CN211552119U - Heat accumulation type direct expansion type photovoltaic-solar heat pump electricity and heat cogeneration system - Google Patents
Heat accumulation type direct expansion type photovoltaic-solar heat pump electricity and heat cogeneration system Download PDFInfo
- Publication number
- CN211552119U CN211552119U CN201922344429.3U CN201922344429U CN211552119U CN 211552119 U CN211552119 U CN 211552119U CN 201922344429 U CN201922344429 U CN 201922344429U CN 211552119 U CN211552119 U CN 211552119U
- Authority
- CN
- China
- Prior art keywords
- heat
- photovoltaic
- way valve
- heat storage
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005611 electricity Effects 0.000 title claims abstract description 15
- 238000009825 accumulation Methods 0.000 title claims 2
- 238000005338 heat storage Methods 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000012782 phase change material Substances 0.000 claims description 50
- 239000002131 composite material Substances 0.000 claims description 43
- 239000003507 refrigerant Substances 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 239000000741 silica gel Substances 0.000 claims description 15
- 229910002027 silica gel Inorganic materials 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 229920000742 Cotton Polymers 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 22
- 229910002804 graphite Inorganic materials 0.000 description 22
- 239000010439 graphite Substances 0.000 description 22
- 239000012188 paraffin wax Substances 0.000 description 21
- 238000001704 evaporation Methods 0.000 description 14
- 230000008020 evaporation Effects 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 230000005855 radiation Effects 0.000 description 12
- 230000007704 transition Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000003685 thermal hair damage Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及太阳能采暖领域,尤其涉及一种蓄热型直膨式光伏-太阳能热泵电热联供系统。The utility model relates to the field of solar heating, in particular to a heat storage type direct expansion photovoltaic-solar heat pump combined electricity and heat supply system.
背景技术Background technique
太阳能资源极其普遍,且无污染、永不枯竭,符合目前世界环境保护的要求。传统的太阳能光热利用技术在我国已得到普及,但由于太阳能存在能量密度低、不均匀性、间歇性等问题,使得技术的发展受到制约。而在太阳能光伏发电的应用中,也存在组件温度过高导致发电效率降低的情况。Solar energy resources are extremely common, non-polluting and inexhaustible, in line with the current requirements of the world's environmental protection. The traditional solar thermal utilization technology has been popularized in my country, but the development of the technology is restricted due to the problems of low energy density, non-uniformity and intermittency of solar energy. In the application of solar photovoltaic power generation, there are also cases where the module temperature is too high, which reduces the power generation efficiency.
直膨式光伏-太阳能热泵系统是太阳能光热光电综合利用技术之一,以热泵循环作为系统的热量传输途径,光伏电池和热泵蒸发器结合成一体,把光热转换得到的热量先由工质的蒸发过程吸收,通过热泵循环在冷凝端高温输出。一方面,光热转换热量输出的终端温度可以保证,另一方面,光伏电池在热泵工质的蒸发冷却下,工作温度较低,光电效率也得到提高。The direct expansion photovoltaic-solar heat pump system is one of the comprehensive utilization technologies of solar thermal photovoltaics. The heat pump cycle is used as the heat transfer path of the system. The photovoltaic cell and the heat pump evaporator are integrated into one, and the heat obtained by the photothermal conversion is first converted by the working fluid. The evaporation process is absorbed, and the high temperature output at the condensation end is circulated through the heat pump. On the one hand, the terminal temperature of the heat output of the photothermal conversion can be guaranteed. On the other hand, under the evaporative cooling of the heat pump working fluid, the working temperature of the photovoltaic cell is lower, and the photoelectric efficiency is also improved.
结合高导热的相变蓄热材料,可以有效解决太阳光不集中不稳定的问题,进一步提高太阳能的综合利用效率和光伏蒸发器的集热效率。为此期望设计出一种简单、高效充分利用太阳能资源的电热联供光伏-太阳能热泵系统。Combined with phase-change heat storage materials with high thermal conductivity, it can effectively solve the problem of unconcentrated and unstable sunlight, and further improve the comprehensive utilization efficiency of solar energy and the heat collection efficiency of photovoltaic evaporators. Therefore, it is expected to design a simple and efficient photovoltaic-solar heat pump system that fully utilizes solar energy resources.
发明内容SUMMARY OF THE INVENTION
本实用新型提供了一种蓄热型直膨式光伏-太阳能热泵电热联供系统;解决直膨式光伏-太阳能热泵系统中在热泵部分太阳能不稳定性的因素,和因工作温度过高而损坏的技术问题;本实用新型旨在最充分利用太阳能资源以提高太阳能利用效率和热泵的性能。The utility model provides a heat storage type direct-expansion photovoltaic-solar heat pump combined electricity and heat supply system, which solves the factors of solar instability in the heat pump part in the direct-expansion photovoltaic-solar heat pump system, and damage caused by excessive working temperature. The technical problem; the utility model aims to make the most full use of solar energy resources to improve the solar energy utilization efficiency and the performance of the heat pump.
本实用新型通过下述技术方案实现:The utility model is realized through the following technical solutions:
一种蓄热型直膨式光伏-太阳能热泵电热联供系统,包括如下各个部件构成的两个液态工质循环回路:压缩机1、冷凝器2、膨胀阀3、三通阀4、光伏蓄热蒸发器5、第一单向阀6、风冷蒸发器7、第二单项阀8;A thermal storage type direct expansion photovoltaic-solar heat pump combined electricity and heat supply system, comprising two liquid working medium circulation loops composed of the following components: a compressor 1, a
所述压缩机1的出口通过管路依次串联连接冷凝器2、膨胀阀3、三通阀4、光伏蓄热蒸发器5、第一单向阀6和风冷蒸发器7,最后在接入压缩机1的入口;The outlet of the compressor 1 is connected in series with the
所述三通阀4的另一通路,通过第二单项阀8直接与风冷蒸发器7的入口管路连接;The other passage of the three-way valve 4 is directly connected to the inlet pipeline of the air-cooled evaporator 7 through the second one-way valve 8;
所述三通阀4作为两个液态工质循环回路的选择开关;The three-way valve 4 is used as a selector switch for two liquid working medium circulation loops;
当三通阀4的A通路打开、B通路关闭时,来自膨胀阀3的液态工质先进入光伏蓄热蒸发器5后,再依次进入下游各个部件,此时第一回路连通;When the A passage of the three-way valve 4 is opened and the B passage is closed, the liquid working medium from the expansion valve 3 first enters the photovoltaic
当三通阀4的A通路关闭、B通路打开时,来自膨胀阀3的液态工质通过第二单项阀8,直接进入风冷蒸发器7后,再依次进入下游各个部件,此时第二回路连通。When the A passage of the three-way valve 4 is closed and the B passage is opened, the liquid working medium from the expansion valve 3 passes through the second one-way valve 8, directly enters the air-cooled evaporator 7, and then enters the downstream components in sequence. circuit connected.
所述光伏蓄热蒸发器5包括用于通入液态工质的换热盘管66,以及依次贴合在一起的光伏电池板11、兼做粘合剂的导热硅胶层22、复合相变材料层33、保温层44和背板55;所述换热盘管66的外壁涂覆导热硅胶后,再埋设于复合相变材料层33内。The photovoltaic
所述复合相变材料层33的相变温度范围20℃~35℃;主要由比例为75~90:1的石蜡与膨胀石墨复合而成的相变材料层;复合方法为将加热熔化后的石蜡加入膨胀石墨中进行充分搅拌,直到石蜡被膨胀石墨充分吸收;然后压制成所需板块状,再通过导热硅胶层22粘连在光伏电池板11的背后。具体相变温度,可根据不同区域的环境特征进行选取。The phase change temperature range of the composite phase
所述光伏蓄热蒸发器5和冷凝器2均内置有温度传感器;光伏蓄热蒸发器5内置的传感器用于检测光伏电池板11发电的工作温度及复合相变材料层33的蓄热温度;冷凝器2内置的温度传感器用于检测水温。Both the photovoltaic
所述冷凝器2包括冷水进口和热水出口。The
所述液态工质为制冷剂。The liquid working medium is a refrigerant.
所述保温层44为保温棉;背板55为金属背板。The
所述光伏电池板11为多晶硅光伏电池板;所述多晶硅光伏电池板连接蓄电池机组9。The
所述三通阀4为L型三通阀。The three-way valve 4 is an L-shaped three-way valve.
本实用新型蓄热型直膨式光伏-太阳能热泵电热联供系统的运行方法,包括如下步骤:The operation method of the heat storage type direct expansion photovoltaic-solar heat pump electric heating combined supply system of the utility model comprises the following steps:
第一回路循环运行步骤;将三通阀4的A通路打开、B通路关闭;光伏蓄热蒸发器5接受到太阳辐照,太阳辐照的短波部分被光伏电池板11转化为电能储存在蓄电池机组9内,长波部分则通过复合相变材料层33吸收储存起来,为换热盘管66内的制冷剂升温,再由作为辅助换热器的风冷蒸发器7进行二次升温后进入压缩机1,压缩机1将二次升温后的制冷剂压缩升温到过热蒸汽状态后,送入冷凝器2的金属盘管内,并对冷凝器2内的水进行换热,制冷剂在冷凝器2中得到冷却,同时冷凝器2内的水被加热,作为生活用热水供采暖或直接使用,而冷却后的蒸汽经膨胀阀3进行节流降压后依次往下循环,以进入后序蒸发阶段往复循环;第一回路不仅提高太阳能的综合利用效率和光伏蒸发器的集热效率,同时对光伏电池板进行有效冷却,提高光伏发电效率,保护光伏组件。The first loop cycle operation step; the A channel of the three-way valve 4 is opened, and the B channel is closed; the photovoltaic
第二回路循环运行步骤;将三通阀4的A通路关闭、B通路打开;仅有风冷蒸发器7作为换热器对制冷剂蒸发提供能量,此时光伏蓄热蒸发器5仅作为蓄热器对热量进行储存或者转换。The second loop cycle operation step; the A passage of the three-way valve 4 is closed and the B passage is opened; only the air-cooled evaporator 7 is used as a heat exchanger to provide energy for refrigerant evaporation, and the photovoltaic
本实用新型相对于现有技术,具有如下的优点及效果:Compared with the prior art, the utility model has the following advantages and effects:
本实用新型具有两个循环运行回路,可根据环境条件自由切换;最大限度的利用了太阳能,保护了光伏组件免于因工作温度过高而损坏,同时提高了热泵的性能,在提供生活用热水的同时也能提供生活用电。The utility model has two circulating operation loops, which can be switched freely according to the environmental conditions; the solar energy is utilized to the maximum extent, the photovoltaic components are protected from damage due to excessive working temperature, and the performance of the heat pump is improved at the same time. Water can also provide domestic electricity.
本实用新型第一回路循环运行,光伏电池板将太阳光热传递给复合相变材料层,复合相变材料层再将热量传递给制冷剂,对制冷剂进行升温;风冷蒸发器为辅助换热器,在阳光不足或阴雨天气中从环境中吸收能量来弥补光伏蒸发器吸热量的不足,保证热泵系统的正常进行。当白天太阳辐照达到一定强度时,光伏发电系统即能为用户提供电能,复合相变材料层吸收热能可缓解光伏电池板升温的速率,且提高光伏电池板受热的均匀性,当光伏电池板的温度高于50℃时,可开启第一回路循环运行对光伏电池板进行降温,防止光伏组件产生热损坏。The first loop of the utility model operates cyclically, and the photovoltaic cell plate transfers the heat of sunlight to the composite phase-change material layer, and the composite phase-change material layer transfers the heat to the refrigerant to heat the refrigerant; the air-cooled evaporator is an auxiliary changer. The heat exchanger absorbs energy from the environment in the absence of sunlight or rainy weather to make up for the lack of heat absorption of the photovoltaic evaporator and ensure the normal operation of the heat pump system. When the solar radiation reaches a certain intensity during the day, the photovoltaic power generation system can provide users with electrical energy. The composite phase change material layer absorbs heat energy, which can slow down the heating rate of the photovoltaic panels and improve the uniformity of the heating of the photovoltaic panels. When the temperature is higher than 50 ℃, the first loop can be turned on to cool down the photovoltaic panels to prevent thermal damage to the photovoltaic modules.
本实用新型第二回路循环运行,作为单风冷蒸发器热泵循环系统;在本回路中,风冷蒸发器作为唯一换热器对制冷剂蒸发提供能量,从而保证了光伏蓄热蒸发器可作为蓄热器对热量进行储存以供用户在其它时期使用。The second loop of the utility model operates in a cycle as a single air-cooled evaporator heat pump circulation system; in this loop, the air-cooled evaporator acts as the only heat exchanger to provide energy for refrigerant evaporation, thus ensuring that the photovoltaic heat storage evaporator can be used as a The heat accumulator stores heat for use by the user at other times.
本实用新型相变温度范围20℃~35℃;主要由比例为75~90:1的石蜡与膨胀石墨复合而成的相变材料层;复合方法为将加热熔化后的石蜡加入膨胀石墨中进行充分搅拌,直到石蜡被膨胀石墨充分吸收;再经压制成所需板块状,再通过导热硅胶层粘连在光伏电池板的背后。这种复合相变材料层,制备工艺简单,换热效果好,即可以应用于各种户外温度下且具有很大的相变储热能力,同时通过与膨胀石墨的复合工艺,增加了与制冷剂之间的换热能力,进而大幅提高了导热系数。The phase change temperature range of the utility model is 20°C to 35°C; the phase change material layer is mainly composed of paraffin and expanded graphite in a ratio of 75 to 90:1; the compounding method is to add the heated and melted paraffin into the expanded graphite for Stir well until the paraffin is fully absorbed by the expanded graphite; then press it into the desired plate shape, and then adhere to the back of the photovoltaic cell panel through the thermally conductive silica gel layer. The composite phase change material layer has a simple preparation process and good heat exchange effect, that is, it can be applied to various outdoor temperatures and has a large phase change heat storage capacity. The heat transfer ability between the agents, thereby greatly improving the thermal conductivity.
附图说明Description of drawings
图1为本实用新型蓄热型直膨式光伏-太阳能热泵电热联供系统结构框图。Fig. 1 is a structural block diagram of the thermal storage type direct expansion photovoltaic-solar heat pump combined electricity and heat supply system of the present invention.
图2为图1光伏蓄热蒸发器5结构示意图。FIG. 2 is a schematic structural diagram of the photovoltaic
图3为图2内部剖面结构示意图。FIG. 3 is a schematic diagram of the internal cross-sectional structure of FIG. 2 .
具体实施方式Detailed ways
下面结合具体实施例对本实用新型作进一步具体详细描述。The present utility model will be further described in detail below in conjunction with specific embodiments.
如图1-3所示。本实用新型公开了一种蓄热型直膨式光伏-太阳能热泵电热联供系统,包括如下各个部件构成的两个液态工质循环回路:压缩机1、冷凝器2、膨胀阀3、三通阀4、光伏蓄热蒸发器5、第一单向阀6、风冷蒸发器7、第二单项阀8;As shown in Figure 1-3. The utility model discloses a heat storage type direct expansion photovoltaic-solar heat pump combined electricity and heat supply system, comprising two liquid working medium circulation loops composed of the following components: a compressor 1, a
所述压缩机1的出口通过管路依次串联连接冷凝器2、膨胀阀3、三通阀4、光伏蓄热蒸发器5、第一单向阀6和风冷蒸发器7,最后在接入压缩机1的入口;The outlet of the compressor 1 is connected in series with the
所述三通阀4的另一通路,通过第二单项阀8直接与风冷蒸发器7的入口管路连接;The other passage of the three-way valve 4 is directly connected to the inlet pipeline of the air-cooled evaporator 7 through the second one-way valve 8;
所述三通阀4作为两个液态工质循环回路的选择开关;The three-way valve 4 is used as a selector switch for two liquid working medium circulation loops;
当三通阀4的A通路打开、B通路关闭时,来自膨胀阀3的液态工质先进入光伏蓄热蒸发器5后,再依次进入下游各个部件,此时第一回路连通;When the A passage of the three-way valve 4 is opened and the B passage is closed, the liquid working medium from the expansion valve 3 first enters the photovoltaic
当三通阀4的A通路关闭、B通路打开时,来自膨胀阀3的液态工质通过第二单项阀8,直接进入风冷蒸发器7后,再依次进入下游各个部件,此时第二回路连通。When the A passage of the three-way valve 4 is closed and the B passage is opened, the liquid working medium from the expansion valve 3 passes through the second one-way valve 8, directly enters the air-cooled evaporator 7, and then enters the downstream components in sequence. circuit connected.
所述光伏蓄热蒸发器5包括用于通入液态工质的换热盘管66,以及依次贴合在一起的光伏电池板11、兼做粘合剂的导热硅胶层22、复合相变材料层33、保温层44和背板55;所述换热盘管66的外壁涂覆导热硅胶后,再埋设于复合相变材料层33内。The photovoltaic
所述复合相变材料层33的相变温度范围20℃~35℃;主要由比例为75~90:1的石蜡与膨胀石墨复合而成的相变材料层;复合方法为将加热熔化后的石蜡加入膨胀石墨中进行充分搅拌,直到石蜡被膨胀石墨充分吸收;然后压制成所需板块状,再通过导热硅胶层22粘连在光伏电池板11的背后。具体相变温度,可根据不同区域的环境特征进行选取。The phase change temperature range of the composite phase
还可根据具体应用要求采用其他能实现相变温度范围20℃~35℃的相变材料;比如按照上述比例(或者其他比例),十水合硫酸钠去和膨胀石墨或者硅藻土去复合制备等。Other phase change materials that can achieve a phase transition temperature range of 20°C to 35°C can also be used according to specific application requirements; for example, according to the above ratio (or other ratios), sodium sulfate decahydrate is removed from expanded graphite or diatomaceous earth to composite preparation, etc. .
所述光伏蓄热蒸发器5和冷凝器2均内置有温度传感器;光伏蓄热蒸发器5内置的传感器用于检测光伏电池板11发电的工作温度及复合相变材料层33的蓄热温度;冷凝器2内置的温度传感器用于检测水温。Both the photovoltaic
所述冷凝器2包括冷水进口和热水出口。所述液态工质为制冷剂(工质R22)。The
所述保温层44为保温棉;背板55为金属背板。The
所述光伏电池板11为多晶硅光伏电池板;所述多晶硅光伏电池板连接蓄电池机组9。The
所述三通阀4为L型三通阀。所述压缩机1将制冷剂压缩升温到高温高压的过热蒸汽状态,为热泵循环提供动力。The three-way valve 4 is an L-shaped three-way valve. The compressor 1 compresses and heats the refrigerant to a superheated vapor state of high temperature and high pressure to provide power for the heat pump cycle.
冷凝器2为150L的水箱,水箱内设置金属盘管(换热铜管),将金属盘管内高温高压的蒸汽与水箱中的水进行换热,制冷剂在冷凝器中得到冷却,同时水箱中的水可被加热为生活用热水供采暖或直接使用。The
膨胀阀3将冷凝后的制冷剂进行节流降压再送入后序的工质蒸发阶段。The expansion valve 3 throttles and reduces the pressure of the condensed refrigerant before sending it to the subsequent working medium evaporation stage.
三通阀4(L型)作为通道选择开关,决定了制冷剂的循环回路;在第一回路中,光伏蓄热蒸发器5,一方面吸收太阳辐照中的短波进行发电,另一方面作为集热器将太阳辐照中的长波能量吸收并储存起来,可为制冷剂蒸发提供能量,使制冷剂充分换热后达到过热状态。The three-way valve 4 (L-type) acts as a channel selection switch, which determines the refrigerant circulation loop; in the first loop, the photovoltaic
述风冷蒸发器7为辅助换热器,在阳光不足或阴雨天气中从环境中吸收能量来弥补光伏蓄热蒸发器5吸热量的不足,保证热泵系统的正常进行。在回路二中,风冷蒸发器7作为唯一换热器对制冷剂蒸发提供能量。The air-cooled evaporator 7 is an auxiliary heat exchanger, which absorbs energy from the environment in insufficient sunlight or rainy weather to make up for the lack of heat absorbed by the photovoltaic
本实用新型所述系统,通过光生伏打效应将太阳能转为电能;光伏电池板11(多晶硅光伏电池板)即为光伏蓄热蒸发器中的光伏组件,可以将太阳光直接转化为电能,产生电流。The system of the present invention converts solar energy into electrical energy through the photovoltaic effect; the photovoltaic cell panel 11 (polysilicon photovoltaic cell panel) is the photovoltaic component in the photovoltaic heat storage evaporator, which can directly convert the sunlight into electric energy to generate current.
蓄电池机组9包括蓄电池组、充放电控制器,可将多晶硅光伏电池板产生的电能储存起来,并在用户需要使用的时候进行放电,并且可以根据用户需求决定增加逆变器、交流配电柜等。The battery pack 9 includes a battery pack and a charge and discharge controller, which can store the electrical energy generated by the polycrystalline silicon photovoltaic panels and discharge it when the user needs to use it, and can decide to add inverters, AC power distribution cabinets, etc. according to the needs of the user. .
如图2所述。光伏蓄热蒸发器5即为多晶硅光伏电池板与相变材料组成的系统,系统接受到的太阳辐照中,短波部分被光伏电池转化为电流输出,长波部分则通过相变材料吸收再作为热泵蒸发器的热源。As shown in Figure 2. The photovoltaic
光伏电池板利用光伏效应发电的同时也作为集热器吸收太阳光的能量。Photovoltaic panels use the photovoltaic effect to generate electricity and also act as collectors to absorb the energy of sunlight.
导热硅胶22具有较高的导热系数,作为粘合剂将复合相变材料层33和光伏电池板11连接起来,使光伏电池板11接收的能量传导到复合相变材料层33中。The thermally
复合相变材料层33,利用其相变潜热可将能量储存,同时也可将热量传导到换热盘管66。The composite phase
保温层44具有绝热作用,可以极大限度减少复合相变材料层33储存的热量散失。The
背板55作为外框架包裹内部复合相变材料层33;换热盘管66内走制冷剂,换热盘管66外壁通过导热硅胶嵌入复合相变材料层33中,是换热盘管66和制冷剂(工质R22)的换热媒介。The
如上所述;复合相变材料层33的相变温度范围20℃~35℃;主要由比例为75~90:1的石蜡与膨胀石墨复合而成的相变材料层;复合方法为将加热熔化后的石蜡(RT28)加入到膨胀石墨中进行充分搅拌,直到石蜡被膨胀石墨充分吸收;该复合相变材料再经压片机压制形成10cm×10cm×3cm的方块,再通过导热硅胶层粘连在光伏电池板的背后;压制形成的复合相变材料具有石蜡的相变温度平台,即可以应用于各种户外温度下且具有很大的相变储热能力,同时通过与膨胀石墨的复合获得了很高的导热系数,可增加与制冷剂之间的换热能力。具体相变温度,可根据不同区域的环境特征进行选取。As mentioned above; the phase change temperature range of the composite phase
可在光伏蓄热蒸发器内部设置温度传感器,提高采集数据的准确性,可设置在光伏电池板的背部与复合相变材料层之间,用于检测光伏电池板发电的工作温度及相变材料的蓄热温度,以为热泵开启适宜时间,提供参考依据。A temperature sensor can be set inside the photovoltaic heat storage evaporator to improve the accuracy of the collected data. It can be set between the back of the photovoltaic panel and the composite phase change material layer to detect the working temperature of the photovoltaic panel and the phase change material for power generation. The heat storage temperature can provide a reference for the appropriate time for the heat pump to start.
可在冷凝器中设置温度传感器,用于检测冷凝器内加热的水温,为用于使用需求,提供温度参考数据。A temperature sensor can be set in the condenser to detect the temperature of the heated water in the condenser and provide temperature reference data for use.
白天太阳辐照达到一定强度时,光伏发电系统即能为用户提供电能,复合相变材料层吸收热能可缓解光伏电池板升温的速率,且提高光伏电池板受热的均匀性,当光伏电池板的温度高于50℃时,可开启第一回路循环模式,对光伏电池板进行降温,防止光伏组件产生热损坏。When the solar radiation reaches a certain intensity during the day, the photovoltaic power generation system can provide users with electrical energy. The composite phase change material layer absorbs heat energy, which can slow down the heating rate of the photovoltaic panels and improve the uniformity of the heating of the photovoltaic panels. When the temperature is higher than 50°C, the first loop circulation mode can be turned on to cool down the photovoltaic panels to prevent thermal damage to the photovoltaic modules.
当用户白天有采暖或用热水的需求时,可通过转动三通阀开启第一回路循环模式,利用光伏电池板接收的热能给制冷剂蒸发提供能量,提高热泵的性能。When the user needs heating or hot water during the day, the first loop circulation mode can be turned on by turning the three-way valve, and the heat received by the photovoltaic panels can be used to provide energy for the evaporation of the refrigerant and improve the performance of the heat pump.
当用户晚间有采暖或用热水的需求时,可开启第一回路循环模式,光伏蓄热蒸发器中复合相变材料层放出白天储存的能量,可为制冷剂蒸发提供能量。When the user needs heating or hot water at night, the first loop circulation mode can be turned on, and the composite phase change material layer in the photovoltaic heat storage evaporator releases the energy stored during the day, which can provide energy for refrigerant evaporation.
当日夜温差较大时,白天若有用水需求可通过三通阀选择开启第二回路循环模式,在温度较高的时候仅利用风冷蒸发器便可保证热泵的性能,同时光伏蓄热蒸发器对太阳能进行蓄热,在夜间温度较低时可再开启第一回路循环模式,利用白天的蓄热给制冷剂加热以提高热泵的性能;整个系统相互能量互补服务于用户采暖和用电。When the temperature difference between day and night is large, if there is a demand for water during the day, the second loop circulation mode can be selected through the three-way valve. When the temperature is high, only the air-cooled evaporator can ensure the performance of the heat pump, and the photovoltaic heat storage evaporator can be used to ensure the performance of the heat pump. The solar energy is stored for heat, and the first circuit circulation mode can be turned on again when the temperature is low at night, and the heat storage during the day is used to heat the refrigerant to improve the performance of the heat pump; the whole system complements each other with energy to serve users for heating and electricity consumption.
本实用新型蓄热型直膨式光伏-太阳能热泵电热联供系统的运行方法,包括如下步骤:The operation method of the heat storage type direct expansion photovoltaic-solar heat pump electric heating combined supply system of the utility model comprises the following steps:
第一回路循环运行步骤;将三通阀4的A通路打开、B通路关闭;光伏蓄热蒸发器5接受到太阳辐照,太阳辐照的短波部分被光伏电池板11转化为电能储存在蓄电池机组9内,长波部分则通过复合相变材料层33吸收储存起来,为换热盘管66内的制冷剂升温,再由作为辅助换热器的风冷蒸发器7进行二次升温后进入压缩机1,压缩机1将二次升温后的制冷剂压缩升温到过热蒸汽状态后,送入冷凝器2的金属盘管内,并对冷凝器2内的水进行换热,制冷剂在冷凝器2中得到冷却,同时冷凝器2内的水被加热,作为生活用热水供采暖或直接使用,而冷却后的蒸汽经膨胀阀3进行节流降压后依次往下循环,已进入后序蒸发阶段往复循环;第一回路循环适合在阳光照度不足或阴雨天气时使用,在阳光不足或阴雨天气中从环境中吸收能量以弥补光伏蓄热蒸发器5吸收热量的不足,进而使蓄热型直膨式光伏-太阳能热泵电热联供系统正常进行。The first loop cycle operation step; the A channel of the three-way valve 4 is opened, and the B channel is closed; the photovoltaic
白天太阳辐照达到一定强度时,光伏发电系统即能为用户提供电能,复合相变材料层吸收热能可缓解光伏电池板升温的速率,且提高光伏电池板受热的均匀性,当光伏电池板的温度高于50℃时,可开启第一回路循环运行对光伏电池板进行降温,防止光伏组件产生热损坏。When the solar radiation reaches a certain intensity during the day, the photovoltaic power generation system can provide users with electrical energy. The composite phase change material layer absorbs heat energy, which can slow down the heating rate of the photovoltaic panels and improve the uniformity of the heating of the photovoltaic panels. When the temperature is higher than 50 °C, the first loop can be turned on to cool down the photovoltaic panels to prevent thermal damage to the photovoltaic modules.
第二回路循环运行步骤;将三通阀4的A通路关闭、B通路打开;仅有风冷蒸发器7作为换热器对制冷剂蒸发提供能量,此时光伏蓄热蒸发器5仅作为蓄热器对热量进行储存或者转换;以供用户在其它时期使用。The second loop cycle operation step; the A passage of the three-way valve 4 is closed and the B passage is opened; only the air-cooled evaporator 7 is used as a heat exchanger to provide energy for refrigerant evaporation, and the photovoltaic
以下通过两个具体实施例,对本实用新型作进一步说明。The present invention will be further described below through two specific embodiments.
实施例1:Example 1:
在我国南部区域,以某市为例,全年平均温度在20℃~22℃,夏季平均温度高于30℃,因此选取相变温度为28℃的石蜡与膨胀石墨进行复合制成相变材料;复合方法为将加热熔化后的石蜡加入到膨胀石墨中进行充分搅拌,直到石蜡被膨胀石墨充分吸收;该复合相变材料再经压片机压制形成方块,再通过导热硅胶粘连在光伏电池板的背后;压制形成的复合相变材料具有石蜡的相变温度平台,相变范围在20℃~36℃,即可以应用于户外温度下,且具有很大的相变储热能力,同时通过与膨胀石墨的复合获得了很高的导热系数,可增加与工质之间的换热能力。In the southern region of my country, taking a city as an example, the annual average temperature is between 20°C and 22°C, and the average temperature in summer is higher than 30°C. Therefore, paraffin and expanded graphite with a phase transition temperature of 28°C are selected to composite phase change materials. The composite method is to add the heated and melted paraffin into the expanded graphite for full stirring until the paraffin is fully absorbed by the expanded graphite; the composite phase change material is pressed by a tablet press to form a square, and then adhered to the photovoltaic cell panel by thermal conductive silica gel Behind; the composite phase change material formed by pressing has the phase transition temperature platform of paraffin, and the phase transition range is 20 ℃ ~ 36 ℃, that is, it can be used at outdoor temperature, and has a large phase change heat storage capacity. The composite of expanded graphite obtains a high thermal conductivity, which can increase the heat transfer capacity with the working medium.
在不开启热泵的情况下,相变材料可对太阳辐照中的热能进行储存,进而对光伏电池板的温度上升进行控制;在第一回路运行过程中,太阳辐照中的热能可通过相变材料传导到换热盘管中用于制冷剂蒸发,提高了制冷剂的蒸发温度进而提高了热泵的性能,同时光伏电池板的温度得到制冷剂冷却,光电效率得到大幅提高。When the heat pump is not turned on, the phase change material can store the heat energy in the solar radiation, and then control the temperature rise of the photovoltaic panel; during the operation of the first circuit, the heat energy in the solar radiation can pass through the phase The variable material is conducted into the heat exchange coil for refrigerant evaporation, which increases the evaporation temperature of the refrigerant and improves the performance of the heat pump. At the same time, the temperature of the photovoltaic panel is cooled by the refrigerant, and the photoelectric efficiency is greatly improved.
实施例2:Example 2:
在我国北部区域,以某市为例,年平均气温10℃~12℃,冬季温度低,纯热泵热水器无法满足采暖需求,本实用新型可选取相变温度为20℃的复合相变材料;In the northern region of my country, taking a city as an example, the annual average temperature is 10°C to 12°C, the temperature in winter is low, and the pure heat pump water heater cannot meet the heating demand, the utility model can select a composite phase change material with a phase change temperature of 20°C;
本实施例中,复合相变材料为相变温度为20℃的石蜡与膨胀石墨复合形成,复合方法为将加热熔化后的石蜡加入到膨胀石墨中进行充分搅拌,直到石蜡被膨胀石墨充分吸收;该复合相变材料再经压片机压制形成方块,再通过导热硅胶粘连在光伏电池板的背后;压制形成的复合相变材料具有石蜡的相变温度平台,相变范围在12℃~28℃,即可以应用于户外温度下,且具有很大的相变储热能力,同时通过与膨胀石墨的复合获得了很高的导热系数,可增加与制冷剂之间的换热能力。In this embodiment, the composite phase change material is formed by compounding paraffin wax with a phase transition temperature of 20° C. and expanded graphite, and the compounding method is to add the heated and melted paraffin wax into the expanded graphite and fully stir until the paraffin wax is fully absorbed by the expanded graphite; The composite phase change material is pressed by a tablet press to form a square, and then adhered to the back of the photovoltaic cell panel through thermally conductive silica gel; the composite phase change material formed by pressing has the phase transition temperature platform of paraffin, and the phase transition range is 12°C~28°C , that is, it can be used at outdoor temperature, and has a large phase-change heat storage capacity, and at the same time, a high thermal conductivity is obtained by compounding with expanded graphite, which can increase the heat exchange capacity with the refrigerant.
在冬季温度低的情况下运行第一回路,相变材料与工质之间有足够的温度梯度,即能实现利用太阳辐照中的热能有效给热泵中的制冷剂蒸发提供热源,保证热泵的正常运行,并且通过相变材料的储能可以解决热泵结霜问题。In the case of low temperature in winter, the first loop is operated, and there is a sufficient temperature gradient between the phase change material and the working fluid, that is, the heat energy in the solar irradiation can be used to effectively provide a heat source for the evaporation of the refrigerant in the heat pump, so as to ensure the efficiency of the heat pump. Normal operation, and the heat pump frosting problem can be solved by the energy storage of the phase change material.
如上所述,便可较好地实现本实用新型。本实用新型结合高导热的相变蓄热材料,有效解决了太阳光不集中不稳定的问题,进一步提高太阳能的综合利用效率和光伏蒸发器的集热效率,同时也可以对光伏板进行有效冷却,提高光伏发电效率,保护光伏组件。As described above, the present invention can be well realized. The utility model combines the phase-change heat storage material with high thermal conductivity, effectively solves the problem of unconcentrated and unstable sunlight, further improves the comprehensive utilization efficiency of solar energy and the heat collection efficiency of the photovoltaic evaporator, and can also effectively cool the photovoltaic panel. Improve photovoltaic power generation efficiency and protect photovoltaic modules.
本实用新型的实施方式并不受上述实施例的限制,其他任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。The embodiments of the present invention are not limited by the above-mentioned examples, and any other changes, modifications, substitutions, combinations, and simplifications that do not deviate from the spirit and principle of the present invention should be equivalent replacement methods. Included within the scope of protection of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922344429.3U CN211552119U (en) | 2019-12-24 | 2019-12-24 | Heat accumulation type direct expansion type photovoltaic-solar heat pump electricity and heat cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922344429.3U CN211552119U (en) | 2019-12-24 | 2019-12-24 | Heat accumulation type direct expansion type photovoltaic-solar heat pump electricity and heat cogeneration system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211552119U true CN211552119U (en) | 2020-09-22 |
Family
ID=72508727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201922344429.3U Expired - Fee Related CN211552119U (en) | 2019-12-24 | 2019-12-24 | Heat accumulation type direct expansion type photovoltaic-solar heat pump electricity and heat cogeneration system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211552119U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110966801A (en) * | 2019-12-24 | 2020-04-07 | 华南理工大学 | A thermal storage type direct expansion photovoltaic-solar heat pump combined electricity and heat supply system and method |
CN112202405A (en) * | 2020-10-19 | 2021-01-08 | 吉林大学 | A solar panel cooling device and method |
CN114593454A (en) * | 2022-02-11 | 2022-06-07 | 河北工业大学 | Solar thermal-coupling flexible heat storage and supply system |
-
2019
- 2019-12-24 CN CN201922344429.3U patent/CN211552119U/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110966801A (en) * | 2019-12-24 | 2020-04-07 | 华南理工大学 | A thermal storage type direct expansion photovoltaic-solar heat pump combined electricity and heat supply system and method |
CN110966801B (en) * | 2019-12-24 | 2024-03-15 | 华南理工大学 | Heat accumulating type direct expansion photovoltaic-solar heat pump electric heat combined supply system and method |
CN112202405A (en) * | 2020-10-19 | 2021-01-08 | 吉林大学 | A solar panel cooling device and method |
CN114593454A (en) * | 2022-02-11 | 2022-06-07 | 河北工业大学 | Solar thermal-coupling flexible heat storage and supply system |
CN114593454B (en) * | 2022-02-11 | 2024-01-19 | 河北工业大学 | Solar photo-thermal coupling flexible heat storage and supply system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100453926C (en) | Photovoltaic solar heat pump multifunctional integrated system | |
CN110966801B (en) | Heat accumulating type direct expansion photovoltaic-solar heat pump electric heat combined supply system and method | |
CN210154106U (en) | A heat pipe photovoltaic photothermal system based on dual condensers | |
CN101964606B (en) | Solar energy combined energy supply system and method | |
CN107014111A (en) | A kind of phase-transition heat-storage solar air source double heat source heat pump hot water electricity generation system | |
CN211552119U (en) | Heat accumulation type direct expansion type photovoltaic-solar heat pump electricity and heat cogeneration system | |
CN110081618A (en) | A kind of heat pipe photo-thermal system based on double-condenser | |
CN103968574A (en) | Heat supply method of efficient energy storage type solar heat pump operating around clock | |
CN203823962U (en) | Household photovoltaic direct current transducer air conditioner supplying hot water | |
CN216716614U (en) | A wind-photoelectric-thermal complementary cold and hot water dual supply system | |
CN107461954A (en) | A kind of compound energy system of photovoltaic supply of cooling, heating and electrical powers | |
CN106802024B (en) | A heat pump air conditioner and domestic hot water combined system based on phase change energy storage | |
CN200940974Y (en) | Solar heat pump heating and photovoltaic power generation integrated device | |
CN102997492B (en) | Solar hot water and air conditioner integrated heat utilization system | |
CN110595107A (en) | Photovoltaic-thermal integrated dual-source heat pump energy system and its operation method with high concentrating photovoltaics-city electricity co-drive | |
CN206890915U (en) | A kind of phase-transition heat-storage solar air source double heat source heat pump hot water electric generating apparatus | |
CN112856831A (en) | Multifunctional heat pipe type photovoltaic photo-thermal high-low temperature phase change floor coupling system and method | |
CN111953233A (en) | A direct expansion heat pump system combining Fresnel concentrating photovoltaics and thermoelectric power generation sheets | |
CN208075062U (en) | Combined cooling heating and power integrated device based on radiation effect | |
CN214371009U (en) | Multifunctional heat pipe type photovoltaic photo-thermal high-low temperature phase change floor coupling system | |
CN212961846U (en) | Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system | |
CN212677100U (en) | A direct expansion heat pump system combining Fresnel concentrating photovoltaics and thermoelectric power generation sheets | |
CN114484578A (en) | Cold and heat combined supply system and method based on multi-energy complementation and phase change energy storage | |
CN110822766B (en) | High-efficient passive cold and hot electricity comprehensive utilization device | |
CN115388484A (en) | Photovoltaic direct-driven direct-drive direct-expansion type solar heat pump combined heat and power supply system and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200922 |
|
CF01 | Termination of patent right due to non-payment of annual fee |