CN211476369U - Frostless air source air supply enthalpy increasing heat pump for removing water from solution - Google Patents
Frostless air source air supply enthalpy increasing heat pump for removing water from solution Download PDFInfo
- Publication number
- CN211476369U CN211476369U CN201922252958.0U CN201922252958U CN211476369U CN 211476369 U CN211476369 U CN 211476369U CN 201922252958 U CN201922252958 U CN 201922252958U CN 211476369 U CN211476369 U CN 211476369U
- Authority
- CN
- China
- Prior art keywords
- solution
- pump
- heat exchange
- valve
- liquid storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 239000007788 liquid Substances 0.000 claims abstract description 58
- 238000010438 heat treatment Methods 0.000 claims abstract description 49
- 238000011069 regeneration method Methods 0.000 claims abstract description 21
- 230000008929 regeneration Effects 0.000 claims abstract description 20
- 239000003507 refrigerant Substances 0.000 claims description 23
- 238000007710 freezing Methods 0.000 claims description 14
- 230000008014 freezing Effects 0.000 claims description 14
- 238000005192 partition Methods 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 10
- 230000018044 dehydration Effects 0.000 abstract description 3
- 238000006297 dehydration reaction Methods 0.000 abstract description 3
- 230000002528 anti-freeze Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- XSHGVIPHMOTDCS-UHFFFAOYSA-N 1-(5-fluoropentyl)-n-(2-phenylpropan-2-yl)indazole-3-carboxamide Chemical compound N=1N(CCCCCF)C2=CC=CC=C2C=1C(=O)NC(C)(C)C1=CC=CC=C1 XSHGVIPHMOTDCS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
本实用新型提供一种溶液除水的无霜空气源补气增焓热泵,包括补气增焓制热循环和结冰除水循环;结冰除水循环包括溶液换热管路、储存液循环管路和溶液再生管路,其中,溶液换热管路包括第一蒸发器、换热塔、第二截止阀和第一泵;储存液循环管路包括稀溶液排放管路和浓溶液循环管路,稀溶液排放管路包括第二泵和第一储液罐,浓溶液循环管路包括第二储液罐和第一泵;溶液再生管路包括第一膨胀阀、除水器、第一储液罐和第三泵。本实用新型不仅降低了压缩机的排气温度,还可实现制热+结冰除水+去冰等三种运行模式,保证制热的连续运行以及溶液的再生效果,占地面积和投资成本较低,操作简单,节省了热能的消耗,提升了无霜空气源热泵系统的能效。
The utility model provides a frost-free air source air-supplying and enthalpy-increasing heat pump for solution dewatering, comprising a heating cycle of air-increasing and enthalpy increasing and an icing and dewatering cycle; the icing and dewatering cycle includes a solution heat exchange pipeline and a storage liquid circulation pipeline and a solution regeneration pipeline, wherein the solution heat exchange pipeline includes a first evaporator, a heat exchange tower, a second shut-off valve and a first pump; the storage liquid circulation pipeline includes a dilute solution discharge pipeline and a concentrated solution circulation pipeline, The dilute solution discharge pipeline includes a second pump and a first liquid storage tank, the concentrated solution circulation pipeline includes a second liquid storage tank and a first pump; the solution regeneration pipeline includes a first expansion valve, a water eliminator, a first liquid storage tank tank and third pump. The utility model not only reduces the exhaust temperature of the compressor, but also realizes three operation modes of heating + icing and dehydration + deicing, etc., so as to ensure the continuous operation of heating and the regeneration effect of the solution, the floor space and the investment cost. It is lower, easy to operate, saves the consumption of heat energy, and improves the energy efficiency of the frost-free air source heat pump system.
Description
技术领域technical field
本实用新型属于热泵技术领域,具体涉及一种基于结冰除水进行溶液再生的溶液除水的无霜空气源补气增焓热泵。The utility model belongs to the technical field of heat pumps, in particular to a frost-free air source air-supplying and enthalpy-increasing heat pump for solution dewatering based on freezing and dewatering for solution regeneration.
背景技术Background technique
随着热泵技术的逐渐成熟,无霜空气源热泵循环已经在我国华南以及西南等地区得到较好的应用,尤其是在一些商业应用领域出现很多相关工程,但由于应用范围受到环境因素的制约:当环境温度过低时,机组会出现制热量不足、性能系数下降、排气温度过高等现象。因此,补气增焓技术应运而生。采用了补气增焓技术的无霜空气源热泵系统不仅降低了压缩机的排气温度而且增大了热泵机组的制热量。With the gradual maturity of heat pump technology, frost-free air source heat pump cycle has been well applied in South China and Southwest my country, especially in some commercial application fields, there are many related projects, but the scope of application is restricted by environmental factors: When the ambient temperature is too low, the unit will have insufficient heating capacity, decreased performance coefficient, and excessive exhaust temperature. Therefore, the technology of supplementing gas and increasing enthalpy came into being. The frost-free air source heat pump system using the supplementary air enthalpy technology not only reduces the exhaust temperature of the compressor but also increases the heating capacity of the heat pump unit.
但是在这一技术的具体实施时,仍有一系列问题需要解决:如经济性的考量、补气节流元件的匹配、浓溶液的再生等。其中浓溶液的再生这一问题处于“节能时代”倍受人们关注。无霜空气源补气增焓热泵循环在冬季制热运行时,由于冬季空气中含有一定的水份,防冻液循环与空气接触换热过程中,空气中的水份遇冷后不断地被溶解在防冻液之中稀释了防冻液,为了分离和清除防冻液中的水份,现有的技术是采用电加热、燃料锅炉加热或太阳能加热等多种形式的加热烘干方法,但是上述几种加热方式均导致系统运行能耗增大,投资增加和运行成本增大的问题。However, in the specific implementation of this technology, there are still a series of problems that need to be solved: such as economic considerations, matching of supplementary air throttling elements, regeneration of concentrated solutions, etc. Among them, the regeneration of concentrated solution has attracted much attention in the "energy-saving era". When the frost-free air source air supply and enthalpy heat pump cycle is running for heating in winter, because there is a certain amount of water in the air in winter, during the heat exchange process of the antifreeze circulation and the air, the water in the air is continuously dissolved after being cooled. The antifreeze is diluted in the antifreeze. In order to separate and remove the moisture in the antifreeze, the existing technology adopts various forms of heating and drying methods such as electric heating, fuel boiler heating or solar heating. The heating methods all lead to the problems of increased energy consumption, increased investment and increased operating costs of the system.
现有专利提出采用冻结再生方式来清除防冻液中的水分,再生效果较佳,但在再生的过程中需要停止制热运行,或者需要采用独立的热泵机组为溶液再生提供冷量,以保证用户侧机组的正常运行,两套机组不仅增加了占地面积和投资成本,还给系统的调节带来很大不便,难以运用到实际场合。The existing patent proposes to use the freezing regeneration method to remove the moisture in the antifreeze solution, and the regeneration effect is better, but the heating operation needs to be stopped during the regeneration process, or an independent heat pump unit needs to be used to provide cooling capacity for the solution regeneration, so as to ensure the user For the normal operation of the side units, the two units not only increase the floor space and investment cost, but also bring great inconvenience to the adjustment of the system, making it difficult to apply to practical occasions.
实用新型内容Utility model content
为了克服上述现有技术存在的不足,本实用新型提供一种效率较高、能耗较小、节能效能良好的溶液除水的无霜空气源补气增焓热泵。In order to overcome the above-mentioned deficiencies in the prior art, the utility model provides a frost-free air source air-supplying and enthalpy-increasing heat pump with high efficiency, low energy consumption and good energy-saving performance for water removal by solution.
为了达到上述发明目的,本实用新型采用以下技术方案:In order to achieve the above-mentioned purpose of the invention, the utility model adopts the following technical solutions:
溶液除水的无霜空气源补气增焓热泵,包括补气增焓制热循环和结冰除水循环;补气增焓制热循环包括压缩机、冷凝器、第一截止阀、经济器、第一膨胀阀、第二膨胀阀、第一蒸发器和第二蒸发器;结冰除水循环包括溶液换热管路、储存液循环管路和溶液再生管路,其中,溶液换热管路包括第一蒸发器、换热塔、第二截止阀和第一泵,换热塔内的溶液经第二截止阀和第一泵送至第一蒸发器,在第一蒸发器内与制冷剂换热后返回至换热塔顶部;储存液循环管路包括稀溶液排放管路和浓溶液循环管路,稀溶液排放管路包括第二泵和第一储液罐,换热塔底部的稀溶液经第二泵排放至第一储液罐内;浓溶液循环管路包括第二储液罐和第一泵,第二储液罐内的浓溶液经第六截止阀和第一泵输送至第一蒸发器;The frost-free air source heat pump for dehydration of solution includes air supply and enthalpy increase heating cycle and icing and water removal cycle; air supply and enthalpy heating cycle includes compressor, condenser, first stop valve, economizer, The first expansion valve, the second expansion valve, the first evaporator and the second evaporator; the icing and dewatering cycle includes a solution heat exchange pipeline, a storage liquid circulation pipeline and a solution regeneration pipeline, wherein the solution heat exchange pipeline includes The first evaporator, the heat exchange tower, the second cut-off valve and the first pump, the solution in the heat exchange tower is sent to the first evaporator through the second cut-off valve and the first pump, and is exchanged with the refrigerant in the first evaporator. After heating, it returns to the top of the heat exchange tower; the storage liquid circulation pipeline includes a dilute solution discharge pipeline and a concentrated solution circulation pipeline, and the dilute solution discharge pipeline includes a second pump and a first liquid storage tank. The dilute solution at the bottom of the heat exchange tower It is discharged into the first liquid storage tank through the second pump; the concentrated solution circulation pipeline includes the second liquid storage tank and the first pump, and the concentrated solution in the second liquid storage tank is transported to the first liquid storage tank through the sixth stop valve and the first pump. an evaporator;
溶液再生管路包括第一膨胀阀、除水器、第一储液罐和第三泵,由第一膨胀阀流出的部分制冷剂经第三截止阀流动至除水器的第二进口,除水器的第二出口连通至压缩机;第一储液罐的稀溶液出口通过第七截止阀连通除水器的第一进口,除水器的第一出口连接第三泵的进口;第三泵的出口分别经第四截止阀连通第一储液罐的浓溶液进口,经第五截止阀连通第二储液罐的浓溶液进口。The solution regeneration pipeline includes a first expansion valve, a water eliminator, a first liquid storage tank and a third pump. Part of the refrigerant flowing out of the first expansion valve flows to the second inlet of the water eliminator through the third shut-off valve. The second outlet of the water device is connected to the compressor; the dilute solution outlet of the first liquid storage tank is connected to the first inlet of the water eliminator through the seventh stop valve, and the first outlet of the water eliminator is connected to the inlet of the third pump; the third The outlet of the pump is respectively connected to the concentrated solution inlet of the first liquid storage tank through the fourth cut-off valve, and is connected to the concentrated solution inlet of the second liquid storage tank through the fifth cut-off valve.
作为本实用新型的优选方案之一,还包括去冰循环,去冰循环包括第八截止阀和除水器,第八截止阀与第一截止阀并联,冷凝器的制冷剂出口经第八截止阀连通至除水器的第三进口,除水器的第三出口连通至第一节流阀进口。As one of the preferred solutions of the present invention, it also includes a de-icing cycle. The de-icing cycle includes an eighth cut-off valve and a water eliminator. The eighth cut-off valve is connected in parallel with the first cut-off valve. The refrigerant outlet of the condenser passes through the eighth cut-off valve. The valve is communicated to the third inlet of the water eliminator, and the third outlet of the water eliminator is communicated to the inlet of the first throttle valve.
作为本实用新型的优选方案之一,包括普通制热模式、制热+结冰除水模式和制热+去冰模式。As one of the preferred solutions of the present invention, it includes a normal heating mode, a heating + freezing and dewatering mode, and a heating + deicing mode.
作为本实用新型的优选方案之一,所述制热+结冰除水模式下,当除水器第一出口的溶液未达到要求时,该溶液经第三泵和第四截止阀输送至第一储液罐;当除水器第一出口的溶液达到要求时,该溶液经第三泵和第五截止阀输送至第二储液罐,第二储液罐内的浓溶液经第一泵输送至第一蒸发器。As one of the preferred solutions of the present invention, in the heating + icing and dewatering mode, when the solution at the first outlet of the water eliminator does not meet the requirements, the solution is transported to the first outlet through the third pump and the fourth stop valve. A liquid storage tank; when the solution at the first outlet of the water eliminator meets the requirements, the solution is transported to the second liquid storage tank through the third pump and the fifth shut-off valve, and the concentrated solution in the second liquid storage tank is passed through the first pump. sent to the first evaporator.
作为本实用新型的优选方案之一,换热塔包括溶液槽和位于溶液槽上方的换热腔体,换热塔顶部的溶液在换热腔体内与空气接触换热后,流动至溶液槽内。As one of the preferred solutions of the present invention, the heat exchange tower includes a solution tank and a heat exchange cavity located above the solution tank, and the solution at the top of the heat exchange tower flows into the solution tank after heat exchange with air in the heat exchange cavity. .
作为本实用新型的优选方案之一,所述换热塔的顶部与第二蒸发器耦合,第二蒸发器的风机设于换热塔内。As one of the preferred solutions of the present invention, the top of the heat exchange tower is coupled with the second evaporator, and the fan of the second evaporator is arranged in the heat exchange tower.
作为本实用新型的优选方案之一,除水器包括由上至下设置的结冰室、隔板和储液室,结冰室内设有制冰盘和设于制冰盘背面的结冰换热管,溶液喷头设于制冰盘正面一侧,将溶液喷射至制冰盘表面;溶液与结冰换热管中的制冷剂换热后,冰块附着于制冷盘表面,未结冰的水和溶液经隔板上的孔进入储液室。As one of the preferred solutions of the present invention, the water eliminator includes an icing chamber, a partition and a liquid storage chamber arranged from top to bottom. Heat pipe, the solution nozzle is located on the front side of the ice making tray, and sprays the solution onto the surface of the ice making tray; Water and solutions enter the reservoir through holes in the separator.
作为本实用新型的优选方案之一,制冰盘的背面还设有去冰换热管,结冰室的底部一侧设有排冰口,冰块被去冰换热管中的制冷剂加热后,从制冰盘表面脱落并经排冰口排出。As one of the preferred solutions of the present invention, the ice making tray is also provided with a de-icing heat exchange tube on the back side, and an ice discharge port is arranged on the bottom side of the freezing chamber, and the ice cubes are heated by the refrigerant in the de-icing heat exchange tube. After that, it falls off the surface of the ice tray and is discharged through the ice discharge port.
作为本实用新型的优选方案之一,隔板朝所述排冰口倾斜向下。As one of the preferred solutions of the present invention, the partition plate is inclined downward toward the ice discharge port.
作为本实用新型的优选方案之一,制冰盘的正面设有多个制冰凹槽。As one of the preferred solutions of the present invention, the front side of the ice making tray is provided with a plurality of ice making grooves.
本实用新型与现有技术相比,有益效果是:相比传统的无霜空气源补气增焓热泵,本实用新型不仅降低了压缩机的排气温度,还可实现制热+结冰除水+去冰等三种运行模式,既可以保证制热的连续运行以及溶液的再生效果,还可以利用制冷剂余热来维持除水器的除水效果,占地面积和投资成本较低,操作简单,节省了热能的消耗,提升了无霜空气源热泵系统的能效。Compared with the prior art, the utility model has the beneficial effects that: compared with the traditional frost-free air source air supply and enthalpy increasing heat pump, the utility model not only reduces the exhaust temperature of the compressor, but also realizes heating + icing and de-icing. The three operating modes, such as water + deicing, can not only ensure the continuous operation of heating and the regeneration effect of the solution, but also use the waste heat of the refrigerant to maintain the water removal effect of the water eliminator. The floor space and investment cost are low, and the operation Simple, saves the consumption of heat energy, and improves the energy efficiency of the frost-free air source heat pump system.
附图说明Description of drawings
图1是本实用新型所述热泵组成示意图;1 is a schematic diagram of the composition of the heat pump of the present invention;
图2是本实用新型所述热泵中除水器的结构示意图;Fig. 2 is the structural representation of the water eliminator in the heat pump of the present invention;
图3是本实用新型所述热泵在普通制热模式下的流程示意图;Fig. 3 is the schematic flow chart of the heat pump of the present invention in the ordinary heating mode;
图4-1是本实用新型所述热泵在制热+结冰去水模式下的阶段一示意图;Figure 4-1 is a schematic diagram of the first stage of the heat pump of the present invention in the heating + freezing and water removal mode;
图4-2是本实用新型所述热泵在制热+结冰去水模式下的阶段二示意图;4-2 is a schematic diagram of the second stage of the heat pump of the present invention under the heating + freezing and dewatering mode;
图4-3是本实用新型所述热泵在制热+结冰去水模式下的阶段三示意图;4-3 is a schematic diagram of the third stage of the heat pump of the present invention under the heating + freezing and water removal mode;
图5是本实用新型所述热泵在制热+去冰模式下的流程示意图。FIG. 5 is a schematic flow chart of the heat pump according to the present invention in the heating + deicing mode.
图中,1-冷凝器,2-压缩机,3-第二蒸发器,4-第一蒸发器,5-第一膨胀阀,6-第二膨胀阀,7-经济器,8-换热塔,9-第一泵,10-第二泵,11-第三泵,12-第一储液罐,13-第二储液罐,14-风机,15-除水器;21-第一截止阀,22-第二截止阀,23-第三截止阀;24-第四截止阀,25-第五截止阀,26-第六截止阀,27-第七截止阀,28-第八截止阀;In the figure, 1-condenser, 2-compressor, 3-second evaporator, 4-first evaporator, 5-first expansion valve, 6-second expansion valve, 7-economizer, 8-heat exchange Tower, 9-first pump, 10-second pump, 11-third pump, 12-first liquid storage tank, 13-second liquid storage tank, 14-fan, 15-water eliminator; 21-first Globe valve, 22-second globe valve, 23-third globe valve; 24-fourth globe valve, 25-fifth globe valve, 26-sixth globe valve, 27-seventh globe valve, 28-eighth globe valve valve;
a-除水器的第一进口,b-除水器的第一出口,c-除水器的第二进口,d-除水器的第二出口,e-除水器的第三进口,f-除水器的第三出口;a- the first inlet of the water eliminator, b- the first outlet of the water eliminator, c- the second inlet of the water eliminator, d- the second outlet of the water eliminator, e- the third inlet of the water eliminator, f - the third outlet of the water eliminator;
A-排冰口,B-隔板,C-储液室,D-制冰盘,E-溶液喷头,F-换热管。A-ice outlet, B-partition, C-liquid storage chamber, D-ice tray, E-solution nozzle, F-heat exchange tube.
具体实施方式Detailed ways
以下将对本实用新型的技术方案作进一步解释说明。The technical solutions of the present invention will be further explained below.
如图1所示,本实施例所述溶液除水的无霜空气源补气增焓热泵,包括补气增焓制热循环和结冰除水循环;补气增焓制热循环包括压缩机2、冷凝器1、第一截止阀21、经济器7、第一膨胀阀5、第二膨胀阀6、第一蒸发器4和第二蒸发器3;冷凝器1为用户侧提供热量,第一蒸发器4吸收溶液的热量,第二蒸发器3与换热塔8内的空气换热,以避免第二蒸发器3表面结霜。As shown in FIG. 1 , the frost-free air source heat pump for dewatering by solution described in the present embodiment includes the air-increasing and enthalpy heating cycle and the freezing and water-removing cycle; the air-increasing and enthalpy heating cycle includes a
结冰除水循环包括溶液换热管路、储存液循环管路和溶液再生管路,其中,溶液换热管路包括第一蒸发器4、换热塔8、第二截止阀22和第一泵9,换热塔8内的溶液经第二截止阀22和第一泵9送至第一蒸发器4,在第一蒸发器4内与制冷剂换热后返回至换热塔 8顶部;储存液循环管路包括稀溶液排放管路和浓溶液循环管路,稀溶液排放管路包括第二泵10和第一储液罐12,换热塔8底部的稀溶液经第二泵10排放至第一储液罐12内;浓溶液循环管路包括第二储液罐13和第一泵9,第二储液罐13内的浓溶液经第六截止阀 26和第一泵9输送至第一蒸发器4;溶液再生管路包括第一膨胀阀5、除水器15、第一储液罐12和第三泵10,由第一膨胀阀5流出的部分制冷剂经第三截止阀23流动至除水器15 的第二进口c,除水器15的第二出口d连通至压缩机2;第一储液罐12的稀溶液出口通过第七截止阀27连通除水器15的第一进口a,除水器15的第一出口b连接第三泵11的进口;第三泵11的出口分别经第四截止阀24连通第一储液罐12的浓溶液进口,经第五截止阀 25连通第二储液罐13的浓溶液进口。The icing and dewatering cycle includes a solution heat exchange pipeline, a storage liquid cycle pipeline and a solution regeneration pipeline, wherein the solution heat exchange pipeline includes a
本实施例所述溶液除水的无霜空气源补气增焓热泵,采用补气增焓制热循环的部分冷量对引入除水器中的部分溶液进行结冰除水,结合储液罐的储液循环,既可以保证制热循环的连续运行,还可以提高再生效果,提高无霜空气源热泵的运行时效。The frost-free air source heat pump for dehydration of the solution described in this example uses part of the cooling energy of the air replenishment and enthalpy heating cycle to freeze and dewater part of the solution introduced into the water eliminator, and combine with the liquid storage tank It can not only ensure the continuous operation of the heating cycle, but also improve the regeneration effect and improve the operating efficiency of the frost-free air source heat pump.
本实施例所述无霜空气源补气增焓热泵还包括去冰循环,去冰循环包括第八截止阀28 和除水器15,第八截止阀28与第一截止阀21并联,冷凝器1的制冷剂出口经第八截止阀 28连通至除水器15的第三进口e,除水器15的第三出口f连通至第一膨胀阀5入口。当除水器运行一定时间后,结冰数量逐渐增多,为保证除水器的除水效果,采用补气增焓制热循环的部分热量来加热除冰,加热较快,结构简单。The frost-free air source enthalpy-enhancing heat pump in this embodiment also includes a de-icing cycle. The de-icing cycle includes an eighth cut-off
本实施例采用的换热塔8包括溶液槽和位于溶液槽上方的换热腔体,换热塔顶部的溶液在换热腔体内与空气接触换热后,流动至溶液槽内。优选地,换热塔顶部的溶液经喷淋装置喷淋后与空气进行直接接触,以增加接触面积,由于换热后的溶液温度低于空气的温度,空气中的水分遇冷后不断被溶解在溶液内,使得溶液的浓度逐渐降低,因此当溶液槽内的溶液循环一段时间后,必定要进行溶液再生,才能保持连续的制热效果。优选地,本实施例所述换热塔8与第二蒸发器3耦合,第二蒸发器的风机14设于换热塔顶部内,由于空气中的水分不断被脱除,因此,第二蒸发器3与脱水的空气换热,可保证第二蒸发器3 的换热效果,避免第二蒸发器3的表面结霜。The
如图2所示,本实施例采用的除水器15包括由上至下设置的结冰室、隔板B和储液室 C,结冰室内设有制冰盘D和紧贴于制冰盘背面的换热管F,换热管F包括并联设置的结冰换热管和去冰换热管,结冰换热管的两端分别为除水器的第二进口c和第二出口d,去冰换热管的两端分别连接除水器的第三进口e和第三出口f。As shown in FIG. 2 , the
溶液喷头E设于制冰盘D的正面一侧,溶液喷头E的入口连接除水器的第一进口a,即溶液由a口进入结冰室内,经溶液喷头E喷射至制冰盘D的表面;溶液与结冰换热管中的制冷剂换热后,冰块附着于制冷盘D表面的凹槽内,未结冰的水和溶液经隔板B上的孔进入储液室C,储液室C的底部设有第一出口b,再生后的溶液经第一出口b流出至换热塔8的溶液槽内。The solution nozzle E is arranged on the front side of the ice making tray D, and the inlet of the solution nozzle E is connected to the first inlet a of the water eliminator, that is, the solution enters the freezing chamber from the a port, and is sprayed to the ice tray D through the solution nozzle E. surface; after the solution exchanges heat with the refrigerant in the frozen heat exchange tube, the ice cubes are attached to the grooves on the surface of the cooling disk D, and the unfrozen water and solution enter the liquid storage chamber C through the holes on the partition B, The bottom of the liquid storage chamber C is provided with a first outlet b, and the regenerated solution flows out into the solution tank of the
本实施例在结冰室的底部一侧设一排冰口A,当除水器中的结冰量较大时,冰块被去冰换热管中的制冷剂加热后,从制冰盘表面脱落并经排冰口A排出。排冰口A可人工或自动开启或关闭,以避免未结冰的溶液由该排冰口流出。同时,为了更好地将冰块排出,使隔板B朝所述排冰口A倾斜向下,增加冰块排出的时效。In this embodiment, a row of ice openings A is set on the bottom side of the freezing chamber. When the amount of ice in the water eliminator is large, the ice cubes are heated by the refrigerant in the deicing heat exchange tube, and the ice cubes are removed from the ice making tray. The surface falls off and is discharged through the ice discharge port A. The ice discharge port A can be opened or closed manually or automatically to prevent the unfrozen solution from flowing out of the ice discharge port. At the same time, in order to better discharge the ice cubes, the partition B is inclined downward toward the ice discharge port A, so as to increase the time period for the ice cubes to be discharged.
本实用新型所述溶液除水的无霜空气源补气增焓热泵可实现三种运行模式,普通制热模式、制热+结冰除水模式、制热+去冰模式,具体流程如下:The frost-free air source air supply and enthalpy-increasing heat pump for dewatering solution of the utility model can realize three operation modes, the ordinary heating mode, the heating + icing and dewatering mode, and the heating + deicing mode. The specific process is as follows:
如图3所示,普通制热模式下,开启第一截止阀21、第一膨胀阀5和第二膨胀阀6、第二截止阀22和第一泵9。制冷剂经压缩机2排出后依次经冷凝器1、第一截止阀21、第二膨胀阀6或经济器7、第一膨胀阀5、第一蒸发器4和第二蒸发器3后返回至压缩机2;溶液经换热塔8的底部由第一泵9输送至第一蒸发器4内,换热后返回至换热塔8的顶部。该模式下,冷凝器1为用户侧提供热量,第一蒸发器4内的制冷剂不断吸收溶液的热量,以维持制热负荷。As shown in FIG. 3 , in the normal heating mode, the first shut-off
如图4-1~图4-3所示,制热+结冰除水模式下,普通制热正常运行,循环一段时间后,此时,从蒸发器第二出口流出的溶液浓度慢慢降低,该模式共经历三个阶段:As shown in Figure 4-1 to Figure 4-3, in the heating + icing and dewatering mode, the ordinary heating operates normally. After a period of circulation, the concentration of the solution flowing from the second outlet of the evaporator gradually decreases. , the model has gone through three stages:
阶段一如图4-1所示,为第二储液罐内的储存液循环:开启第二泵10,换热塔8内的稀溶液进入第一储液罐12内,待换热塔8内的稀溶液将流尽时,开启第六截止阀26,关闭第二截止阀22与第二泵10,第二储液罐13内的浓溶液经第六截止阀26和第一泵9进入第一蒸发器4内与制冷剂进行换热并进入换热塔8,待第二储液罐13内的浓溶液流尽后,关闭第六截止阀26,打开第二截止阀22,维持溶液的正常循环。The first stage, as shown in Figure 4-1, is the circulation of the stored liquid in the second liquid storage tank: the
阶段二如图4-2所示,为溶液再生循环:打开第三截止阀23、第七截止阀27、第三泵11和第四截止阀24。第一储液罐12内的稀溶液经第七截止阀27进入除水器15内。从第一膨胀阀5流出的部分制冷剂进入除水器15的第二进口,流入除水器15的溶液被溶液喷头E喷到除水器中带有凹槽的制冰盘D上,由于流入除水器和蒸发器的制冷剂浓度存在差异,所以被喷在制冰盘上的溶液中的水结冰,(而蒸发器中的溶液不结冰),同时也可调节第二膨胀阀6改变经过除水器18的制冷剂的温度和压力,使结冰过程更好地进行,而除水器15中未结冰的水和防冻剂成为浓溶液,通过除水器中隔板B上的孔流入储液室C,顺着除水器15的第一出口b流出,经第三泵11和第四截止阀24返回至第一储液罐12。溶液如此循环,浓度逐渐上升,水分持续结成冰。The second stage, as shown in Figure 4-2, is the solution regeneration cycle: open the third shut-off
阶段三如图4-3所示,当除水器15第一出口b流出的溶液达到浓度要求时,关闭第四截止阀24,打开第五截止阀25,该溶液经第三泵11和第五截止阀25进入第二储存罐11内,待第二储存罐11内充满浓溶液,开启第六截止阀26,使得浓溶液进入溶液循环管路中。溶液浓度满足要求时,可关闭溶液再生循环管路和第六截止阀,维持正常制热模式下的溶液循环即可。Stage three is shown in Figure 4-3. When the solution flowing out of the first outlet b of the
如图5所示,制热+去冰模式下,普通制热正常运行,关闭第一截止阀21、第三截至阀23~第七截止阀27、第二泵10和第三泵11;打开第八截止阀28。从冷凝器1出来的热制冷剂经第八截止阀28从除水器15的第三进口c流入,与除水器中的制冰盘进行换热,制冷盘因被加热,其表面附着的冰块会脱落,脱落的冰块顺着排冰口A流出。As shown in FIG. 5 , in the heating + deicing mode, the normal heating operates normally, and the first shut-off
相比传统的无霜空气源补气增焓热泵,本实用新型不仅降低了压缩机的排气温度,还可实现制热+结冰除水+去冰等三种运行模式,既可以保证制热的连续运行以及溶液的再生效果,还可以利用制冷剂余热来维持除水器的除水效果,占地面积和投资成本较低,操作简单,节省了热能的消耗,提升了无霜空气源热泵系统的能效。Compared with the traditional frost-free air source air supply and enthalpy increase heat pump, the utility model not only reduces the exhaust temperature of the compressor, but also realizes three operation modes such as heating + icing and water removal + de-icing, which can not only ensure the The continuous operation of heat and the regeneration effect of the solution can also use the refrigerant waste heat to maintain the water removal effect of the water eliminator. The floor space and investment cost are low, the operation is simple, the consumption of heat energy is saved, and the frost-free air source is improved. Energy efficiency of heat pump systems.
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是对本实用新型的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本实用新型提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本实用新型的保护范围。It should be noted that the above embodiments can be freely combined as required. The above only describes the preferred embodiments and principles of the present invention in detail. For those of ordinary skill in the art, according to the idea provided by the present invention, there will be changes in the specific implementation, and these changes will It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922252958.0U CN211476369U (en) | 2019-12-16 | 2019-12-16 | Frostless air source air supply enthalpy increasing heat pump for removing water from solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922252958.0U CN211476369U (en) | 2019-12-16 | 2019-12-16 | Frostless air source air supply enthalpy increasing heat pump for removing water from solution |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211476369U true CN211476369U (en) | 2020-09-11 |
Family
ID=72375545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201922252958.0U Active CN211476369U (en) | 2019-12-16 | 2019-12-16 | Frostless air source air supply enthalpy increasing heat pump for removing water from solution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211476369U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111121343A (en) * | 2019-12-16 | 2020-05-08 | 浙江工业大学 | Frostless air source air supply enthalpy increasing heat pump for removing water from solution |
-
2019
- 2019-12-16 CN CN201922252958.0U patent/CN211476369U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111121343A (en) * | 2019-12-16 | 2020-05-08 | 浙江工业大学 | Frostless air source air supply enthalpy increasing heat pump for removing water from solution |
CN111121343B (en) * | 2019-12-16 | 2025-01-03 | 浙江工业大学 | Frost-free air source air supply and enthalpy increase heat pump for liquid dehydration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104819594B (en) | Frozen regenerated solution defrost heat pump unit | |
WO2017063321A1 (en) | Air source heat pump spray defrosting device based on super-hydrophobic finned tube heat exchanger | |
CN106196780B (en) | A kind of high-efficient solution defrosting air friction drag | |
CN106196779A (en) | A kind of solution defrosting freezing regeneration air source source pump | |
US11473824B2 (en) | Heat-source-tower heat pump system combined with ice maker | |
CN211526764U (en) | Frostless air source cascade heat pump for solution icing | |
CN101629771B (en) | Gas direct contact type ice slurry preparation system | |
CN111121343B (en) | Frost-free air source air supply and enthalpy increase heat pump for liquid dehydration | |
CN202885340U (en) | Energy supply device of high-efficiency energy tower | |
CN201844488U (en) | External ice-thawing type cold accumulation system | |
CN103528267A (en) | Low-environmental-temperature air source heat pump refrigerating system with heat pipe loop | |
CN201666706U (en) | a refrigeration system | |
CN211476369U (en) | Frostless air source air supply enthalpy increasing heat pump for removing water from solution | |
CN211400378U (en) | Solution icing dehydrator and frostless air source heat pump using same | |
CN211400377U (en) | Frostless air source heat pump capable of removing water from ice | |
CN211345957U (en) | A heat source tower heat pump system combined with an ice maker | |
CN202581632U (en) | Heat-pump air conditioning unit of evaporating type condenser | |
CN204268750U (en) | A kind of net for air-source heat pump units utilizing waste heat energy storage to defrost | |
CN209910230U (en) | Auxiliary heating of air-source heat pump presses down frost system | |
CN111550950A (en) | Solution spraying defrosting air source heat pump and ice source heat pump coupling system | |
CN204227744U (en) | The refrigeration system in parallel of vacuum freeze drier | |
CN108278791B (en) | Air source air conditioning system with double heat storage device and defrosting method | |
CN111219910B (en) | Frost-free air source cascade heat pump with liquid freezing | |
CN210718209U (en) | Heat pump system with defrosting function | |
CN101498488B (en) | Air-conditioning unit with ice production and cold water production function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |