-shaped optical fiber and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111998932B (en) | A kind of graphene corrugated film fiber F-P sound pressure sensor and its making method | |
CN103557929B (en) | A kind of Fabry-perot optical fiber sound pressure sensor method for making based on graphene film and measuring method, device | |
CN110360935B (en) | An in-plane displacement sensing unit and method based on a simplified optical nano-resonator | |
CN105158506A (en) | Optical fiber MEMS Fabry-Perot acceleration sensor and manufacturing method thereof | |
CN103528665A (en) | Novel Fabry-Perot interference MEMS (Micro Electro Mechanical System) sound wave sensor | |
CN110332981A (en) | A kind of MEMS optical fiber hydrophone and its manufacturing method | |
CN110160567A (en) | Integrated MEMS optical fiber F-P sensitive chip and preparation method thereof in a kind of face | |
CN109374109B (en) | A miniature fiber optic extrinsic Michelson sound pressure sensor with a common optical path structure | |
CN203551100U (en) | Novel Fabry-Perot interference-type MEMS sound wave sensor | |
CN106017756A (en) | Submicron ultra-smooth metal film based highly sensitive FP pressure sensor | |
CN110618302A (en) | Manufacturing method of Fabry-Perot cavity probe of partial discharge EFPI optical fiber sensor | |
CN106443065A (en) | High-precision wavelength shape acceleration sensor and preparation method thereof | |
CN211552729U (en) | MEMS multi-beam interference cavity based on plum blossom type optical fiber | |
CN114001814B (en) | F-P interference-based composite MEMS vector hydrophone | |
CN105606277A (en) | Integrated fiber F-P chamber pressure sensor | |
CN114279551B (en) | An optical fiber sound pressure sensor based on MEMS technology and its preparation method | |
CN111397515A (en) | MEMS multi-beam interference cavity based on quincunx fiber and its fabrication method | |
CN213903986U (en) | Optical fiber MEMS tunable filter | |
CN116399489B (en) | A high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration | |
CN103576242B (en) | Manufacturing method for light-blocking type micro-electro-mechanical variable light attenuator | |
CN116295557A (en) | An optical fiber F-P cavity high-temperature MEMS pressure sensor with an E-type film structure and its manufacturing method | |
CN105067102A (en) | Non-intrinsic type optical-fiber fabry-perot sound-pressure senor based on 45-degree optical fiber, and machining method | |
CN116359844A (en) | Optical fiber Fabry-Perot sound positioning sensor of hub coupling type vibrating diaphragm | |
CN106323516B (en) | F-P pressure sensor with composite medium film | |
CN112577534B (en) | MEMS optical fiber Fabry-Perot sensor, manufacturing device and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |