CN209992140U - A model sand selection device for physical model test of hyperpycnal flow - Google Patents
A model sand selection device for physical model test of hyperpycnal flow Download PDFInfo
- Publication number
- CN209992140U CN209992140U CN201920939633.7U CN201920939633U CN209992140U CN 209992140 U CN209992140 U CN 209992140U CN 201920939633 U CN201920939633 U CN 201920939633U CN 209992140 U CN209992140 U CN 209992140U
- Authority
- CN
- China
- Prior art keywords
- flow
- muddy water
- model
- hyperpycnal
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004576 sand Substances 0.000 title claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 148
- 238000004088 simulation Methods 0.000 claims abstract description 23
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 239000013049 sediment Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000012780 transparent material Substances 0.000 claims description 4
- 238000009434 installation Methods 0.000 abstract 1
- 230000005484 gravity Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000012267 brine Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
本实用新型提供一种用于异重流物理模型试验的模型沙选择装置,涉及基于基础水槽试验的异重流物理模型试验技术领域,解决了现有技术中并没有用于选择具有特定特征的模型沙的装置的技术问题。用于异重流物理模型试验的模型沙选择装置包括浑水储存箱、浑水输送装置、浑水流出流量控制装置、检测装置和河床模拟装置,浑水储存箱通过浑水输送装置与所述浑水流出流量控制装置相连通,所述浑水流出流量控制装置与所述河床模拟装置相连通本实用新型能使操作者根据不同的模型沙在不同条件下形成的异重流的流速、厚度以及浊度值特征筛选出需要的模型沙以进行低含沙量异重流物理模型试验,填补了用于选择具有特定特征的模型沙的装置的空白。
The utility model provides a model sand selection device for a hyperpycnal flow physical model test, which relates to the technical field of a hyperpycnal flow physical model test based on a basic water tank test, and solves the problem that the prior art is not used for selecting sand with specific characteristics. Technical problems with the installation of the model sand. The model sand selection device used for the physical model test of hyperpycnal flow includes a muddy water storage tank, a muddy water conveying device, a muddy water outflow flow control device, a detection device and a river bed simulation device. The muddy water outflow flow control device is communicated with the muddy water outflow flow control device and the river bed simulation device. And the turbidity value characteristics screen out the required model sand for the low sand content hyperpycnal flow physical model test, which fills the gap of the device for selecting model sand with specific characteristics.
Description
技术领域technical field
本实用新型涉及基于基础水槽试验的异重流物理模型试验技术领域,尤其是涉及一种用于异重流物理模型试验的模型沙选择装置。The utility model relates to the technical field of the hyperpycnal flow physical model test based on the basic water tank test, in particular to a model sand selection device used for the hyperpycnal flow physical model test.
背景技术Background technique
异重流是指在重力场中由于流体密度差异而产生的分层流动,又称密度流或重力流。水流各部分温度不同,水流中挟带细粒泥沙或含有盐份等,都会产生流体密度差异而形成异重流。异重流可分双层体系和多层体系两类。在自然界中,异重流的表现形式有水库中的分层潜流,河流入海口盐水入侵淡水,大气中冷暖气流所形成的锋面等。对水流而言,引起密度差异的主要因素有:含沙量、水温、溶解质含量。由于水流挟带泥沙而形成的异重流称浑水异重流。流进水库的浑浊河水成舌状水流潜入库底,在水库清水之下沿库底向前运动,形成水库异重流;两河交汇,当各自水流含沙量不同时,可在汇合处产生分层运动现象,形成河道异重流。由于水流温度不同而引起的异重流称为温差异重流。进入湖泊(或水库)的冷河水,潜入湖底,形成下层异重流向前运动;火电厂的冷却水经冷凝器受热排入河流后,在较冷的河水上层沿程流动,形成上层异重流。由于水流含有盐分而形成的异重流称为盐水异重流,合理运用在库底运动的浑水异重流可把泥沙排走,减少水库淤积,是水库减淤的主要措施;在给水工程中,根据异重流特性设计沉淀池,有利泥沙落淤,可获得较好的水质;修建火电厂可利用温差异重流特性,设置较深的取水孔引取冷水,而设置较高的排水孔排放热水,因此研究并利用异重流的特性能够便利人们的生活。在研究异重流时人们普遍用模型沙在模拟试验装置中进行试验,而现有技术中并没有用于筛选具有特定特征的模型沙的装置,以便于用筛选出的模型沙进行含特定沙的异重流物理模型试验。Hyperpycnal flow refers to the stratified flow due to the difference in fluid density in the gravitational field, also known as density flow or gravity flow. The temperature of each part of the water flow is different, and the water flow carries fine-grained sediment or contains salt, etc., which will produce a difference in fluid density and form a hyperpycnal flow. Density flow can be divided into two types: two-layer system and multi-layer system. In nature, the manifestations of hyperpycnal flow include stratified undercurrent in reservoirs, saltwater intrusion into freshwater at river estuaries, and fronts formed by cold and warm air currents in the atmosphere. For water flow, the main factors that cause density difference are: sand content, water temperature and dissolved matter content. The hyperpycnal flow formed by the sediment carried by the water flow is called muddy water hyperpycnal flow. The turbid river water flowing into the reservoir dives into the bottom of the reservoir in a tongue-like flow, and moves forward along the bottom of the reservoir under the clear water of the reservoir, forming a reservoir pycnometric flow; when the two rivers meet, when the sediment content of each flow is different, it can be generated at the confluence. The phenomenon of layered movement, forming a river channel hyperpycnal flow. The density flow caused by the different temperature of the water flow is called the temperature differential density flow. The cold river water entering the lake (or reservoir) dives into the bottom of the lake to form the lower layer of density flow and moves forward; after the cooling water of the thermal power plant is heated by the condenser and discharged into the river, it flows along the upper layer of the cooler river water, forming the upper layer of density flow. . Due to the fact that the water flow contains salt, the density flow is called brine density flow. The rational use of the muddy water density flow at the bottom of the reservoir can remove the sediment and reduce the sedimentation of the reservoir. It is the main measure for the reduction of sedimentation in the reservoir. In the project, the sedimentation tank is designed according to the characteristics of gravity flow, which is conducive to sedimentation and better water quality; the construction of thermal power plants can take advantage of the gravity flow characteristics of temperature difference, set deeper water intake holes to draw cold water, and set higher water intake holes. Drainage holes discharge hot water, so studying and utilizing the properties of gravity flow can facilitate people's lives. When studying hyperpycnal flow, people generally use model sand to conduct tests in a simulated test device, but there is no device for screening model sand with specific characteristics in the prior art, so as to use the screened model sand to conduct tests containing specific sand. The hyperpycnal flow physical model test.
实用新型内容Utility model content
本实用新型的目的在于提供一种用于异重流物理模型试验的模型沙选择装置,以解决现有技术中并没有用于选择具有特定特征的模型沙的装置的技术问题。The purpose of the present utility model is to provide a model sand selection device used for the physical model test of hyperpycnal flow, so as to solve the technical problem that there is no device for selecting model sand with specific characteristics in the prior art.
为实现上述目的,本实用新型提供了以下技术方案:To achieve the above object, the utility model provides the following technical solutions:
本实用新型提供一种用于异重流物理模型试验的模型沙选择装置,包括含模型沙的浑水储存箱、浑水输送装置、浑水流出流量控制装置、检测装置和河床模拟装置,所述浑水储存箱通过所述浑水输送装置与所述浑水流出流量控制装置相连通,所述浑水流出流量控制装置与所述河床模拟装置相连通,其中所述河床模拟装置中注有清水,不同种模型沙分别通过调节清水与浑水之间的温度差来模拟表、中、底层浑水异重流,每种模型沙分别在形成表、中、底层浑水异重流时人们能够通过控制浑水含沙量的变化以及浑水流量的变化用所述检测装置来测量多组浑水异重流在不同时间的流速、厚度以及浊度值的数据并记录,通过数据的对比选择出需要的模型沙。The utility model provides a model sand selection device for a physical model test of hyperpycnal flow, comprising a muddy water storage tank containing model sand, a muddy water conveying device, a muddy water outflow flow control device, a detection device and a river bed simulation device. The muddy water storage tank is communicated with the muddy water outflow flow control device through the muddy water conveying device, and the muddy water outflow control device is communicated with the riverbed simulation device, wherein the riverbed simulation device is filled with Clear water, different types of model sands simulate surface, middle and bottom muddy water hyperpycnal flow by adjusting the temperature difference between clear water and muddy water. By controlling the change of muddy water sediment content and the change of muddy water flow rate, the detection device can be used to measure and record the data of the flow velocity, thickness and turbidity value of multiple groups of muddy water density flow at different times, and through the comparison of the data Select the desired model sand.
可选地,所述浑水流出流量控制装置为箱体,所述箱体侧壁开有流量孔,所述流量孔在不同水平面上的宽度不同。Optionally, the muddy water outflow flow control device is a box body, the side wall of the box body is provided with a flow hole, and the width of the flow hole on different horizontal planes is different.
可选地,所述流量孔为圆形。Optionally, the flow holes are circular.
可选地,所述河床模拟装置包括水槽、前池和底坡,所述前池和所述底坡设置于所述水槽内,所述前池和所述底坡相连接,所述水槽支架采用金属架构,侧壁采用透明材质制造。Optionally, the river bed simulation device includes a water tank, a fore pond and a bottom slope, the fore pond and the bottom slope are arranged in the water tank, the fore pond and the bottom slope are connected, and the water tank support With metal structure, the side walls are made of transparent material.
可选地,在所述水槽内所述前池的高度高于所述底坡的高度,所述前池与所述底坡相连接部分为一斜面,所述底坡高度由所述前池至所述水槽末端渐小。Optionally, the height of the fore pool in the water tank is higher than the height of the bottom slope, the connecting part of the fore pool and the bottom slope is a slope, and the height of the bottom slope is determined by the fore pool. to the end of the sink tapering off.
可选地,所述浑水输送装置为水泵输送装置。Optionally, the muddy water conveying device is a water pump conveying device.
可选地,所述浑水储存箱中设置有搅拌装置。Optionally, a stirring device is provided in the muddy water storage tank.
可选地,所述检测装置包括摄像机,所述摄像机可移动设置于水槽附近。Optionally, the detection device includes a camera, and the camera is movably arranged near the water tank.
可选地,所述检测装置包括电磁流速仪,所述电磁流速仪设置于所述底坡起始端。Optionally, the detection device includes an electromagnetic flow meter, and the electromagnetic flow meter is disposed at the starting end of the bottom slope.
可选地,所述检测装置还包括OBS3+浊度仪,测量异重流浊度。Optionally, the detection device further includes an OBS3+ turbidity meter to measure the turbidity of the density flow.
本实用新型提供一种用于异重流物理模型试验的模型沙选择装置,包括含模型沙的浑水储存箱、浑水输送装置、浑水流出流量控制装置、检测装置和河床模拟装置,所述浑水储存箱通过所述浑水输送装置与所述浑水流出流量控制装置相连通,所述浑水流出流量控制装置与所述河床模拟装置相连通,其中所述河床模拟装置中注有清水,本实用新型能够在河床模拟装置中模拟河道中异重流的形成以及演化过程,并能使操作者根据不同的模型沙在不同条件下形成的异重流的流速、厚度以及浊度值特征筛选出需要的模型沙以进行低含沙量异重流物理模型试验,本实用新型结构简单,使用方便,填补了用于选择具有特定特征的模型沙的装置的空白。The utility model provides a model sand selection device for a physical model test of hyperpycnal flow, comprising a muddy water storage tank containing model sand, a muddy water conveying device, a muddy water outflow flow control device, a detection device and a river bed simulation device. The muddy water storage tank is communicated with the muddy water outflow flow control device through the muddy water conveying device, and the muddy water outflow control device is communicated with the riverbed simulation device, wherein the riverbed simulation device is filled with Clear water, the utility model can simulate the formation and evolution process of the hyperpycnal flow in the river channel in the river bed simulation device, and enables the operator to calculate the flow velocity, thickness and turbidity value of the hyperpycnal flow formed by different model sands under different conditions. The required model sand is screened out to carry out the physical model test of the low sand content hyperpycnal flow. The utility model is simple in structure and convenient to use, and fills the gap of the device for selecting model sand with specific characteristics.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present utility model or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are just some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1为本实用新型一种用于异重流物理模型试验的模型沙选择装置的整体结构示意图;Fig. 1 is a kind of overall structure schematic diagram of the model sand selection device used for the physical model test of hyperpycnal flow of the present invention;
图2为用于异重流物理模型试验的模型沙选择装置的浑水流出流量控制装置右视图。Figure 2 is the right side view of the muddy water outflow flow control device of the model sand selection device used for the physical model test of hyperpycnal flow.
图中1、浑水储存箱;2、浑水输送装置;3、浑水流出流量控制装置;4、河床模拟装置;5、流量孔;6、水槽;7、前池;8、底坡。In the figure, 1, muddy water storage tank; 2, muddy water conveying device; 3, muddy water flow control device; 4, river bed simulation device; 5, flow hole; 6, water tank; 7, fore pond; 8, bottom slope.
具体实施方式Detailed ways
为使本实用新型的目的、技术方案和优点更加清楚,下面将对本实用新型的技术方案进行详细的描述。显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本实用新型所保护的范围。In order to make the objectives, technical solutions and advantages of the present invention more clear, the technical solutions of the present invention will be described in detail below. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other implementations obtained by those of ordinary skill in the art without creative work fall within the scope of protection of the present invention.
本实用新型提供一种用于异重流物理模型试验的模型沙选择装置,如图1所示,包括含模型沙的浑水储存箱1、浑水输送装置2、浑水流出流量控制装置3、检测装置和河床模拟装置4,所述浑水储存箱1通过所述浑水输送装置2与所述浑水流出流量控制装置3相连通,所述浑水流出流量控制装置3与所述河床模拟装置4相连通,其中所述河床模拟装置4中注有清水,不同种模型沙分别通过调节清水与浑水之间的温度差来模拟表、中、底层浑水异重流,每种模型沙分别在形成表、中、底层浑水异重流时人们能够通过控制浑水含沙量的变化以及浑水流量的变化用所述检测装置来测量多组浑水异重流在不同时间的流速、厚度以及浊度值的数据并记录,通过数据的对比选择出需要的模型沙。The utility model provides a model sand selection device used for a physical model test of hyperpycnal flow, as shown in FIG. , detection device and
本实用新型能够在河床模拟装置4中模拟河道中异重流的形成以及演化过程,并能使操作者根据不同的模型沙在不同条件下形成的异重流的流速、厚度以及浊度值特征筛选出需要的模型沙以进行低含沙量异重流物理模型试验,本实用新型结构简单,使用方便,填补了用于选择具有特定特征的模型沙的装置的空白;The utility model can simulate the formation and evolution process of the hyperpycnal flow in the river channel in the river
进一步地,在浑水流出流量控制装置3前设置有浑水储存箱1,所述浑水储存箱1通过所述浑水输送装置2与所述浑水流出流量控制装置3相连通,将浑水输送至浑水流出流量控制装置3,能够使浑水在浑水流出流量控制装置3中尽可能的减小波动,使浑水稳定的从浑水流出流量控制装置3中流出,保证试验的稳定性。Further, a muddy water storage tank 1 is provided in front of the muddy water
作为可选地实施方式,如图2所示,所述浑水流出流量控制装置3为箱体,所述箱体侧壁开有流量孔5,所述流量孔5在不同水平面上的宽度不同。As an optional embodiment, as shown in FIG. 2 , the muddy water outflow
本实用新型所述浑水流出流量控制装置3为箱体,用于暂时存储浑水,所述箱体侧壁开有流量孔5,浑水能够从流量孔5内流至河床模拟装置4模拟异重流,所述流量孔5在不同水平面上的宽度不同,可以依据浑水在箱体内的水位高度控制浑水从流量孔5中流出的流量,从而使使用者能够控制试验的一变量,且该结构简单实用。The muddy water outflow
作为可选地实施方式,所述流量孔5为圆形。As an optional embodiment, the
本实用新型本实用新型的流量孔5设置为圆形,使浑水流出流量差距较大,且流出流量容易计算;流量孔5的直径优选为2.5cm。The
作为可选地实施方式,所述河床模拟装置4包括水槽6、前池7和底坡8,所述前池7和所述底坡8设置于所述水槽6内,所述前池7和所述底坡8相连接,所述水槽6支架采用金属架构,侧壁采用透明材质制造。As an optional embodiment, the river
本实用新型所述河床模拟装置4包括水槽6、前池7和底坡8,所述前池7和所述底坡8设置于所述水槽6内,所述前池7和所述底坡8相连接,水槽6模拟河道,底坡8模拟河底上下游,前池7用来消除浑水从浑水流出流量控制装置3中落下的势能,浑水由前池7流动至底坡8形成异重流;所述水槽6支架采用金属架构,充分保证了水槽6的强度,侧壁采用透明材质制造,便于在试验中观察;进一步地,水槽6总长为30m,宽0.1m,高0.8m。The river
作为可选地实施方式,在所述水槽6内所述前池7的高度高于所述底坡8的高度,所述前池7与所述底坡8相连接部分为一斜面,所述底坡8高度由所述前池7至所述水槽6末端渐小。As an optional embodiment, the height of the front pool 7 in the
本实用新型在所述水槽6内所述前池7的高度高于所述底坡8的高度,便于混水从前池7流至底坡8;所述前池7与所述底坡8相连接部分为一斜面,保证浑水均匀过渡至底坡8,使浑水稳定,保证实验的可靠性;所述底坡8高度由所述前池7至所述水槽6末端渐小,用来模拟河道上下游,使试验更加接近真实情况,保证试验结果的可靠性。In the present invention, the height of the front pool 7 in the
作为可选地实施方式,所述浑水输送装置2为水泵输送装置。As an optional embodiment, the muddy water conveying device 2 is a water pump conveying device.
本实用新型所述浑水输送装置2为水泵输送装置,通用性强,且使用便利。The muddy water conveying device 2 of the utility model is a water pump conveying device, which has strong versatility and is convenient to use.
作为可选地实施方式,所述浑水储存箱1中设置有搅拌装置。As an optional embodiment, a stirring device is provided in the muddy water storage tank 1 .
本实用新型所述浑水储存箱1中设置有搅拌装置,防止浑水的沉淀,以保证试验顺利进行。The muddy water storage tank 1 of the utility model is provided with a stirring device to prevent the precipitation of muddy water and ensure the smooth progress of the test.
作为可选地实施方式,所述检测装置包括摄像机,所述摄像机可移动设置于水槽6附近。As an optional embodiment, the detection device includes a camera, and the camera is movably arranged near the
本实用新型所述检测装置包括摄像机,所述摄像机可移动设置于水槽6附近,用摄像机跟踪异重流头部移动拍摄,以记录异重流到达各断面的所用时间。The detection device of the present invention includes a camera, which is movably arranged near the
作为可选地实施方式,所述检测装置包括电磁流速仪,所述电磁流速仪设置于所述底坡8起始端。As an optional embodiment, the detection device includes an electromagnetic flow meter, and the electromagnetic flow meter is disposed at the starting end of the
本实用新型所述电磁流速仪设置于所述底坡8起始端,用来测量流速。The electromagnetic flow meter of the present invention is arranged at the starting end of the
作为可选地实施方式,所述检测装置还包括OBS3+浊度仪,测量异重流浊度。As an optional embodiment, the detection device further includes an OBS3+ turbidity meter to measure the density flow turbidity.
本实用新型所述检测装置还包括OBS3+浊度仪,采用OBS3+浊度仪记录异重流沿程头部浊度值及各断面垂线浊度值,每个断面浑水层测3-5个点,试验后再由指定试验员通过前期标定的浊度与含沙量关系得到含沙量。The detection device of the utility model further comprises an OBS3+ turbidity meter, and the OBS3+ turbidity meter is used to record the turbidity value of the head of the density flow and the vertical line turbidity value of each section. After the test, the designated tester obtains the sand content through the relationship between the turbidity and the sand content that was calibrated in the previous stage.
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920939633.7U CN209992140U (en) | 2019-06-21 | 2019-06-21 | A model sand selection device for physical model test of hyperpycnal flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920939633.7U CN209992140U (en) | 2019-06-21 | 2019-06-21 | A model sand selection device for physical model test of hyperpycnal flow |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209992140U true CN209992140U (en) | 2020-01-24 |
Family
ID=69297493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920939633.7U Active CN209992140U (en) | 2019-06-21 | 2019-06-21 | A model sand selection device for physical model test of hyperpycnal flow |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209992140U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110174238A (en) * | 2019-06-21 | 2019-08-27 | 黄河水利委员会黄河水利科学研究院 | A kind of model sasnd selection device and model sasnd selection method for density current physical experiments |
-
2019
- 2019-06-21 CN CN201920939633.7U patent/CN209992140U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110174238A (en) * | 2019-06-21 | 2019-08-27 | 黄河水利委员会黄河水利科学研究院 | A kind of model sasnd selection device and model sasnd selection method for density current physical experiments |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105865745B (en) | A kind of stratified flow simulation test tank system | |
CN202614752U (en) | Device for simulating bottom sediment erosion and transmission features of variable-slope rectangular water tank | |
CN101424587A (en) | Polyphase fluid experimental tank system | |
CN102176295B (en) | Slit type fishway experimental device with stages of falling sills and grooves | |
CN105527405A (en) | Physical simulation test device and method for convergence of debris flows into rivers | |
CN115615660B (en) | A test device and test method for non-uniform sand motion probability | |
CN106644385B (en) | Surface water and underground water subsurface flow exchange self-circulation test device and use method | |
CN108286237B (en) | A physical model and experimental method for the influence of sediment-laden water flow on the water temperature structure of stratified reservoirs | |
CN103243676A (en) | System for confirming vegetation bed bottom resistance and confirming method | |
Juez et al. | Morphological resilience to flow fluctuations of fine sediment deposits in bank lateral cavities | |
CN204142608U (en) | The device of a kind of variable roughness Rectangular Water Trough simulation bed mud erosion and transmission feature | |
CN203238590U (en) | Cyclic variable slope water channel system for simulating city watercourse | |
CN107858991B (en) | A kind of prediction technique of river vegetation group tail end sedimentation section length | |
CN109403265A (en) | The experimental rig and test method that the unrestrained top of simulation is burst | |
CN110542537A (en) | An experimental device and method for simulating groundwater levels affected by tides | |
CN209992140U (en) | A model sand selection device for physical model test of hyperpycnal flow | |
CN107083760B (en) | River evolution experimental device | |
CN111021304A (en) | A composite simulation device and method for dam burst test based on real-time adjustment of storage capacity | |
CN111915085B (en) | Prediction method for bed load sand transportation rate in river bed surface coarsening process | |
CN111241467B (en) | Method for calculating sediment ejection ratio of reservoir in sandy river | |
CN106644384B (en) | Circulating water tank-experimental soil cup cross-scale coupling overlying water-bed sand pollutant transport experimental system | |
CN104060570A (en) | Method for simulating sand holding of water flow under gate | |
CN110174238A (en) | A kind of model sasnd selection device and model sasnd selection method for density current physical experiments | |
CN206768724U (en) | The experimental facilities of simulated flow silt fluvial process | |
CN102538896B (en) | A Flow Steady Device for Measuring Different Hydraulic Gradients |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |