CN210952312U - Heating cavity for metal powder forming microwave composite sintering equipment - Google Patents
Heating cavity for metal powder forming microwave composite sintering equipment Download PDFInfo
- Publication number
- CN210952312U CN210952312U CN201921478422.4U CN201921478422U CN210952312U CN 210952312 U CN210952312 U CN 210952312U CN 201921478422 U CN201921478422 U CN 201921478422U CN 210952312 U CN210952312 U CN 210952312U
- Authority
- CN
- China
- Prior art keywords
- wave
- cavity
- microwave
- metal powder
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 89
- 239000002184 metal Substances 0.000 title claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 53
- 239000000843 powder Substances 0.000 title claims abstract description 40
- 238000005245 sintering Methods 0.000 title claims abstract description 30
- 239000002131 composite material Substances 0.000 title claims abstract description 23
- 239000000919 ceramic Substances 0.000 claims description 34
- 239000010410 layer Substances 0.000 claims description 33
- 238000000465 moulding Methods 0.000 claims description 10
- BPJYAXCTOHRFDQ-UHFFFAOYSA-L tetracopper;2,4,6-trioxido-1,3,5,2,4,6-trioxatriarsinane;diacetate Chemical compound [Cu+2].[Cu+2].[Cu+2].[Cu+2].CC([O-])=O.CC([O-])=O.[O-][As]1O[As]([O-])O[As]([O-])O1.[O-][As]1O[As]([O-])O[As]([O-])O1 BPJYAXCTOHRFDQ-UHFFFAOYSA-L 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000000498 cooling water Substances 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000011229 interlayer Substances 0.000 claims description 3
- 238000009768 microwave sintering Methods 0.000 abstract description 17
- 210000001161 mammalian embryo Anatomy 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 6
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001550 time effect Effects 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
本实用新型公开一种金属粉末成型微波复合烧结设备用加热腔体,其包括微波腔体、安装于微波腔体内部的载台、设于载台上的隔热透波腔体及安装于微波腔体上并用于加热的波导管、设置于隔热透波腔体内部并用于承载金属粉末生胚的烧结载板,该隔热透波腔体内部设有若干均匀分布的吸波辅助加热层,相邻两吸波辅助加热层之间形成有间隔。本实用新型于微波对微波腔体内部设置的吸波辅助加热层在低温下微波加热效率极高,使隔热透波腔体内部快速升温,以致可以对金属粉末生胚进行辐射加热以实现辅助加热,达到复合加热功能,从而有效解决金属粉末的微波烧结问题,以致达到升温速度快、烧结时间短、能耗低的效果,大大提升了金属粉末微波烧结的效率与质量。
The utility model discloses a heating cavity for metal powder forming microwave composite sintering equipment, which comprises a microwave cavity, a carrier installed inside the microwave cavity, a heat-insulating wave-transparent cavity arranged on the carrier, a waveguide installed on the microwave cavity and used for heating, and a sintering carrier plate arranged inside the heat-insulating wave-transparent cavity and used for carrying a metal powder embryo. The heat-insulating wave-transparent cavity is provided with a plurality of evenly distributed wave-absorbing auxiliary heating layers, and a gap is formed between two adjacent wave-absorbing auxiliary heating layers. The microwave heating efficiency of the wave-absorbing auxiliary heating layer arranged inside the microwave cavity of the utility model is extremely high at low temperature, so that the heat-insulating wave-transparent cavity is quickly heated, so that the metal powder embryo can be radiated and heated to achieve auxiliary heating, and achieve a composite heating function, thereby effectively solving the microwave sintering problem of metal powder, so as to achieve the effects of fast heating speed, short sintering time, and low energy consumption, and greatly improve the efficiency and quality of metal powder microwave sintering.
Description
技术领域:Technical field:
本实用新型涉及金属粉末成型微波烧结技术领域,特指一种金属粉末成型微波复合烧结设备用加热腔体。The utility model relates to the technical field of metal powder molding microwave sintering, in particular to a heating cavity for metal powder molding microwave composite sintering equipment.
背景技术:Background technique:
微波是介于无线电波与红外线之间波段的电磁波,波长为1mm-1m,频率为00MHZ-300GHZ,通常也叫做超高频电磁波,微波与其它波段的电磁波相比,微波具有波长短、频率高、穿透能力强、量子特性明显等特点。其波长范围与地球上的一般物体的尺寸相比处于同一数尾级或更小,与其它可见光一样除激光外,微波是极化和相干波,遵循光的定律,它与物质的相互作用根据物质性质不同,可以被透过、吸收或反射,即具有选择性。同时微波具有渡越时间效应、辐射效应和趋肤效应。Microwave is an electromagnetic wave in the band between radio waves and infrared, with a wavelength of 1mm-1m and a frequency of 00MHZ-300GHZ. It is also called ultra-high frequency electromagnetic waves. Compared with electromagnetic waves in other bands, microwaves have shorter wavelengths and higher frequencies. , strong penetrating ability, obvious quantum characteristics and so on. Its wavelength range is in the same order of magnitude or smaller than the size of general objects on Earth. Like other visible light, except for lasers, microwaves are polarized and coherent waves that follow the laws of light and interact with matter according to Substances have different properties and can be transmitted, absorbed or reflected, that is, selective. At the same time, microwave has transit time effect, radiation effect and skin effect.
根据微波加热原理,微波的体积加热方式可以使得试样温度分布均匀。但是,如果试样直接暴露于气氛中,表面的辐射及对流热损失会使表面温度低于内部温度,造成试样的温度分布不均匀,对试样来说,就会测温不准以及造成试样的变形、开裂的问题。According to the principle of microwave heating, the volume heating method of microwave can make the temperature distribution of the sample uniform. However, if the sample is directly exposed to the atmosphere, the radiation and convective heat loss on the surface will make the surface temperature lower than the internal temperature, resulting in uneven temperature distribution of the sample. For the sample, the temperature measurement will be inaccurate and cause Deformation and cracking of specimens.
因此,如何保持被烧结试样内部的温度均匀就成为微波烧结工艺中关键的一个环节。由于微波烧结的特殊性,被烧结试样温度梯度方向自内向外,升降温迅速,容易使合金试样开裂,因此必须选择合适的保温材料。此外,保温层在烧结过程中还起着减小热损失、预热低损耗材料和防止加热腔体中发生微波打火现象等多重作用,因此微波烧结系统中保温材料的选择就成为决定微波烧结能否成功的关键因素之一。Therefore, how to keep the temperature inside the sintered sample uniform becomes a key link in the microwave sintering process. Due to the particularity of microwave sintering, the temperature gradient direction of the sintered sample is from the inside to the outside, and the temperature rises and falls rapidly, which is easy to crack the alloy sample, so it is necessary to choose a suitable thermal insulation material. In addition, the thermal insulation layer also plays multiple roles in the sintering process, such as reducing heat loss, preheating low-loss materials, and preventing microwave ignition in the heating cavity. Therefore, the selection of thermal insulation materials in the microwave sintering system becomes the decisive factor for microwave sintering. One of the key factors for success.
金属粉末成型方式有粉末冶金(PM)、金属注射成型(MIM)、3D打印(3DP)等,但都要经过金属粉末烧结这一重要工序才能得到金属产品。相对传统电加热方式,微波烧结因其电磁波特殊性而具有明显优势:整体加热;选择性加热;无热惯性;负温度梯度;升温速度快,烧结时间短;能耗低;烧结产品表现出更好的显微组织和性能。由于金属表面的趋肤效应,金属粉末的微波烧结直到1999年才被美国滨州州立大学等人发现并加以实用。实验结果证明,金属粉末在低温(<600℃)下属低损耗介质,与微波的作用较弱,其吸收微波能力较差,个别金属甚至难以吸收微波,而在高温下,吸波特性明显好转,也能实现微波的烧结。如何实现低温下的快速加热,在金属粉末中掺入吸波材料是一种已实施方法,但这种方法对最终的烧结产品性能不利。Metal powder molding methods include powder metallurgy (PM), metal injection molding (MIM), 3D printing (3DP), etc., but only through the important process of metal powder sintering to obtain metal products. Compared with the traditional electric heating method, microwave sintering has obvious advantages due to its special electromagnetic wave: overall heating; selective heating; no thermal inertia; negative temperature gradient; fast heating speed, short sintering time; low energy consumption; sintered products show better Good microstructure and properties. Due to the skin effect on the metal surface, microwave sintering of metal powders was not discovered and put into practice until 1999 by Penn State University et al. The experimental results show that metal powder is a low-loss medium at low temperature (<600°C), and has a weak effect on microwaves, and its ability to absorb microwaves is poor, and individual metals are even difficult to absorb microwaves. , can also achieve microwave sintering. How to achieve rapid heating at low temperature, mixing absorbing material into metal powder is an implemented method, but this method is not good for the performance of the final sintered product.
有鉴于此,本发明人提出以下技术方案。In view of this, the inventors propose the following technical solutions.
实用新型内容:Utility model content:
本实用新型的目的在于克服现有技术的不足,提供一种金属粉末成型微波复合烧结设备用加热腔体。The purpose of the utility model is to overcome the deficiencies of the prior art and provide a heating cavity for metal powder molding microwave composite sintering equipment.
为了解决上述技术问题,本实用新型采用了下述技术方案:该金属粉末成型微波复合烧结设备用加热腔体包括:微波腔体、安装于微波腔体内部的载台、设置于载台上的隔热透波腔体以及安装于该微波腔体上并用于加热的波导管、设置于该隔热透波腔体内部并用于承载金属粉末生胚的烧结载板,该隔热透波腔体内部设置有若干均匀分布的吸波辅助加热层,相邻两吸波辅助加热层之间形成有间隔。In order to solve the above-mentioned technical problems, the utility model adopts the following technical scheme: the heating cavity for the metal powder molding microwave composite sintering equipment comprises: a microwave cavity, a carrier installed inside the microwave cavity, a heating cavity arranged on the carrier A heat-insulating wave-transmitting cavity, a waveguide installed on the microwave cavity and used for heating, and a sintering carrier plate arranged inside the heat-insulating wave-transmitting cavity and used for carrying metal powder green embryos, the heat-insulating wave-transmitting cavity Several uniformly distributed wave-absorbing auxiliary heating layers are arranged inside, and a space is formed between two adjacent wave-absorbing auxiliary heating layers.
进一步而言,上述技术方案中,所述隔热透波腔体包括有截面呈圆环状的透波耐温陶瓷环体和设置于该透波耐温陶瓷环体下端的底板和设置于该透波耐温陶瓷环体上端的盖板,所述吸波辅助加热层设置于该透波耐温陶瓷环体内壁。Further, in the above technical solution, the heat-insulating wave-transmitting cavity includes a wave-transmitting and temperature-resistant ceramic ring body with a circular cross-section, a bottom plate arranged at the lower end of the wave-transmitting and temperature-resistant ceramic ring body, and a The cover plate on the upper end of the wave-transmitting and temperature-resistant ceramic ring body, and the wave-absorbing auxiliary heating layer is arranged on the inner wall of the wave-transmitting and temperature-resistant ceramic ring body.
进一步而言,上述技术方案中,所述吸波辅助加热层的面积占所述透波耐温陶瓷环体内壁面积的1/2-1/3。Further, in the above technical solution, the area of the wave-absorbing auxiliary heating layer accounts for 1/2-1/3 of the inner wall area of the wave-transmitting and heat-resistant ceramic ring.
进一步而言,上述技术方案中,所述吸波辅助加热层的面积占所述透波耐温陶瓷环体内壁面积的1/2。Further, in the above technical solution, the area of the wave-absorbing auxiliary heating layer accounts for 1/2 of the inner wall area of the wave-transmitting and heat-resistant ceramic ring.
进一步而言,上述技术方案中,所述吸波辅助加热层的厚度为2-10mm;所述透波耐温陶瓷环体的厚度为10-35mm。Further, in the above technical solution, the thickness of the wave-absorbing auxiliary heating layer is 2-10 mm; the thickness of the wave-transmitting and heat-resistant ceramic ring body is 10-35 mm.
进一步而言,上述技术方案中,所述吸波辅助加热层为通过涂覆方式固定于该透波耐温陶瓷环体内壁的碳化硅涂层,其与透波耐温陶瓷环体形成一个整体。Further, in the above technical solution, the wave-absorbing auxiliary heating layer is a silicon carbide coating fixed on the inner wall of the wave-transmitting and temperature-resistant ceramic ring by coating, which forms a whole with the wave-transmitting and temperature-resistant ceramic ring. .
进一步而言,上述技术方案中,所述载台固定于该微波腔体内部。Further, in the above technical solution, the carrier is fixed inside the microwave cavity.
进一步而言,上述技术方案中,所述载台下端设置有一转轴,该转轴下端穿过该微波腔体下端,并连接旋转驱动装置,使该载台以可旋转方式安装于微波腔体内部。Further, in the above technical solution, the lower end of the carrier is provided with a rotating shaft, the lower end of the rotating shaft passes through the lower end of the microwave cavity, and is connected to a rotary drive device, so that the carrier is rotatably installed inside the microwave cavity.
进一步而言,上述技术方案中,所述微波腔体为不锈钢罐体,该不锈钢罐体夹层中设置有冷却水通道。Further, in the above technical solution, the microwave cavity is a stainless steel tank, and a cooling water channel is provided in the interlayer of the stainless steel tank.
进一步而言,上述技术方案中,所述微波腔体上设置有观察窗、进气口、排气管道和测温仪,该测温仪伸入所述隔热透波腔体中。Further, in the above technical solution, the microwave cavity is provided with an observation window, an air inlet, an exhaust pipe and a thermometer, and the thermometer extends into the heat-insulating wave-transmitting cavity.
采用上述技术方案后,本实用新型与现有技术相比较具有如下有益效果:本实用新型工作时,波导管传导微波,该微波对微波腔体内部的气体进行加热,加热后的气体会对隔热透波腔体进行加热,且该微波还可以透过隔热透波腔体以对隔热透波腔体内部的金属粉末生胚进行加热,由于金属粉末低温下微波加热效率低,而本实用新型于微波对微波腔体内部设置的吸波辅助加热层在低温下微波加热效率极高,使隔热透波腔体内部快速升温,以致可以对金属粉末生胚进行辐射加热以实现辅助加热,达到复合加热功能,从而有效解决金属粉末的微波烧结问题,以致达到升温速度快、烧结时间短、能耗低的效果,且烧结产品表现出更好的显微组织和性能,大大提升了金属粉末微波烧结的效率与质量。After adopting the above-mentioned technical scheme, the present utility model has the following beneficial effects compared with the prior art: when the utility model works, the waveguide conducts microwaves, and the microwaves heat the gas inside the microwave cavity, and the heated gas will cause the insulation The heat wave-transmitting cavity is heated, and the microwave can also pass through the heat-insulating wave-transmitting cavity to heat the metal powder green embryo inside the heat-insulating wave-transmitting cavity. The microwave-absorbing auxiliary heating layer arranged in the microwave-to-microwave cavity of the utility model has extremely high microwave heating efficiency at low temperature, so that the inside of the heat-insulating wave-transmitting cavity can be heated rapidly, so that the metal powder green embryo can be radiated and heated to realize auxiliary heating. , to achieve the composite heating function, so as to effectively solve the problem of microwave sintering of metal powder, so as to achieve the effect of fast heating speed, short sintering time and low energy consumption, and the sintered product shows better microstructure and performance, which greatly improves the metal powder. Efficiency and quality of powder microwave sintering.
附图说明:Description of drawings:
图1是本实用新型的结构示意图;Fig. 1 is the structural representation of the present utility model;
图2是本实用新型中隔热透波腔体的结构示意图;Fig. 2 is the structural schematic diagram of the heat-insulating wave-transmitting cavity in the present utility model;
图3是金属粉末成型微波复合烧结设备的原理图。Figure 3 is a schematic diagram of a metal powder molding microwave composite sintering equipment.
具体实施方式:Detailed ways:
下面结合具体实施例和附图对本实用新型进一步说明。The present utility model will be further described below with reference to specific embodiments and accompanying drawings.
见图3所示,为金属粉末成型微波复合烧结设备的原理图,其中,微波源为1-4个的3KW的工业磁控管,主频率为2450士50MHZ,功率在0-12KW之间连续可调。金属粉末成型微波复合烧结设备中的微波传输与测量系统包括的器件较多,主要有微波发生器101、环形器102、水负载103、波导管104、定向耦合器105和阻抗调配器106、加热腔体107等,但每一器件所起的作用各不相同。波导管是一方形的铜管,起传输微波的作用。环形器的作用是将当负载严重失配时产生的反射微波向水负载传输,从而对微波发生器起到保护作用。定向耦合器可将从波导管得到的微波信号经衰减后用微安表检测,以监控负载的匹配及材料对微波能的吸收,并检测正向和反向功率。阻抗匹配器是使系统达到最佳匹配状态的装置,其可在一定范围内调节。加热腔体是整个系统的核心部分,可以是行波腔、混合腔、多模腔和单模腔等。与其它腔体相比,多模腔机械结构简单,可以适应于各种不同的加热负载,其中,多模腔微波加热器是应用最为广泛的微波加热器。一般而一言,多模腔加热器是通过一定的方法从微波源将一定功率的微波藕合到一个密封的金属箱,箱体的结构和尺寸根据一定的理论方法进行设计,大小至少在两个方向上应具有几个波长的长度,在箱体中给定的频段维持很多的谐振模式。多模腔存在的主要问题是在局部区域电磁场的强度没有单模腔的电磁场强度高,因此加热腔体的升温速率会低一些。As shown in Figure 3, it is the schematic diagram of the metal powder molding microwave composite sintering equipment, in which the microwave source is 1-4 3KW industrial magnetrons, the main frequency is 2450±50MHZ, and the power is continuous between 0-12KW Adjustable. The microwave transmission and measurement system in the metal powder molding microwave composite sintering equipment includes many devices, mainly including
参见图1、2所示,为一种金属粉末成型微波复合烧结设备用加热腔体,其包括:微波腔体1、安装于微波腔体1内部的载台2、设置于载台2上的隔热透波腔体3以及安装于该微波腔体1上并用于加热的波导管4、设置于该隔热透波腔体3内部并用于承载金属粉末生胚7的烧结载板5,该隔热透波腔体3内部设置有若干均匀分布的吸波辅助加热层6,相邻两吸波辅助加热层6之间形成有间隔。本实用新型工作时,波导管4传导微波,该微波对微波腔体1内部的气体进行加热,加热后的气体会对隔热透波腔体3进行加热,且该微波还可以透过隔热透波腔体3以对隔热透波腔体3内部的金属粉末生胚7进行加热,由于金属粉末低温下微波加热效率低,而本实用新型于微波对微波腔体1内部设置的吸波辅助加热层6在低温下微波加热效率极高,使隔热透波腔体3内部快速升温,以致可以对金属粉末生胚7进行辐射加热以实现辅助加热,达到复合加热功能,从而有效解决金属粉末的微波烧结问题,以致达到升温速度快、烧结时间短、能耗低的效果,且烧结产品表现出更好的显微组织和性能,大大提升了金属粉末微波烧结的效率与质量。Referring to FIGS. 1 and 2 , it is a heating cavity for metal powder molding microwave composite sintering equipment, which includes: a microwave cavity 1 , a
所述隔热透波腔体3包括有截面呈圆环状的透波耐温陶瓷环体31和设置于该透波耐温陶瓷环体31下端的底板32和设置于该透波耐温陶瓷环体31上端的盖板33,所述吸波辅助加热层6设置于该透波耐温陶瓷环体31内壁。其中,所述吸波辅助加热层6的面积占所述透波耐温陶瓷环体31内壁面积的1/2-1/3。作为优选的实施例,所述吸波辅助加热层6的面积占所述透波耐温陶瓷环体31内壁面积的1/2。The heat-insulating wave-transmitting cavity 3 includes a wave-transmitting and temperature-resisting
所述吸波辅助加热层6的厚度为2-10mm;所述透波耐温陶瓷环体31的厚度为10-35mm。The thickness of the wave-absorbing
所述吸波辅助加热层6为通过涂覆方式固定于该透波耐温陶瓷环体31内壁的碳化硅涂层,其与透波耐温陶瓷环体31形成一个整体,达到将隔热透波材料与辅助加热材料一体化的目的,其使用起来更加方便。当然,所述吸波辅助加热层6还可以是碳化硅类的其它材料层。The wave-absorbing
所述载台2固定于该微波腔体1内部。或者是,所述载台2下端设置有一转轴21,该转轴21下端穿过该微波腔体1下端,并连接旋转驱动装置,使该载台2以可旋转方式安装于微波腔体1内部,此时,该微波腔体1及其内部的金属粉末生胚随载台2旋转而旋转,以此加热更加均匀,进一步提升金属粉末微波烧结的效率与质量。The
所述微波腔体1为不锈钢罐体,该不锈钢罐体夹层中设置有冷却水通道11,在后期完成加热工作后,通过该冷却水通道11通入冷却水以实现对不锈钢罐体进行快速冷却,保证烧结产品的质量。The microwave cavity 1 is a stainless steel tank, and a cooling water channel 11 is arranged in the interlayer of the stainless steel tank. After the heating work is completed in the later stage, cooling water is passed through the cooling water channel 11 to achieve rapid cooling of the stainless steel tank. , to ensure the quality of sintered products.
所述微波腔体1上设置有观察窗12、进气口15、排气管道13和测温仪14,该测温仪14伸入所述隔热透波腔体3中。The microwave cavity 1 is provided with an
本发明人做了以下三种试验,具体如下:The inventor has done the following three kinds of tests, which are as follows:
试验一,当透波耐温陶瓷环体31中无吸波辅助加热层时,铁粉生坯件从常温升至600℃,耗时125分钟。In test 1, when there is no wave-absorbing auxiliary heating layer in the wave-transmitting and heat-resistant
试验二,当透波耐温陶瓷环体31中吸波辅助加热层占空比为1/2,即占透波耐温陶瓷环体31内表面一半的面积时,铁粉生坯件从常温升至600℃,耗时28分钟。
试验三,当透波耐温陶瓷环体31中吸波辅助加热层占空比为1/3,即占透波耐温陶瓷环体31内表面1/3的面积时,铁粉生坯件从常温升至600℃,耗时33分钟。Test 3, when the duty ratio of the wave-absorbing auxiliary heating layer in the wave-transmitting and temperature-resistant
由以上试验得出,在透波耐温陶瓷环体31中增设吸波辅助加热层,能够大大降低工作时间,提高工作效率,且透波耐温陶瓷环体31中吸波辅助加热层占空比为1/2时,效果更佳。From the above test, it can be concluded that adding a wave-absorbing auxiliary heating layer in the wave-transmitting and temperature-resistant
综上所述,本实用新型工作时,波导管4传导微波,该微波对微波腔体1内部的气体进行加热,加热后的气体会对隔热透波腔体3进行加热,且该微波还可以透过隔热透波腔体3以对隔热透波腔体3内部的金属粉末生胚进行加热,由于金属粉末低温下微波加热效率低,而本实用新型于微波对微波腔体1内部设置的吸波辅助加热层6在低温下微波加热效率极高,使隔热透波腔体3内部快速升温,以致可以对金属粉末生胚进行辐射加热以实现辅助加热,达到复合加热功能,从而有效解决金属粉末的微波烧结问题,以致达到升温速度快、烧结时间短、能耗低的效果,且烧结产品表现出更好的显微组织和性能,大大提升了金属粉末微波烧结的效率与质量。To sum up, when the utility model works, the waveguide 4 conducts microwaves, the microwaves heat the gas inside the microwave cavity 1, and the heated gas will heat the heat-insulating wave-transmitting cavity 3, and the microwaves also The heat-insulating wave-transmitting cavity 3 can be used to heat the metal powder green embryo inside the heat-insulating wave-transmitting cavity 3. Since the microwave heating efficiency of metal powder is low at low temperature, the present invention is used in the microwave-to-microwave cavity 1. The provided wave-absorbing
当然,以上所述仅为本实用新型的具体实施例而已,并非来限制本实用新型实施范围,凡依本实用新型申请专利范围所述构造、特征及原理所做的等效变化或修饰,均应包括于本实用新型申请专利范围内。Of course, the above are only specific embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. Any equivalent changes or modifications made in accordance with the structures, features and principles described in the scope of the patent application of the present invention are not intended to limit the scope of the present invention. It should be included in the scope of the patent application of this utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921478422.4U CN210952312U (en) | 2019-09-05 | 2019-09-05 | Heating cavity for metal powder forming microwave composite sintering equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921478422.4U CN210952312U (en) | 2019-09-05 | 2019-09-05 | Heating cavity for metal powder forming microwave composite sintering equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210952312U true CN210952312U (en) | 2020-07-07 |
Family
ID=71383644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921478422.4U Active CN210952312U (en) | 2019-09-05 | 2019-09-05 | Heating cavity for metal powder forming microwave composite sintering equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210952312U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113894246A (en) * | 2021-09-14 | 2022-01-07 | 中车戚墅堰机车车辆工艺研究所有限公司 | 3D printing precoated sand rapid microwave curing equipment and curing method thereof |
-
2019
- 2019-09-05 CN CN201921478422.4U patent/CN210952312U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113894246A (en) * | 2021-09-14 | 2022-01-07 | 中车戚墅堰机车车辆工艺研究所有限公司 | 3D printing precoated sand rapid microwave curing equipment and curing method thereof |
CN113894246B (en) * | 2021-09-14 | 2023-03-10 | 中车戚墅堰机车车辆工艺研究所有限公司 | 3D printing precoated sand rapid microwave curing equipment and curing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101323529B (en) | Graded transmitted wave structure in microwave sintering and method for preparing ceramic material using the same | |
Anklekar et al. | Microwave sintering and mechanical properties of PM copper steel | |
Lasri et al. | Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor | |
Menezes et al. | Microwave fast sintering of ceramic materials | |
Yao et al. | Effect of microwave treatment on thermal properties and structural degradation of red sandstone in rock excavation | |
Peng et al. | Design of double-layer ceramic absorbers for microwave heating | |
CN210952312U (en) | Heating cavity for metal powder forming microwave composite sintering equipment | |
CN105666896B (en) | A kind of recombination energy heating means | |
CN102435863A (en) | A variable temperature measurement device for dielectric properties of dielectric materials based on quasi-optical resonant cavity | |
CN105627760B (en) | A kind of microwave material placing device of high temperature sintering | |
CN205279735U (en) | Small -size wide band microwave high temperature heating device | |
Ling et al. | Drying kinetics and microstructure evolution of nano-zirconia under microwave pretreatment | |
CN102531014B (en) | alpha-Al2O3Mixed microwave sintering method for powder | |
CN204718379U (en) | Ultrasonic wave vibration activation assisted microwave synthesis sintering furnace | |
Qiu et al. | Microwave heating characteristics of cement mortar containing carbonyl iron powder applied to airport pavement deicing | |
CN110646443B (en) | A test method for determining microwave penetration depth using multimode microwave heating equipment | |
CN107317077B (en) | High-power millimeter wave bipyramid water load | |
WO2018077735A1 (en) | Method for thermal treatment of a ceramic part by microwaves | |
CN108380155A (en) | Study microwave and the interactive experimental system of medium and application under multiple physical field | |
CN204556528U (en) | A kind of real non-destructive detects the device with quantitatively regulating and controlling material microwave preparation process | |
CN103805826A (en) | NdFeB iron-based multiphase material sintering technology | |
CN104297273B (en) | A kind of real non-destructive detection and the device of quantitatively regulating and controlling material microwave preparation process | |
Gong et al. | Basic research on the microwave dielectric properties of ammonium hexachlororuthenate (Ⅳ) via Ru doping | |
Kakirde et al. | Development and characterization of nickel-zinc spinel ferrite for microwave absorption at 2· 4 GHz | |
CN206375855U (en) | Organic matter solid matter microwave-heating carbonizing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201228 Address after: 523000 Ou Deng Li Chi Di, Gaopo Town, Dongguan City, Guangdong Province Patentee after: DONGGUAN ZHANSHENG MOLD Co.,Ltd. Address before: 523000 building e, Lianshang Zhizao Industrial Park, Chuangxing Road, Xiaoyong village, Gaopo Town, Dongguan City, Guangdong Province Patentee before: DONGGUAN YUANLI WUXIAN PRINTING TECHNOLOGY Co.,Ltd. |