CN210775134U - Mobile power supply device with gas detection function - Google Patents
Mobile power supply device with gas detection function Download PDFInfo
- Publication number
- CN210775134U CN210775134U CN201921675603.6U CN201921675603U CN210775134U CN 210775134 U CN210775134 U CN 210775134U CN 201921675603 U CN201921675603 U CN 201921675603U CN 210775134 U CN210775134 U CN 210775134U
- Authority
- CN
- China
- Prior art keywords
- gas
- gas detection
- air
- piezoelectric
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 108
- 238000012545 processing Methods 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 38
- 239000000725 suspension Substances 0.000 claims description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- 239000010703 silicon Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 10
- 239000012855 volatile organic compound Substances 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 239000002210 silicon-based material Substances 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 238000000651 laser trapping Methods 0.000 claims 3
- 239000013078 crystal Substances 0.000 claims 2
- 238000009434 installation Methods 0.000 claims 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 114
- 239000010410 layer Substances 0.000 description 67
- 238000010586 diagram Methods 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000012552 review Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- -1 PM2.5 Chemical compound 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本案关于一种具气体检测的行动电源装置,尤指一种薄型、可携式、可进行气体检测的具气体检测的行动电源装置。This case is about a mobile power supply device with gas detection, especially a thin, portable and gas detection mobile power supply device with gas detection.
背景技术Background technique
现代人对于生活周遭的气体品质的要求愈来愈重视,例如一氧化碳、二氧化碳、挥发性有机物(Volatile Organic Compound,VOC)、PM2.5、一氧化氮、一氧化硫等等气体,甚至于气体中含有的微粒,都会在环境中暴露影响人体健康,严重的甚至危害到生命。因此环境气体品质好坏纷纷引起各国重视,目前急需要如何检测去避免远离,是当前重视的课题。Modern people pay more and more attention to the quality of gases around their lives, such as carbon monoxide, carbon dioxide, volatile organic compounds (VOC), PM2.5, nitric oxide, sulfur monoxide and other gases, and even in the gas The particles contained will affect human health when exposed in the environment, and even endanger life seriously. Therefore, the quality of ambient gases has attracted the attention of various countries. How to detect and avoid remoteness is urgently needed at present, which is a topic of current attention.
如何确认气体品质的好坏,利用一种气体传感器来检测周围环境气体是可行的,若又能即时提供检测信息,警示处在环境中的人,能够即时预防或逃离,避免遭受环境中的气体暴露造成人体健康影响及伤害,利用气体传感器来检测周围环境可说是非常好的应用。How to confirm the quality of the gas, it is feasible to use a gas sensor to detect the surrounding gas. If the detection information can be provided immediately to warn people in the environment, it can be prevented or escaped immediately to avoid being exposed to the gas in the environment. Exposure causes human health effects and injuries, and the use of gas sensors to detect the surrounding environment can be said to be a very good application.
然而,现代人外出皆会携带的行动装置及行动电源装置等可携式装置,因此将气体检测模块嵌设于可携式装置上来实施检测周围环境的气体,十分受到重视,特别是目前的可携式装置的发展趋势为轻、薄,如何将气体检测模块薄型化且组设于可携式装置的行动电源装置内的应用,是本案所研发的重要课题。However, for portable devices such as mobile devices and mobile power supply devices that modern people carry when they go out, it is very important to embed the gas detection module on the portable device to detect the gas in the surrounding environment. The development trend of portable devices is light and thin. How to reduce the thickness of the gas detection module and integrate it into the mobile power supply device of the portable device is an important issue developed in this case.
实用新型内容Utility model content
本案的主要目的是提供一种具气体检测的行动电源装置,借由气体检测模块嵌设于装置内,提供即时随地检测气体,又能具备即时通报警示周围环境的气体品质好坏的效益。The main purpose of this case is to provide a mobile power supply device with gas detection. The gas detection module is embedded in the device to provide real-time gas detection anywhere, and has the benefits of real-time notification and warning of the quality of the gas in the surrounding environment.
本案的一广义实施态样为一种具气体检测的行动电源装置,包含:一装置本体,具有一通气口、至少一连接端口及一容置腔室,该通气口连通该容置腔室,供气体导入该容置腔室内;至少一气体检测模块,组设于该装置本体的该容置腔室中,借以导入气体至内部,供以进行气体中悬浮粒的微粒大小及浓度检测,并予以输出一检测数据;一驱动控制板,组设于该装置本体的该容置腔室中,且该气体检测模块定位设置于上与其电性连接;一电源模块,定位设置于该驱动控制板上与其电性连接,并能储存一电能及对外输出该电能;一微处理器,定位设置于该驱动控制板上与其电性连接,并能以控制该气体检测模块的驱动信号而检测启动运作,并将该气体检测模块的该检测数据予以进行转换成一检测数据予以储存且对外传输,并能对外传输至一行动装置处理应用,以及对外传输至一外部装置予以储存该检测数据。A broad implementation aspect of the present application is a mobile power device with gas detection, comprising: a device body having a vent, at least one connection port and a accommodating chamber, the vent communicating with the accommodating chamber, for introducing gas into the accommodating chamber; at least one gas detection module is assembled in the accommodating chamber of the device body, so as to introduce gas into the interior for detecting the particle size and concentration of suspended particles in the gas, and outputting a detection data; a driving control board assembled in the accommodating chamber of the device body, and the gas detection module is positioned on the upper part to be electrically connected with it; a power module is positioned on the driving control board It is electrically connected to the above and can store an electrical energy and output the electrical energy to the outside; a microprocessor is positioned and arranged on the driving control board and is electrically connected to it, and can detect and start the operation by controlling the driving signal of the gas detection module , and convert the detection data of the gas detection module into a detection data for storage and external transmission, and can be externally transmitted to a mobile device processing application, and externally transmitted to an external device to store the detection data.
附图说明Description of drawings
图1A为本案具气体检测的行动电源装置一较佳实施例外观示意图。FIG. 1A is a schematic diagram of the appearance of a preferred embodiment of a mobile power device with gas detection.
图1B为本案具气体检测的行动电源装置另一较佳实施例外观示意图。FIG. 1B is a schematic diagram of the appearance of another preferred embodiment of the mobile power device with gas detection.
图1C为本案具气体检测的行动电源装置的剖面示意图。FIG. 1C is a schematic cross-sectional view of the mobile power device with gas detection in the present case.
图2A为本案气体检测模块的外观立体示意图。FIG. 2A is a three-dimensional schematic diagram of the appearance of the gas detection module of the present invention.
图2B为本案气体检测模块另一角度的外观立体示意图。FIG. 2B is a three-dimensional schematic diagram of the appearance of the gas detection module of the present invention from another angle.
图2C为本案气体检测模块的分解立体示意图。FIG. 2C is an exploded perspective view of the gas detection module of the present invention.
图3A为本案基座的立体示意图。FIG. 3A is a three-dimensional schematic diagram of the base of the present invention.
图3B为本案基座另一角度的立体示意图。FIG. 3B is a three-dimensional schematic view of the base of the present invention from another angle.
图4为本案基座容置激光组件及微粒传感器的立体示意图。FIG. 4 is a three-dimensional schematic diagram of the base of the present invention accommodating the laser component and the particle sensor.
图5A为本案压电致动器结合基座的分解立体示意图。FIG. 5A is an exploded perspective view of the piezoelectric actuator combined base of the present invention.
图5B为本案压电致动器结合基座的立体示意图。FIG. 5B is a three-dimensional schematic diagram of the piezoelectric actuator combined with the base of the present invention.
图6A为本案压电致动器的分解立体示意图。FIG. 6A is an exploded perspective view of the piezoelectric actuator of the present invention.
图6B为本案压电致动器另一角度的分解立体示意图。FIG. 6B is an exploded perspective view of the piezoelectric actuator of the present invention from another angle.
图7A为本案压电致动器的结合于导气组件承载区的剖面示意图。FIG. 7A is a schematic cross-sectional view of the piezoelectric actuator of the present invention combined with the bearing area of the air guide element.
图7B及图7C为图7A的本案压电致动器作动的示意图。FIG. 7B and FIG. 7C are schematic diagrams illustrating the operation of the piezoelectric actuator of the present case in FIG. 7A .
图8A至图8C为气体检测模块气体路径的示意图。8A to 8C are schematic diagrams of gas paths of the gas detection module.
图9为本案激光组件发射的光束路径的示意图。FIG. 9 is a schematic diagram of the beam path emitted by the laser assembly of the present invention.
图10A为本案微机电泵的剖面示意图。FIG. 10A is a schematic cross-sectional view of the MEMS pump of the present invention.
图10B为本案微机电泵的分解示意图。FIG. 10B is an exploded schematic diagram of the microelectromechanical pump of the present invention.
图11A至图11C为微机电泵作动的示意图。11A to 11C are schematic diagrams of the operation of the MEMS pump.
图12为本案具气体检测的行动电源装置的驱动控制板与相关构建配置关系方块示意图。FIG. 12 is a block diagram showing the relationship between the drive control board of the mobile power device with gas detection and the related construction and configuration.
附图标记说明Description of reference numerals
100:装置本体100: Device body
100a:通气口100a: Air vent
100b:连接端口100b: connection port
100c:容置腔室100c: housing chamber
10:气体检测模块10: Gas detection module
20:驱动控制板20: Drive control board
30:电源模块30: Power Module
30a:充电电池30a: rechargeable battery
40:微处理器40: Microprocessor
40a:通信器40a: Communicator
50:供电装置50: Power supply device
60:行动装置60: Mobile Devices
70:外部装置70: External device
1:基座1: base
11:第一表面11: First surface
12:第二表面12: Second surface
13:激光设置区13: Laser setting area
14:进气沟槽14: Intake groove
14a:进气口14a: Air intake
14b:透光窗口14b: Translucent window
15:导气组件承载区15: Air guide assembly bearing area
15a:通气孔15a: Air vent
15b:定位缺口15b: Positioning the notch
16:出气沟槽16: Air outlet groove
16a:出气口16a: Air outlet
16b:第一区间16b: first interval
16c:第二区间16c: Second interval
17:光陷阱区17: Light Trap Zone
17a:光陷阱结构17a: Optical trap structure
2:压电致动器2: Piezoelectric actuator
21:喷气孔片21: Air blow hole sheet
210:悬浮片210: Suspension Tablets
211:中空孔洞211: Hollow Hole
212:连接件212: Connector
213:空隙213: void
22:腔体框架22: Cavity frame
23:致动体23: Actuator
231:压电载板231: Piezoelectric Carrier
2311:压电接脚2311: Piezo Pins
232:调整共振板232: Adjust the resonance plate
233:压电板233: Piezo Plate
24:绝缘框架24: Insulation frame
25:导电框架25: Conductive Frame
251:导电接脚251: Conductive pins
252:导电电极252: Conductive Electrodes
26:共振腔室26: Resonance Chamber
27:气流腔室27: Airflow Chamber
2a:微机电泵2a: MEMS pump
21a:第一基板21a: first substrate
211a:流入孔211a: Inflow hole
212a:第一表面212a: first surface
213a:第二表面213a: Second surface
22a:第一氧化层22a: first oxide layer
221a:汇流通道221a: Busway
222a:汇流腔室222a: Convergence Chamber
23a:第二基板23a: Second substrate
231a:硅晶片层231a: Silicon Wafer Layer
2311a:致动部2311a: Actuator
2312a:外周部2312a: Peripheral
2313a:连接部2313a: Connections
2314a:流体通道2314a: Fluid Channels
232a:第二氧化层232a: second oxide layer
2321a:振动腔室2321a: Vibration Chamber
233a:硅材层233a: Silicon layer
2331a:穿孔2331a: Perforation
2332a:振动部2332a: Vibration Division
2333a:固定部2333a: Fixed part
2334a:第三表面2334a: Third Surface
2335a:第四表面2335a: Fourth Surface
24a:压电组件24a: Piezoelectric components
241a:下电极层241a: lower electrode layer
242a:压电层242a: Piezoelectric layer
243a:绝缘层243a: Insulation layer
244a:上电极层244a: upper electrode layer
3:驱动电路板3: Drive circuit board
4:激光组件4: Laser components
5:微粒传感器5: Particulate sensor
6:外盖6: Outer cover
61:侧板61: Side panels
61a:进气框口61a: Air intake frame port
61b:出气框口61b: Air outlet frame
7a:第一挥发性有机物传感器7a: First VOC sensor
7b:第二挥发性有机物传感器7b: Second VOC sensor
D:光陷阱距离D: light trap distance
H:厚度H: Thickness
L:长度L: length
W:宽度W: width
具体实施方式Detailed ways
体现本案特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本案能够在不同的态样上具有各种的变化,其皆不脱离本案的范围,且其中的说明及图示在本质上当作说明之用,而非用以限制本案。Some typical embodiments embodying the features and advantages of the present case will be described in detail in the description of the latter paragraph. It should be understood that this case can have various changes in different aspects, all of which do not depart from the scope of this case, and the descriptions and diagrams therein are essentially used for illustration rather than limiting this case.
本案所述具气体检测的行动电源装置可以为如图1A所示的一较佳实施例的手机机壳形式的行动电源装置,或者为如图1B所示的另一较佳实施例的一般常见形式的行动电源装置实施例。再请参阅图1A、图1B、图1C及图12所示,本案提供一种具气体检测的行动电源装置,包含一装置本体100、至少一气体检测模块10、一驱动控制板20、一电源模块30、一微处理器40。上述的装置本体100具有一通气口100a、至少一连接端口100b及一容置腔室100c,通气口100a连通容置腔室100c,供气体导入容置腔室100c内,连接端口100b作为一行动装置60的通信连接。至少一气体检测模块10组设于装置本体100的容置腔室100c中,借以导入气体至内部,供以进行气体中悬浮粒的微粒大小及浓度检测,并予以输出一检测数据。装置本体100 的容置腔室100c中也可组设多个气体检测模块10去进行气体中悬浮粒的微粒大小及浓度检测。驱动控制板20组设于装置本体100的该容置腔室100c中,且气体检测模块10定位设置于驱动控制板20上与其电性连接。电源模块30定位设置于驱动控制板20上与其电性连接,并可通过一在装置本体100外部的供电装置50将电力传输至电源模块30,使电源模块30储存电能及对外输出电能,电力传输可以是通过有线传输,或者是通过无线传输,电源模块30包含至少一充电电池30a,供以储存电能。微处理器40定位设置于驱动控制板20上与其电性连接,并能以控制气体检测模块10 的驱动信号而检测启动运作,将气体检测模块10的检测数据转换成一检测数据储存,而微处理器40包含有一通信器40a,供以接收微处理器40所输出检测数据,并能将检测数据对外传输至一行动装置60处理应用,以及将检测数据对外通过通信传输至一外部装置70予以储存,促使外部装置70产生一气体检测的信息及一通报警示。上述之外部装置70可为一云端系统、一可携式装置、一电脑系统等;或者,装置本体100通过连接端口100b与行动装置60的通信连接,使电源模块30的电能传输给行动装置60提供电源,以及传输微处理器40所输出检测数据给行动装置 60予以处理应用,提供行动装置60使用者获得气体检测的信息及通报警示,且行动装置60可以对外通过通信传输而使检测数据传输至一外部装置70予以储存,促使外部装置70产生一气体检测的信息及一通报警示,通信传输可以是通过有线的通信传输,或者是通过无线的通信传输,例如:Wi-Fi传输、蓝牙传输、无线射频辨识传输、一近场通讯传输等。The mobile power supply device with gas detection described in this case can be a mobile power supply device in the form of a mobile phone case as shown in a preferred embodiment as shown in FIG. A form of mobile power device embodiment. 1A , FIG. 1B , FIG. 1C and FIG. 12 , the present application provides a mobile power supply device with gas detection, including a
又请继续参阅图2A至图2C所示,本案提供一种气体检测模块10,包含一基座1、一压电致动器2、一驱动电路板3、一激光组件4、一微粒传感器5及一外盖6。其中,驱动电路板3封盖贴合于基座1的第二表面12,激光组件4设置于驱动电路板3上,并与驱动电路板3电性连接,微粒传感器5亦设置于驱动电路板3上,并与驱动电路板3电性连接,而外盖6罩盖基座1,且贴附封盖于基座1的第一表面11 上,又外盖6具有一侧板61,侧板61具有一进气框口61a及出气框口61b。Please continue to refer to FIGS. 2A to 2C , the present application provides a
请审阅图3A及图3B所示,基座1具有一第一表面11、一第二表面12、一激光设置区13、一进气沟槽14、一导气组件承载区15及一出气沟槽16。第一表面 11及第二表面12为相对设置的两个表面。激光设置区13自第一表面11朝向第二表面 12挖空形成。进气沟槽14自第二表面12凹陷形成,且邻近激光设置区13。进气沟槽14设有一进气口14a,连通于基座1的外部,并与外盖6的进气框口61a对应,以及两侧壁贯穿一透光窗口14b,与激光设置区13连通。因此,基座1的第一表面11被外盖 6贴附封盖,第二表面12被驱动电路板3贴附封盖,致使进气沟槽14定义出一进气路径。Please refer to FIG. 3A and FIG. 3B , the
导气组件承载区15由第二表面12凹陷形成,并连通进气沟槽14,且于底面贯通一通气孔15a。出气沟槽16设有一出气口16a,出气口16a与外盖6的出气框口61b对应设置,出气沟槽16包含由第一表面11对应于导气组件承载区15的垂直投影区域凹陷形成的一第一区间16b,以及于非导气组件承载区15的垂直投影区域所延伸的区域,且由第一表面11至第二表面12挖空形成的第二区间16c,其中,第一区间16b与第二区间16c相连以形成段差,且出气沟槽16的第一区间16b与导气组件承载区15的通气孔15a相通,出气沟槽16的第二区间16c与出气口16a连通;因此,当基座1的第一表面11被外盖6贴附封盖,第二表面12被驱动电路板3贴附封盖时,致使出气沟槽16定义出一出气路径。The air guide
图4为基座容置激光组件及微粒传感器示意图,激光组件4及微粒传感器5皆设置于驱动电路板3上且位于基座1内,为了明确说明激光组件4及微粒传感器5与基座1的位置,故特意于图3中省略驱动电路板3,用以明确说明;请审阅图4 及图2C,激光组件4容设于基座1的激光设置区13内,微粒传感器5容设于基座1的进气沟槽14内,并与激光组件4对齐,此外,激光组件4对应到透光窗口14b,供激光组件4所发射的激光光穿过,使激光光照射至进气沟槽14内,而激光组件4所发出射出的光束路径为穿过透光窗口14b且与进气沟槽14形成正交方向。4 is a schematic diagram of the base accommodating the laser component and the particle sensor. The
激光组件4发射投射光束通过透光窗口14b进入进气沟槽14内,照射进气沟槽14内的气体中所含悬浮微粒,光束接触到悬浮微粒时,会散射并产生投射光点,微粒传感器5接收散射所产生的投射光点进行计算,来获取气体中所含悬浮微粒的粒径及浓度的相关信息。其中微粒传感器5为PM2.5传感器。The
请参阅图5A及图5B,压电致动器2容设于基座1的导气组件承载区15,导气组件承载区15呈一正方形,其四个角分别设有一定位缺口15b,压电致动器2 通过四个定位缺口15b设置于导气组件承载区15内,此外,导气组件承载区15与进气沟槽14相通,当压电致动器2作动时,汲取进气沟槽14内的气体进入压电致动器2,并将气体通过导气组件承载区15的通气孔15a,进入至出气沟槽16。Please refer to FIG. 5A and FIG. 5B , the
请审阅图6A及图6B,压电致动器2包含有一喷气孔片21、一腔体框架 22、一致动体23、一绝缘框架24及一导电框架25。喷气孔片21为具有可挠性的材料制作,具有一悬浮片210、一中空孔洞211以及多个连接件212。悬浮片210为可弯曲振动的片状结构,其形状与尺寸大致对应导气组件承载区15的内缘,但不以此为限,悬浮片210的形状亦可为方形、圆形、椭圆形、三角形及多角形其中之一。中空孔洞211是贯穿于悬浮片210的中心处,以供气体流通。本实施例中,连接件212的数量是为四个,其数量及型态主要与导气组件承载区15的定位缺口15b相互对应,各连接件212与所对应的定位缺口15b会形成一卡扣结构借以相互卡合、固定,使压电致动器2得以设置于导气组件承载区15内。腔体框架22叠设于喷气孔片21,且其外型与喷气孔片21对应,致动体23叠设于腔体框架22上,并与腔体框架22、悬浮片210之间定义一共振腔室26。绝缘框架24叠设于致动体23,其外观与腔体框架22近似。导电框架25叠设于绝缘框架24,其外观与绝缘框架24近似,且导电框架25具有一导电接脚251及一导电电极252,导电接脚251自导电框架25的外缘向外延伸,导电电极252自导电框架25内缘向内延伸。此外,致动体23更包含有一压电载板231、一调整共振板232及一压电板233,压电载板231承载叠置于腔体框架22上,调整共振板 232承载叠置于压电载板231上,压电板233承载叠置于调整共振板232上,而调整共振板232及压电板233容设于绝缘框架24内,并由导电框架25的导电电极252电连接压电板233,其中,压电载板231、调整共振板232皆为可导电的材料所制成,压电载板231具有一压电接脚2311,压电接脚2311与导电接脚251连接驱动电路板3上的驱动电路(未图示),以接收驱动信号(驱动频率及驱动电压),驱动信号得以由压电接脚2311、压电载板231、调整共振板232、压电板233、导电电极252、导电框架25、导电接脚251形成一回路,并由绝缘框架24将导电框架25与致动体23之间阻隔,避免短路发生,使驱动信号得以传递至压电板233,压电板233接受驱动信号(驱动频率及驱动电压)后,因压电效应产生形变,来进一步驱动压电载板231及调整共振板 232产生往复式地弯曲振动。Please refer to FIG. 6A and FIG. 6B , the
承上所述,调整共振板232位于压电板233与压电载板231之间,作为两者之间的缓冲物,可调整压电载板231的振动频率。基本上,调整共振板232的厚度大于压电载板231的厚度,且调整共振板232的厚度可变动,借此调整致动体23 的振动频率。As mentioned above, the
请同时参阅图6A、图6B及图7A,多个连接件212在悬浮片210及导气组件承载区15的内缘之间定义出多个空隙213,以供气体流通。请先参阅图7A,喷气孔片21、腔体框架22、致动体23、绝缘框架24及导电框架25依序对应堆叠并设置于导气组件承载区15,喷气孔片21与导气组件承载区15的底面(未标示)之间形成一气流腔室27。气流腔室27通过喷气孔片21的中空孔洞211,连通致动体23、腔体框架22及悬浮片210之间的共振腔室26。通过控制共振腔室26中气体的振动频率,使其与悬浮片210的振动频率趋近于相同,可使共振腔室26与悬浮片210产生亥姆霍兹共振效应(Helmholtz resonance),使气体传输效率提高。Please refer to FIG. 6A , FIG. 6B and FIG. 7A at the same time, the plurality of connecting
图7B及图7C为图7A的压电致动器作动示意图,请先审阅图7B所示,当压电板233向远离导气组件承载区15的底面移动时,带动喷气孔片21的悬浮片210 以远离导气组件承载区15的底面方向移动,使气流腔室27的容积急遽扩张,其内部压力下降形成负压,吸引压电致动器2外部的气体由多个空隙213流入,并经由中空孔洞211进入共振腔室26,使共振腔室26内的气压增加而产生一压力梯度。再如图 7C所示,当压电板233带动喷气孔片21的悬浮片210朝向导气组件承载区15的底面移动时,共振腔室26中的气体经中空孔洞211快速流出,挤压气流腔室27内的气体,并使汇聚后的气体以接近白努利定律的理想气体状态快速且大量地喷出。依据惯性原理,排气后的共振腔室26内部气压低于平衡气压,会导引气体再次进入共振腔室 26中。是以,通过重复图7B及图7C的动作后,得以压电板233往复式地振动,以及控制共振腔室26中气体的振动频率与压电板233的振动频率趋近于相同,以产生亥姆霍兹共振效应,实现气体高速且大量的传输。FIGS. 7B and 7C are schematic diagrams of the piezoelectric actuator in FIG. 7A . Please review the diagram shown in FIG. 7B first. When the
请参阅图8A至图8C,图8A至图8C为气体检测模块的气体路径示意图,首先审阅图8A,气体皆由外盖6的进气框口61a进入,通过进气口14a进入至基座1 的进气沟槽14,并流至微粒传感器5的位置,再如图8B所示,压电致动器2持续驱动会吸取进气路径的气体,以利外部气体快速导入且稳定流通,并通过微粒传感器5 上方,此时激光组件4发射投射光束通过透光窗口14b进入进气沟槽14内,照射进气沟槽14通过微粒传感器5上方的气体中所含悬浮微粒,光束接触到悬浮微粒时,会散射并产生投射光点,微粒传感器5接收散射所产生的投射光点进行计算,来获取气体中所含悬浮微粒的粒径及浓度的相关信息,而微粒传感器5上方的气体也持续受压电致动器2驱动传输而导入导气组件承载区15的通气孔15a中,进入出气沟槽16 的第一区间16b,最后如图8C所示,气体进入出气沟槽16的第一区间16b后,由于压电致动器2会不断输送气体进入第一区间16b,于第一区间16b的气体将会被推引至第二区间16c,最后通过出气口16a及出气框口61b向外排出。Please refer to FIGS. 8A to 8C . FIGS. 8A to 8C are schematic diagrams of the gas path of the gas detection module. First, review FIG. 8A . 1, and flow to the position of the
如图9所示,基座1更包含有一光陷阱区17,光陷阱区17自第一表面 11至第二表面12挖空形成,并对应至激光设置区13,且光陷阱区17经过透光窗口14b 而使激光组件4所发射的光束能投射到其中,光陷阱区17设有一斜椎面的光陷阱结构17a,光陷阱结构17a对应到激光组件4所发射的光束的路径;此外,光陷阱结构 17a使激光组件4所发射的投射光束在斜椎面结构反射至光陷阱区17内,避免光束反射至微粒传感器5的位置,且光陷阱结构17a所接收的投射光束的位置与透光窗口 14b之间保持有一光陷阱距离D,此光陷阱距离D需大于3mm以上,当光陷阱距离D小于3mm时会导致投射在光陷阱结构17a上投射光束反射后因过多杂散光直接反射回微粒传感器5的位置,造成检测精度的失真。As shown in FIG. 9 , the
请继续审阅图9及图2C,本案的气体检测模块10,不仅可针对气体中微粒进行检测,更可进一步针对导入气体的特性做检测,因此本案的气体检测模块 10更包含有第一挥发性有机物传感器7a,定位设置于驱动电路板3上并与其电性连接,容设于出气沟槽16中,对出气路径所导出气体做检测,用以检测出气路径的气体中所含有的挥发性有机物的浓度。或者本案的气体检测模块10更包含有一第二挥发性有机物传感器7b,定位设置于驱动电路板3上并与其电性连接,而第二挥发性有机物传感器7b容设于光陷阱区17,对于通过进气沟槽14的进气路径且经过透光窗口14b而导入光陷阱区17内的气体检测其挥发性有机物的浓度。Please continue to review FIG. 9 and FIG. 2C , the
由上述说明可知,本案的气体检测模块10经过基座1上激光设置区 13、进气沟槽14、导气组件承载区15及出气沟槽16适当配置的结构设计,且搭配外盖6及驱动电路板3的封盖密封设计,致使基座1的第一表面11上罩盖外盖6,第二表面12上封盖驱动电路板3,以使进气沟槽14定义出一进气路径,出气沟槽16定义出一出气路径,形成一单层导气通道路径,让本案的气体检测模块10整体结构的高度降低,致使气体检测模块10的长度L介于10mm至35mm之间,宽度W介于10mm至35mm 之间,厚度H介于1mm至6.5mm之间,有利于组设结合于如图12所示的小型化行动装置60,便于使用者携带以检测周遭的微粒浓度。此外,本案的压电致动器2的另一实施例可为一微机电泵2a。It can be seen from the above description that the
请参阅图10A及图10B,微机电泵2a包含有一第一基板21a、一第一氧化层22a、一第二基板23a以及一压电组件24a。10A and FIG. 10B, the
上述的第一基板21a为一硅晶片(Si wafer),其厚度介于150至400 微米(μm)之间,第一基板21a具有多个流入孔211a、一第一表面212a、一第二表面 213a,于本实施例中,该多个流入孔211a的数量为4个,但不以此为限,且每个流入孔211a皆由第二表面213a贯穿至第一表面212a,而流入孔211a为了提升流入效果,将流入孔211a自第二表面213a至第一表面212a呈现渐缩的锥形。The above-mentioned
上述的第一氧化层22a为一二氧化硅(SiO2)薄膜,其厚度介于10至20 微米(μm)之间,第一氧化层22a叠设于第一基板21a的第一表面212a上,第一氧化层22a具有多个汇流通道221a以及一汇流腔室222a,汇流通道221a与第一基板21a 的流入孔211a其数量及位置相互对应。于本实施例中,汇流通道221a的数量同样为 4个,4个汇流通道221a的一端分别连通至第一基板21a的4个流入孔211a,而4个汇流通道221a的另一端则连通于汇流腔室222a,让气体分别由流入孔211a进入之后,通过其对应相连的汇流通道221a后汇聚至汇流腔室222a内。The above-mentioned
上述的第二基板23a为一绝缘层上覆硅的硅晶片(SOI wafer),包含有:一硅晶片层231a、一第二氧化层232a以及一硅材层233a;硅晶片层231a的厚度介于10至20微米(μm)之间,具有一致动部2311a、一外周部2312a、多个连接部2313a 以及多个流体通道2314a,致动部2311a呈圆形;外周部2312a呈中空环状,环绕于致动部2311a的外围;该多个连接部2313a分别位于致动部2311a与外周部2312a之间,并且连接两者,提供弹性支撑的功能。该多个流体通道2314a环绕形成于致动部2311a的外围,且分别位于该多个连接部2313a之间。The above-mentioned
上述的第二氧化层232a为一氧化硅层,其厚度介于0.5至2微米(μm) 之间,形成于硅晶片层231a上,呈中空环状,并与硅晶片层231a定义一振动腔室 2321a。硅材层233a呈圆形,叠设于第二氧化层232a且结合至第一氧化层22a,硅材层233a为二氧化硅(SiO2)薄膜,厚度介于2至5微米(μm)之间,具有一穿孔2331a、一振动部2332a、一固定部2333a、一第三表面2334a及一第四表面2335a。穿孔2331a 形成于硅材层233a的中心,振动部2332a位于穿孔2331a的周边区域,且垂直对应于振动腔室2321a,固定部2333a则为硅材层233a的周缘区域,由固定部2333a固定于第二氧化层232a,第三表面2334a与第二氧化层232a接合,第四表面2335a与第一氧化层22a接合;压电组件24a叠设于硅晶片层231a的致动部2311a。The above-mentioned
上述的压电组件24a包含有一下电极层241a、压电层242a、绝缘层 243a及上电极层244a,下电极层241a叠置于硅晶片层231a的致动部2311a,而压电层242a叠置于下电极层241a,两者通过其接触的区域做电性连接,此外,压电层242a 的宽度小于下电极层241a的宽度,使得压电层242a无法完全遮蔽住下电极层241a,再于压电层242a的部分区域以及下电极层241a未被压电层242a所遮蔽的区域上叠置绝缘层243a,最后再于绝缘层243a以及压电层242a未被绝缘层243a遮蔽的其余表面上叠置上电极层244a,让上电极层244a得以与压电层242a接触来电性连接,同时利用绝缘层243a阻隔于上电极层244a及下电极层241a之间,避免两者直接接触造成短路。The above-mentioned
请参考第11A至图11C,第11A至11C图为微机电泵2a作动示意图。请先参考图11A,压电组件24a的下电极层241a及上电极层244a接收驱动电路板3所传递的驱动电压及驱动信号(未图示)后将其传导至压电层242a,压电层242a接受驱动电压及驱动信号后,因逆压电效应的影响开始产生形变,会带动硅晶片层231a的致动部2311a开始位移,当压电组件24a带动致动部2311a向上位移并拉开与第二氧化层232a之间的距离时,此时,第二氧化层232a的振动腔室2321a的容积将提升,让振动腔室2321a内形成负压,并将第一氧化层22a的汇流腔室222a内的气体通过穿孔 2331a吸入其中。请继续参阅图11B,当致动部2311a受到压电组件24a的牵引向上位移时,硅材层233a的振动部2332a会因共振原理的影响向上位移,当振动部2332a 向上位移时,会压缩振动腔室2321a的空间并且推动振动腔室2321a内的气体往硅晶片层231a的流体通道2314a移动,让气体能够通过流体通道2314a向上排出,在振动部2332a向上位移来压缩振动腔室2321a的同时,汇流腔室222a的容积因振动部2332a位移而提升,其内部形成负压,将吸取微机电泵2a外的气体由流入孔211a进入其中,最后如图11C所示,压电组件24a带动硅晶片层231a的致动部2311a向下位移时,将振动腔室2321a的气体往流体通道2314a推动,并将气体排出,而硅材层233a 的振动部2332a亦受致动部2311a的带动向下位移,同步压缩汇流腔室222a的气体通过穿孔2331a向振动腔室2321a移动,后续再将压电组件24a带动致动部2311a向上位移时,其振动腔室2321a的容积会大幅提升,进而有较高的汲取力将气体吸入振动腔室2321a,再重复以上的动作,以至于通过压电组件24a持续带动致动部2311a上下位移来使振动部2332a连动并上下位移,通过改变微机电泵2a的内部压力,使其不断地汲取及排出气体,借此以完成微机电泵2a的动作。Please refer to FIGS. 11A to 11C . FIGS. 11A to 11C are schematic diagrams of the operation of the
当然,本案的气体检测模块10为了嵌设于行动电源装置的应用,本案的压电致动器2可以微机电泵2a的结构取代,使本案气体检测模块10的整体尺寸更进一步缩小,致使气体检测模块10的长度L、宽度W缩减至2mm至4mm之间、厚度H 介于1mm至3.5mm之间,供使用者能够即时对周遭的空气品质进行检测。Of course, for the application of the
综上所述,本案所提供的具气体检测的行动电源装置,借由气体检测模块嵌设于装置内,气体检测模块可随时检测使用者周围环境空气品质,即时将空气品质信息传递至行动装置上,达到行动电源装置不仅提供电力给气体检测模块及对行动装置进行充电,也可随时随地检测空气品质的目的。To sum up, in the mobile power supply device with gas detection provided in this case, the gas detection module is embedded in the device. The gas detection module can detect the air quality of the surrounding environment of the user at any time, and transmit the air quality information to the mobile device in real time. On the other hand, the mobile power supply device can not only provide electricity to the gas detection module and charge the mobile device, but also can detect the air quality anytime and anywhere.
本案得由熟知此技术的人士任施匠思而为诸般修饰,然皆不脱如附申请专利范围所欲保护者。This case can be modified by Shi Jiangsi, a person who is familiar with this technology, but all of them do not deviate from the protection of the scope of the patent application attached.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921675603.6U CN210775134U (en) | 2019-10-09 | 2019-10-09 | Mobile power supply device with gas detection function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921675603.6U CN210775134U (en) | 2019-10-09 | 2019-10-09 | Mobile power supply device with gas detection function |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210775134U true CN210775134U (en) | 2020-06-16 |
Family
ID=71045514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921675603.6U Active CN210775134U (en) | 2019-10-09 | 2019-10-09 | Mobile power supply device with gas detection function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210775134U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112649329A (en) * | 2019-10-09 | 2021-04-13 | 研能科技股份有限公司 | Mobile power supply device with gas detection function |
CN114767165A (en) * | 2021-01-22 | 2022-07-22 | 研能科技股份有限公司 | Sampling and detecting device |
CN115067940A (en) * | 2021-03-12 | 2022-09-20 | 研能科技股份有限公司 | Blood sampling and detecting device |
-
2019
- 2019-10-09 CN CN201921675603.6U patent/CN210775134U/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112649329A (en) * | 2019-10-09 | 2021-04-13 | 研能科技股份有限公司 | Mobile power supply device with gas detection function |
CN114767165A (en) * | 2021-01-22 | 2022-07-22 | 研能科技股份有限公司 | Sampling and detecting device |
CN115067940A (en) * | 2021-03-12 | 2022-09-20 | 研能科技股份有限公司 | Blood sampling and detecting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210775135U (en) | Mobile device casing with gas detection | |
TWI708934B (en) | Particle detecting module | |
TWI707129B (en) | Gas-detectable casing of portable device | |
CN210775134U (en) | Mobile power supply device with gas detection function | |
CN211576880U (en) | Particle detection module | |
TWM567361U (en) | Gas detection device | |
TWM568360U (en) | Gas detection device | |
TW202129202A (en) | Gas detection purification device | |
TWI735044B (en) | Particle detecting module | |
TWI697173B (en) | Gas-detectable portable power device | |
TWI831905B (en) | External gas detecting device | |
CN210775143U (en) | Particle Detection Module | |
CN210775142U (en) | Particle detection module | |
TW202130401A (en) | Miniature gas detection and purification device | |
TWI748327B (en) | Gas detecting module | |
CN110873682A (en) | Particle Detection Module | |
TWI747132B (en) | Health detection device having gas detection function | |
CN113075096B (en) | Gas detection and purification remote control system | |
CN112924343B (en) | External gas detection device | |
CN110873680B (en) | Particle Detection Module | |
US20210172850A1 (en) | External gas detecting device | |
TWI678521B (en) | Gas detecting device | |
TW202127393A (en) | Remote control system for gas detection and purification | |
TWI723767B (en) | Gas detection and cleaning system for vehicle | |
CN112649329A (en) | Mobile power supply device with gas detection function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |