CN211471237U - Medium-grey temperable three-silver energy-saving glass and hollow glass - Google Patents
Medium-grey temperable three-silver energy-saving glass and hollow glass Download PDFInfo
- Publication number
- CN211471237U CN211471237U CN201922354859.3U CN201922354859U CN211471237U CN 211471237 U CN211471237 U CN 211471237U CN 201922354859 U CN201922354859 U CN 201922354859U CN 211471237 U CN211471237 U CN 211471237U
- Authority
- CN
- China
- Prior art keywords
- layer
- silver
- zinc oxide
- thickness
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims abstract description 82
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 78
- 239000004332 silver Substances 0.000 title claims abstract description 78
- 239000010410 layer Substances 0.000 claims abstract description 224
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 46
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000002346 layers by function Substances 0.000 claims abstract description 29
- 230000004888 barrier function Effects 0.000 claims abstract description 27
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 23
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011787 zinc oxide Substances 0.000 claims abstract description 23
- JYMITAMFTJDTAE-UHFFFAOYSA-N aluminum zinc oxygen(2-) Chemical compound [O-2].[Al+3].[Zn+2] JYMITAMFTJDTAE-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000011241 protective layer Substances 0.000 claims abstract description 11
- 229910018487 Ni—Cr Inorganic materials 0.000 claims abstract description 7
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical group [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 238000005496 tempering Methods 0.000 abstract description 11
- 238000002834 transmittance Methods 0.000 abstract description 11
- KBEVZHAXWGOKCP-UHFFFAOYSA-N zinc oxygen(2-) tin(4+) Chemical compound [O--].[O--].[O--].[Zn++].[Sn+4] KBEVZHAXWGOKCP-UHFFFAOYSA-N 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 2
- 239000002609 medium Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000005329 float glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000005328 architectural glass Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000013630 prepared media Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Surface Treatment Of Glass (AREA)
Abstract
本实用新型涉及了节能玻璃,具体公开了一种中灰色可钢化三银节能玻璃、中空玻璃,包括玻璃基片和依次镀制在玻璃基片上的膜层:第一层介质层氮化硅层,第二层种子层氧化锌层,第三层功能层银层,第四层阻挡保护层氧化锌铝层,第五层介质层氮化硅层,第六层种子层氧化锌层,第七层功能层银层,第八层阻挡保护层氧化锌铝层,第九层介质层氧化锌锡层,第十层种子层氧化锌层、第十一层功能层银层,第十二层阻挡保护层镍铬层,第十三层阻挡保护层氧化锌铝层,第十四层介质层氮化硅层。通过膜层之间的相互配合关系,使得整体膜系最终达到一定的光学性能可钢化,且钢化前后产品玻璃的颜色差异小,可见光透过率为60%‑75%,外观为中灰色。
The utility model relates to energy-saving glass, and specifically discloses a medium gray temperable triple-silver energy-saving glass and insulating glass, comprising a glass substrate and a film layer plated on the glass substrate in sequence: a first layer of a dielectric layer, a silicon nitride layer , the second seed layer zinc oxide layer, the third functional layer silver layer, the fourth barrier protection layer zinc oxide aluminum layer, the fifth dielectric layer silicon nitride layer, the sixth seed layer zinc oxide layer, the seventh layer Layer functional layer silver layer, eighth barrier protection layer zinc oxide aluminum layer, ninth dielectric layer zinc oxide tin layer, tenth seed layer zinc oxide layer, eleventh functional layer silver layer, twelfth barrier layer The protective layer is a nickel-chromium layer, the thirteenth barrier protective layer is a zinc-aluminum oxide layer, and the fourteenth layer is a dielectric layer and a silicon nitride layer. Through the mutual cooperation between the film layers, the overall film system finally achieves a certain optical performance and can be tempered, and the color difference of the product glass before and after tempering is small, the visible light transmittance is 60%-75%, and the appearance is medium gray.
Description
技术领域technical field
本实用新型涉及了三银节能玻璃技术领域,具体涉及了一种中灰色可钢化三银节能玻璃、中空玻璃。The utility model relates to the technical field of triple-silver energy-saving glass, in particular to a medium gray temperable triple-silver energy-saving glass and hollow glass.
背景技术Background technique
为了使人们的生活环境更加舒适、健康,同时适应世界范围的可持续发展,充分利用有效能源,可见光反射率低,不会产生反射光污染的低辐射节能玻璃正逐渐被人们所认识、使用。节能玻璃对远红外线具有很高的反射率,从而可以达到良好的保温隔热性能;可见光透过率高,能让室内保持良好的采光效果。In order to make people's living environment more comfortable and healthy, and at the same time adapt to the sustainable development of the world, make full use of effective energy, low-radiation energy-saving glass with low visible light reflectivity and no reflected light pollution is gradually being recognized and used by people. Energy-saving glass has a high reflectivity for far infrared rays, which can achieve good thermal insulation performance; high visible light transmittance can maintain a good indoor lighting effect.
众所周知,自然界中的热能主要是太阳直射热和周围环境物体的辐射热。其中,太阳直射热其能量的98%分布在波长为0.3~3μm的光区。除此以外,还有大量的远红外热辐射能,其能量分布在波长3~40μm的光区。在室外,远红外线辐射能是由太阳照射到物体上被物体吸收后再辐射出来的,是夏季来自室外的主要热源之一;在室内,远红外线热辐射能是由暖气、被阳光照射后的家具以及人体等物体产生的,成为室内的主要能源。低辐射节能玻璃可以像普通的浮法玻璃一样让室外太阳能、可见光透过,还可以像红外反射镜一样将物体辐射热反射回去,从而达到节能的目的。As we all know, the heat energy in nature is mainly the direct heat of the sun and the radiant heat of surrounding objects. Among them, 98% of the energy of the direct solar heat is distributed in the light region with a wavelength of 0.3 to 3 μm. In addition, there is a large amount of far-infrared thermal radiation energy, and its energy is distributed in the light region with a wavelength of 3-40 μm. Outdoors, far-infrared radiant energy is radiated by the sun irradiated on the object and then absorbed by the object, which is one of the main heat sources from outdoors in summer; indoors, far-infrared thermal radiant energy is generated by heating and sunlight. Furniture and objects such as the human body are the main energy sources in the interior. Low-emissivity energy-saving glass can transmit outdoor solar energy and visible light like ordinary float glass, and can also reflect the radiant heat of objects back like an infrared reflector, so as to achieve the purpose of energy saving.
现有技术中节能玻璃主要以银层为功能层,按银层层数进行划分,主要分为单银节能玻璃、双银节能玻璃和三银节能玻璃。其中三银节能玻璃加工难度大,但是其节能效果明显比单银节能玻璃和双银节能玻璃强,但是常见的三银节能玻璃不能实现钢化后使用,导致在部分建筑中的弯弧部分无法使用,在一定程度上限制了三银节能玻璃产品的使用。另外,不可钢化的双银节能玻璃,只能够先切磨钢后再进行镀膜,由于不同工程产品尺寸各不相同,致使在生产时,无法实现镀膜设备装载率最大化,导致设备能耗较高;再者,不可钢化的双银产品,只能在原厂合片完成中空后,再运输至安装地,运输成本较高。The energy-saving glass in the prior art mainly uses the silver layer as the functional layer, which is divided according to the number of silver layers, and is mainly divided into single-silver energy-saving glass, double-silver energy-saving glass and triple-silver energy-saving glass. Among them, triple-silver energy-saving glass is difficult to process, but its energy-saving effect is obviously stronger than that of single-silver energy-saving glass and double-silver energy-saving glass. However, the common triple-silver energy-saving glass cannot be used after tempering, resulting in the arc part in some buildings cannot be used. , to a certain extent, restricts the use of Sanyin energy-saving glass products. In addition, the non-temperable double-silver energy-saving glass can only be cut and ground before coating. Due to the different sizes of different engineering products, it is impossible to maximize the loading rate of coating equipment during production, resulting in high equipment energy consumption. ; Furthermore, the non-temperable double-silver products can only be transported to the installation site after the original factory lamination is completed, and the transportation cost is high.
另外,节能玻璃的应用范围广泛,针对不同的应用场所,对颜色具有不同的需求,但是常见的三银节能玻璃多为蓝色、绿色,不能满足市场上对灰色系列三银低幅度节能玻璃的需求。In addition, energy-saving glass has a wide range of applications, and different applications have different requirements for colors. However, the common three-silver energy-saving glass is mostly blue and green, which cannot meet the market demand for gray series three-silver low-amplitude energy-saving glass. need.
实用新型内容Utility model content
针对现有技术存在的常见的三银节能玻璃的颜色不能满足市场对灰色系列三银节能玻璃的需求,且常见的三银节能玻璃不可钢化的技术问题,本实用新型提供了一种中灰色可钢化三银节能玻璃、中空玻璃,该三银节能玻璃外观呈中灰色,可实现钢化且钢化前后玻璃产品颜色差异小。Aiming at the technical problems that the color of the common three-silver energy-saving glass in the prior art cannot meet the market demand for the gray series of three-silver energy-saving glass, and the common three-silver energy-saving glass cannot be tempered, the utility model provides a medium gray color. Tempered triple-silver energy-saving glass, insulating glass, the appearance of the triple-silver energy-saving glass is medium gray, which can be tempered and the color difference of glass products before and after tempering is small.
为了实现上述目的,本实用新型采用的技术方案为:In order to achieve the above purpose, the technical scheme adopted by the present utility model is:
一种中灰色可钢化三银节能玻璃,其特征在于,包括玻璃基片和依次镀制玻璃基片上的膜层:第一层介质层氮化硅层,第二层种子层氧化锌层,第三层功能层银层,第四层阻挡保护层氧化锌铝层,第五层介质层氮化硅层,第六层种子层氧化锌层,第七层功能层银层,第八层阻挡保护层氧化锌铝层,第九层介质层氧化锌锡层,第十层种子层氧化锌层、第十一层功能层银层,第十二层阻挡保护层镍铬层,第十三层阻挡保护层氧化锌铝层,第十四层介质层氮化硅层。A medium gray temperable triple-silver energy-saving glass, which is characterized in that it comprises a glass substrate and a film layer plated on the glass substrate in sequence: a first dielectric layer, a silicon nitride layer, a second seed layer, a zinc oxide layer, and a second layer of the seed layer. Three functional layers of silver layer, the fourth layer of barrier protection layer of zinc oxide aluminum layer, the fifth layer of dielectric layer of silicon nitride layer, the sixth layer of seed layer of zinc oxide layer, the seventh layer of functional layer of silver layer, the eighth layer of barrier protection layer Zinc oxide aluminum layer, ninth dielectric layer zinc oxide tin layer, tenth seed layer zinc oxide layer, eleventh functional layer silver layer, twelfth barrier protection layer nickel chromium layer, thirteenth barrier layer The protective layer is a zinc-aluminum oxide layer, and the fourteenth dielectric layer is a silicon nitride layer.
本实用新型提供的中灰色可钢化三银节能玻璃,设置有三个功能层银层,使得玻璃具有较高的透光率和低辐射率,在每层功能层的两侧设置有种子层氧化锌层,介质层氮化硅层,以及阻挡保护层,通过十四层膜之间的相互作用关系,使得可钢化,外观为中灰色。其中玻璃基片可以采用各种常见的浮法玻璃作为基片,也称为玻璃原片。The medium gray temperable triple-silver energy-saving glass provided by the utility model is provided with three functional layers of silver, so that the glass has high light transmittance and low emissivity, and a seed layer of zinc oxide is arranged on both sides of each functional layer. layer, the dielectric layer, the silicon nitride layer, and the blocking protective layer, through the interaction between the fourteen layers of films, it can be tempered, and the appearance is medium gray. Among them, the glass substrate can use various common float glass as the substrate, also known as the original glass.
研究发现通过控制膜层的厚度可以使得钢化后的产品更加稳定,颜色不会出现偏色。The study found that by controlling the thickness of the film layer, the tempered product can be more stable, and the color will not appear color cast.
进一步的,所述第一层介质层氮化硅层的厚度是10nm~50nm,所述第五层介质层氮化硅层的厚度是20nm~60nm,所述第十四层介质层氮化硅层的厚度是10nm~40nm。第一层介质层氮化硅层具有打底保护的作用,可以阻止玻璃基板中钠离子向膜层中渗透,增加膜层和玻璃基片之间的吸附力;第十四层介质层氮化硅层位于最外侧,可以隔绝氧气和其他物质,而且SiNx具有高硬度,耐磨损的特性,可以保护在整个镀膜层具有良好的抗划伤性能。Further, the thickness of the silicon nitride layer of the first dielectric layer is 10 nm to 50 nm, the thickness of the silicon nitride layer of the fifth dielectric layer is 20 nm to 60 nm, and the thickness of the silicon nitride layer of the fourteenth dielectric layer is 20 nm to 60 nm. The thickness of the layer is 10 nm to 40 nm. The silicon nitride layer of the first dielectric layer has the function of bottom protection, which can prevent the sodium ions in the glass substrate from penetrating into the film layer and increase the adsorption force between the film layer and the glass substrate; the fourteenth dielectric layer is nitrided The silicon layer is located on the outermost side, which can isolate oxygen and other substances, and SiNx has the characteristics of high hardness and wear resistance, which can protect the entire coating layer with good scratch resistance.
进一步的,所述第二层种子层氧化锌层的厚度是4nm~15nm,所述第六层种子层氧化锌层的厚度是5nm~10nm,所述第十层种子层氧化锌层的厚度是5nm~10nm。可以提供膜的平整度,给功能层提供一个较佳的镀制平台,有利于节能玻璃性能的发挥,氧化锌的消光系数是最低的,镀制功能层银层前设置一个氧化锌层,有利于提高膜的透射率,达到节能的效果。Further, the thickness of the zinc oxide layer of the second seed layer is 4 nm to 15 nm, the thickness of the zinc oxide layer of the sixth seed layer is 5 nm to 10 nm, and the thickness of the zinc oxide layer of the tenth seed layer is 5nm~10nm. It can provide the flatness of the film and provide a better plating platform for the functional layer, which is beneficial to the performance of the energy-saving glass. The extinction coefficient of zinc oxide is the lowest, and a zinc oxide layer is arranged before the silver layer of the functional layer. It is beneficial to improve the transmittance of the film and achieve the effect of energy saving.
进一步的,所述第三层功能层银层的厚度是2nm~15nm,所述第七层功能层银层的厚度是2nm~15nm,所述第十一层功能层银层的厚度是5nm~ 20nm。银层直接影响着整个膜层系的透射率和反射率,银层可以反射掉大部分太阳能中的热辐射,起到低辐射节能作用。Further, the thickness of the third functional layer silver layer is 2 nm to 15 nm, the thickness of the seventh functional layer silver layer is 2 nm to 15 nm, and the thickness of the eleventh functional layer silver layer is 5 nm to 5 nm. 20nm. The silver layer directly affects the transmittance and reflectivity of the entire film system. The silver layer can reflect most of the thermal radiation in the solar energy and play a role in low-radiation energy saving.
进一步的,所述第四层阻挡保护层氧化锌铝层的厚度是3nm~20nm,所述第八层阻挡保护层氧化锌铝层的厚度是3nm~20nm,所述第十三层阻挡保护层氧化锌铝层的厚度是3nm~20nm,氧化锌铝层既是减反射膜也是保护膜,在可见光和近红外太阳能光谱中起减反射作用,以提高此波长范围内的太阳光透射比,同时保护银膜不被氧化,提高膜系的物化性能。Further, the thickness of the zinc-aluminum oxide layer of the fourth barrier protection layer is 3 nm to 20 nm, the thickness of the zinc-aluminum oxide layer of the eighth barrier protection layer is 3 nm to 20 nm, and the thickness of the thirteenth barrier protection layer is 3 nm to 20 nm. The thickness of the zinc-aluminum oxide layer is 3nm to 20nm. The zinc-aluminum oxide layer is both an anti-reflection film and a protective film. It plays an anti-reflection effect in the visible light and near-infrared solar spectrum to improve the solar light transmittance in this wavelength range, while protecting The silver film is not oxidized, and the physical and chemical properties of the film system are improved.
进一步的,所述第九层介质层氧化锌锡层的厚度是15nm~65nm,氧化锌锡层能提高功能层银层与玻璃基片表面的结合强度,同时兼有调节膜系光学性能和颜色的作用。Further, the thickness of the ninth dielectric layer zinc tin oxide layer is 15nm~65nm, and the zinc tin oxide layer can improve the bonding strength of the functional layer silver layer and the surface of the glass substrate, and simultaneously adjust the optical performance and color of the film system. effect.
进一步的,所述第十二层阻挡保护层镍铬层的厚度是2nm~8nm,能够阻挡银层氧化并阻挡银层与介质层之间的结合力。Further, the thickness of the nickel-chromium layer of the twelfth barrier protection layer is 2 nm to 8 nm, which can block the oxidation of the silver layer and block the bonding force between the silver layer and the dielectric layer.
进一步的,玻璃基片上的膜层是采用离线磁控溅射或原子沉积技术镀膜制成的膜层。优选地,上述中灰色可钢化三银节能玻璃采用离线磁控溅射技术镀膜制成。离线磁控溅射工艺,是将玻璃基片经切割、清洗等预加工后,送入一个大的真空室内,内部设有多个溅射靶,随着真空室内压力降低,阴极靶溅射出金属原子,沉积到玻璃表面上,形成单层或双层纯银的功能膜。离线低辐射玻璃镀膜具有设备投资少、生产难度低的优点。Further, the film on the glass substrate is a film formed by off-line magnetron sputtering or atomic deposition technology. Preferably, the above-mentioned medium gray temperable triple-silver energy-saving glass is made of off-line magnetron sputtering technology. The offline magnetron sputtering process is to send the glass substrate into a large vacuum chamber after preprocessing such as cutting, cleaning, etc., and there are multiple sputtering targets inside. As the pressure in the vacuum chamber decreases, the cathode target sputters metal Atoms are deposited onto the glass surface to form functional films of single or double layers of pure silver. Off-line low-e glass coating has the advantages of low equipment investment and low production difficulty.
一种包含上述中灰色可钢化三银节能玻璃制备的中空玻璃。该玻璃呈中灰色,具有较高的可见光透过率、较低的辐射率,可钢化且钢化前后产品颜色差异小,可实现平弯结合的产品设计,使得建筑整体表现更加自然。An insulating glass prepared from the above-mentioned medium gray temperable triple-silver energy-saving glass. The glass is medium gray with high visible light transmittance and low emissivity. It can be tempered and the color difference between the products before and after tempering is small. It can realize the product design of flat-bend combination, making the overall performance of the building more natural.
综上所述,由于采用了上述技术方案,本实用新型的有益效果是:To sum up, due to the adoption of the above-mentioned technical solutions, the beneficial effects of the present utility model are:
1、本实用新型三银节能玻璃外观为中灰色,满足了市场上对灰色系列三银节能玻璃的需求,可钢化。1. The appearance of the three-silver energy-saving glass of the present utility model is medium gray, which meets the market demand for the gray series of three-silver energy-saving glass, and can be tempered.
2、本实用新型三银节能玻璃钢化前后产品玻璃的颜色差异小可实现平弯结合的产品设计,使得建筑整体表现更加自然,钢化后室外反射色a*在-0.5—-3,室外反射b*在-3.5—-6。2. The color difference of the product glass before and after the three-silver energy-saving glass tempering of the utility model is small, and the product design of the combination of flat and bending can be realized, which makes the overall performance of the building more natural. After tempering, the outdoor reflection color a* is -0.5—-3, and the outdoor reflection b * at -3.5 - -6.
3、本实用新型三银节能玻璃透光率高,可见光透过在60%-75%。3. The triple-silver energy-saving glass of the utility model has high light transmittance, and the visible light transmits 60%-75%.
附图说明Description of drawings
图1是本实用新型中灰色可钢化三银节能玻璃实施例1结构示意图。FIG. 1 is a schematic structural diagram of
图中标记:1-第一层介质层氮化硅层,2-第二层种子层氧化锌层,3-第三层功能层银层,4-第四层阻挡保护层氧化锌铝层,5-第五层介质层氮化硅层,6-第六层种子层氧化锌层,7-第七层功能层银层,8-第八层阻挡保护层氧化锌铝层, 9-第九层介质层氧化锌锡层,10-第十层种子层氧化锌层,11-第十一层功能层银层,12-第十二层阻挡保护层镍铬层,13-第十三层阻挡保护层氧化锌铝层,14- 第十四层介质层氮化硅层。Marked in the figure: 1- first dielectric layer silicon nitride layer, 2- second seed layer zinc oxide layer, 3- third functional layer silver layer, 4- fourth barrier protective layer zinc oxide aluminum layer, 5- The fifth dielectric layer silicon nitride layer, 6- the sixth seed layer zinc oxide layer, 7- the seventh functional layer silver layer, 8- the eighth barrier protection layer zinc oxide aluminum layer, 9- ninth layer dielectric layer zinc oxide tin layer, 10- tenth seed layer zinc oxide layer, 11- eleventh functional layer silver layer, 12- twelfth layer barrier protection layer nickel chromium layer, 13- thirteenth barrier layer Protective layer zinc oxide aluminum layer, 14- the fourteenth dielectric layer silicon nitride layer.
具体实施方式Detailed ways
下面结合附图,对本实用新型作详细的说明。The present utility model will be described in detail below in conjunction with the accompanying drawings.
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本实用新型,并不用于限定本实用新型。In order to make the purpose, technical solutions and advantages of the present utility model more clearly understood, the present utility model will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, and are not used to limit the present invention.
实施例1Example 1
在玻璃基片上,采用真空离线磁控溅射镀膜技术,向外依次镀制20nm的第一层介质层氮化硅层1,10nm的第二层种子层氧化锌层2,10nm的第三层功能层银层3,15nm的第四层阻挡保护层氧化锌铝层4,40nm的第五层介质层氮化硅层5,5nm的第六层种子层氧化锌层6,10nm的第七层功能层银层7, 10nm的第八层阻挡保护层氧化锌铝层8,40nm的第九层介质层氧化锌锡层9, 10nm的第十层种子层氧化锌层10,15nm的第十一层功能层银层11,5nm的第十二层阻挡保护层镍铬层12,15nm的第十三层阻挡保护层氧化锌铝层13, 30nm的第十四层介质层氮化硅层14。制得中灰色可钢化三银节能玻璃,玻璃膜层结构如图1所示。On the glass substrate, the vacuum off-line magnetron sputtering coating technology is used to coat the first dielectric layer
表1实施例1产品钢化前后的颜色参数:The color parameters of table 1
从表1中的数据可以看出中灰色三银节能玻璃钢化前后的产品颜色差异较小,在实际应用中可进行平弯搭配设计,使得建筑玻璃整体显得更加自然,美观。From the data in Table 1, it can be seen that the color difference of the product before and after the tempering of the medium gray triple-silver energy-saving glass is small. In practical application, the flat-bending design can be carried out, making the overall architectural glass more natural and beautiful.
实施例2-6Examples 2-6
实施例2-6的制备方法和膜层选择与实施例1一致,不同之处在于膜层的厚度不同,实施例2-6分别镀制的各层膜层厚度如表1所示。The preparation method and film layer selection of Examples 2-6 are the same as those of Example 1, the difference is that the thickness of the film layers is different.
表2实施例2-6分别镀制的各膜层厚度(单位:nm)Table 2 Thickness of each film layer (unit: nm) plated respectively in Examples 2-6
将实施例1-6制得的中灰色可钢化三银节能玻璃制备成中空玻璃,产品结构为6mm+12mmA+6mm。经过测试得到产品性能数据如表3所示:The medium gray temperable triple-silver energy-saving glass prepared in Examples 1-6 was prepared into insulating glass, and the product structure was 6mm+12mmA+6mm. The product performance data obtained after testing are shown in Table 3:
表3实施例1-6玻璃产品制备成中空玻璃的性能数据Table 3 The performance data of the glass products of Examples 1-6 prepared into insulating glass
研究发现,第十一功能层银层11的厚度比第三层功能层银层3和第七层功能层银层7的厚度要高的时候,制备的中灰的可钢化三银节能玻璃的透光率要高,辐射率要低。本实用新型所提供的的中灰的可钢化三银节能玻璃可见光透射率在60%~75%,辐射率低于0.03,钢化前后颜色偏差小,钢化后室外反射色a*在-0.5~-3,室外反射b*在-3.5~-6。The study found that when the thickness of the silver layer 11 of the eleventh functional layer is higher than that of the
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection of the utility model.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922354859.3U CN211471237U (en) | 2019-12-24 | 2019-12-24 | Medium-grey temperable three-silver energy-saving glass and hollow glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201922354859.3U CN211471237U (en) | 2019-12-24 | 2019-12-24 | Medium-grey temperable three-silver energy-saving glass and hollow glass |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211471237U true CN211471237U (en) | 2020-09-11 |
Family
ID=72373532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201922354859.3U Active CN211471237U (en) | 2019-12-24 | 2019-12-24 | Medium-grey temperable three-silver energy-saving glass and hollow glass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211471237U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114716159A (en) * | 2022-03-30 | 2022-07-08 | 四川南玻节能玻璃有限公司 | Medium-permeability tempered three-silver low-emissivity coated glass |
CN114940589A (en) * | 2022-06-30 | 2022-08-26 | 长兴旗滨节能玻璃有限公司 | Anti-reflection super heat-insulating glass |
-
2019
- 2019-12-24 CN CN201922354859.3U patent/CN211471237U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114716159A (en) * | 2022-03-30 | 2022-07-08 | 四川南玻节能玻璃有限公司 | Medium-permeability tempered three-silver low-emissivity coated glass |
CN114940589A (en) * | 2022-06-30 | 2022-08-26 | 长兴旗滨节能玻璃有限公司 | Anti-reflection super heat-insulating glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101244898B (en) | Golden low-emissivity coated glass and manufacturing method thereof | |
CN108328942A (en) | High low anti-double-silver low-emissivity coated glass and preparation method thereof thoroughly | |
WO2019157798A1 (en) | Double-silver low-emission coated glass and preparation method thereof | |
CN104354393B (en) | Radiation coated glass capable of being toughened | |
KR20130142369A (en) | Low-emissivity heat insulative coated board, building material including the same, and method for preparing low-emissivity heat insulative coated board | |
CN211471237U (en) | Medium-grey temperable three-silver energy-saving glass and hollow glass | |
CN103737999A (en) | Coated glass with infrared reflection function and preparation method thereof | |
CN102910839A (en) | Golden low-radiation coated glass and preparation method thereof | |
CN211445538U (en) | Medium-gray temperable double-silver energy-saving glass and hollow glass | |
CN206157058U (en) | But high energy -conserving glass of low radiation of tempering that passes through | |
CN206157059U (en) | Two silver -colored low -emissivity coated glass of high printing opacity of muted color | |
CN203048803U (en) | Offline temperable intelligent low-emissivity coated glass | |
CN104494237A (en) | High-transmission low-radiation double silver coated glass and manufacturing method thereof | |
WO2019157799A1 (en) | Method for preparing low-radiation coated glass | |
CN102336529A (en) | High transmittance toughenable low radiation glass and manufacture method thereof | |
CN204160834U (en) | A kind of golden two silver low-radiation coated glass | |
CN112225469A (en) | Single-silver low-emissivity glass and preparation method thereof | |
CN104742446B (en) | High-transmittance high-reflectivity, high-efficiency and energy-saving single-silver LOW-E film-plated glass | |
WO2019157800A1 (en) | High temperature resistant, low-emissivity, coated glass | |
CN204382744U (en) | A kind of double silver coating glass of high transmission Low emissivity | |
CN206157057U (en) | Three golden silver medal low -emissivity coated glass in rose | |
CN107673631A (en) | A kind of regulation of silver coating containing fine grain gIR glass and its manufacture method | |
CN204136515U (en) | Radiation coated glass capable of being toughened | |
CN103243885B (en) | Low emissivity window still wall film system of a kind of low cost Color tunable and preparation method thereof | |
CN206051858U (en) | A kind of sapphire blue Three-silver-layer low-radiation coated glass of high-performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |