CN209944755U - A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure - Google Patents
A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure Download PDFInfo
- Publication number
- CN209944755U CN209944755U CN201920363590.2U CN201920363590U CN209944755U CN 209944755 U CN209944755 U CN 209944755U CN 201920363590 U CN201920363590 U CN 201920363590U CN 209944755 U CN209944755 U CN 209944755U
- Authority
- CN
- China
- Prior art keywords
- extruded aluminum
- heat transfer
- aluminum heat
- condensing
- transfer module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 273
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 273
- 238000012546 transfer Methods 0.000 claims abstract description 186
- 238000002485 combustion reaction Methods 0.000 claims abstract description 81
- 239000007789 gas Substances 0.000 claims abstract description 67
- 238000007789 sealing Methods 0.000 claims abstract description 46
- 238000005260 corrosion Methods 0.000 claims abstract description 12
- 230000007797 corrosion Effects 0.000 claims abstract description 12
- 238000013461 design Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 139
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 69
- 239000003546 flue gas Substances 0.000 claims description 69
- 238000010438 heat treatment Methods 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 15
- 239000008399 tap water Substances 0.000 claims description 15
- 235000020679 tap water Nutrition 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 12
- 230000001965 increasing effect Effects 0.000 claims description 9
- 229920001296 polysiloxane Polymers 0.000 claims description 9
- 238000001125 extrusion Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000001962 electrophoresis Methods 0.000 claims description 3
- 238000010079 rubber tapping Methods 0.000 claims description 3
- 238000005496 tempering Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000002048 anodisation reaction Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 38
- 239000003345 natural gas Substances 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 11
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000010935 stainless steel Substances 0.000 abstract description 6
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 6
- 230000003628 erosive effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 18
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本实用新型公开了一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构,根据燃烧器、挤压铝冷凝换热器的相对布置形成单体、左右或上下分体冷凝式锅炉,由挤压铝传热单元、进口渐扩烟道、承露盘、进口集箱、出口集箱、全预混火排式燃烧器等组成;铝棒挤压成型后经过二次加工和装配成为具有完整水道的挤压铝传热单元,组合成冷凝换热器或冷凝式锅炉的主体部分;全预混火排式燃烧器的燃烧头深入挤压铝传热单元之间,避免密封盖板受到火焰冲刷带来的变形、泄露问题;挤压铝材料具有高抗拉强度,低密度,耐腐蚀的优点,成本只有铸铝硅的30%,不锈钢的60%;挤压铝传热单元的盈余设计使锅炉效率提升6%以上,节能省气,缓解天然气紧缺的现状。
The utility model discloses a modular extruded aluminum condensing heat exchanger structure and a condensing boiler structure. According to the relative arrangement of a burner and an extruded aluminum condensing heat exchanger, a single, left and right or upper and lower split condensing boiler is formed. It consists of extruded aluminum heat transfer unit, inlet gradually expanding flue, dew tray, inlet header, outlet header, full premixed fire row burner, etc.; The extruded aluminum heat transfer unit with complete water channel is combined into the main part of the condensing heat exchanger or the condensing boiler; the combustion head of the fully premixed fire row burner penetrates deep between the extruded aluminum heat transfer units to avoid sealing the cover plate Deformation and leakage caused by flame erosion; extruded aluminum material has the advantages of high tensile strength, low density and corrosion resistance, and the cost is only 30% of cast aluminum silicon and 60% of stainless steel; The surplus design improves the boiler efficiency by more than 6%, saves energy and gas, and alleviates the current situation of natural gas shortage.
Description
技术领域technical field
本实用新型涉及燃油燃气锅炉及烟气余热回收技术领域,具体涉及一种以挤压铝作为材料的模块化冷凝式燃气锅炉结构和燃油燃气锅炉尾气中潜热回收的模块化冷凝换热器结构。The utility model relates to the technical field of oil-fired gas boilers and flue gas waste heat recovery, in particular to a modular condensing gas boiler structure using extruded aluminum as a material and a modular condensing heat exchanger structure for recovering latent heat in the tail gas of the oil-fired gas boiler.
背景技术Background technique
近年来,雾霾问题持续存在,进入供暖季后,雾霾更加频发。为了治理雾霾,保卫蓝天,供暖行业提出了《北方地区冬季清洁取暖规划2017-2021》,要求到2021年清洁供暖率70%,清洁能源代替供暖散烧煤1.5亿吨。2016年冬季供暖天然气消耗量达363亿m3,预计到2021年供暖气耗量可达640亿m3以上,商用燃气采暖锅炉的飞速发展使得天然气供应出现巨大的缺口,到2021年仅天然气供暖一项就有300亿m3以上的新增供应缺口。2017年我国天然气消费量2374亿m3,天然气产量1536亿m3,进口838亿m3;预计到2021年天然气产量上升到1856亿m3,进口1000亿m3以上,天然气增量为482亿m3。但目前我国的天然气优先保证城市供应,其次才是工业需求,新增的天然气供应仅能满足日益增长的城市供气需求,供暖天然气的巨大缺口仍然无法满足。In recent years, the problem of smog has persisted, and after entering the heating season, smog has become more frequent. In order to control the smog and protect the blue sky, the heating industry proposed the "Winter Clean Heating Plan in the Northern Region 2017-2021", which requires a clean heating rate of 70% by 2021, and clean energy to replace heating with 150 million tons of scattered coal. In the winter of 2016, the natural gas consumption for heating reached 36.3 billion m 3 . It is expected that the heating gas consumption will reach more than 64 billion m 3 by 2021. The rapid development of commercial gas heating boilers has created a huge gap in the supply of natural gas. By 2021, only natural gas will be used for heating. One has a new supply gap of more than 30 billion m3 . In 2017, China's natural gas consumption was 237.4 billion m 3 , natural gas production was 153.6 billion m 3 , and natural gas imports were 83.8 billion m 3 ; it is estimated that by 2021, natural gas production will rise to 185.6 billion m 3 , imports will exceed 100 billion m 3 , and natural gas increments will be 48.2 billion. m 3 . However, at present, my country's natural gas is given priority to ensure urban supply, followed by industrial demand. The newly added natural gas supply can only meet the growing urban gas supply demand, and the huge gap of natural gas for heating still cannot be met.
解决供暖天然气的巨大缺口,一方面是开源,另一方面是节流。节流要求提高天然气锅炉的效率从而节约天然气。目前的集中供暖天然气锅炉只有在低回水温度(58℃以下)时才能实现烟气的冷凝,利用烟气中水蒸气的潜热。当用于暖气片供暖时,回水温度普遍在60℃以上,依靠锅炉回水已无法实现烟气冷凝,造成排烟中水蒸气潜热的巨大浪费。700kW的燃气锅炉,排烟温度从80℃降到35℃,可回收70kW的热量,锅炉效率提升至108%,节约12%以上的天然气。目前市场上的钢制锅炉均配备了冷凝器和节能器,但过高的回水温度使得冷凝器难以发挥功效;同时为了节约成本,目前冷凝器多采用ND钢材料,易被冷凝水腐蚀泄露。To solve the huge gap of heating natural gas, on the one hand, it is open source, and on the other hand, it is throttling. Throttling requires increasing the efficiency of natural gas boilers to conserve natural gas. The current central heating natural gas boiler can realize the condensation of flue gas only when the return water temperature is low (below 58 ℃), and utilize the latent heat of water vapor in the flue gas. When used for radiator heating, the temperature of the return water is generally above 60 °C, and the condensation of flue gas cannot be achieved by relying on the return water of the boiler, resulting in a huge waste of latent heat of water vapor in the exhaust. For a 700kW gas-fired boiler, the exhaust gas temperature is reduced from 80°C to 35°C, 70kW of heat can be recovered, the boiler efficiency is increased to 108%, and natural gas is saved by more than 12%. At present, the steel boilers on the market are equipped with condensers and economizers, but the high return water temperature makes it difficult for the condensers to function. At the same time, in order to save costs, the condensers are mostly made of ND steel materials, which are easily corroded and leaked by condensed water. .
我国经济持续高速发展,化石能源消费量逐年增加,空气质量也日益恶化,全国各地雾霾肆虐频发。供暖季雾霾发生时相对湿度均在80%以上,高湿环境是雾霾发生的先决条件,为空气中的各种二次污染物提供了绝佳的反应温床。化石燃料的大量使用,向大气排放了巨量水蒸气,使得原本及其干燥的冬季变得湿润,为雾霾创造了有利条件,因此控制雾霾首先要降湿。燃油燃气供暖机组向大气中排放了巨量的湿蒸汽,在燃油燃气锅炉尾部安装冷凝换热器,回收汽化潜热,并脱除水蒸气,降低排烟湿度,实现控霾和保卫蓝天的目标。my country's economy continues to develop rapidly, the consumption of fossil energy is increasing year by year, the air quality is also deteriorating, and smog is raging all over the country. The relative humidity of haze in the heating season is above 80%. The high humidity environment is a prerequisite for the occurrence of haze, which provides an excellent reaction hotbed for various secondary pollutants in the air. The extensive use of fossil fuels has released a huge amount of water vapor into the atmosphere, making the otherwise dry winter humid, creating favorable conditions for smog. Therefore, to control smog, we must first reduce humidity. The oil-fired gas heating unit emits a huge amount of wet steam into the atmosphere. A condensing heat exchanger is installed at the end of the oil-fired gas boiler to recover the latent heat of vaporization, remove water vapor, reduce the humidity of exhaust smoke, and achieve the goal of controlling haze and protecting the blue sky.
目前市场上急需一种能够真正实现冷凝,耐腐蚀,造价低,换热好,体积紧凑的冷凝换热器,提高锅炉效率的同时,减少水蒸气的排放,兼顾环保与经济效益。目前的冷凝换热器材料有不锈钢、铸铝硅、铜合金等,但不锈钢导热系数低、铸铝硅造价高、铜合金抗腐蚀性能差,而挤压铝单价低于不锈钢,导热系数与铜合金相当、抗腐蚀性能优异,是冷凝换热器的最佳选材。目前常用的6063系挤压铝合金抗拉强度可达150MPa以上,经过阳极氧化和表面电泳镀膜处理后,可在pH为1的环境下长时间使用,具有良好的耐酸、盐性能。将挤压铝材料用于冷凝换热器,与传统材料相比有着巨大的优势,但目前市场上还没有挤压铝冷凝换热器,也缺乏相关设计标准。本专利将以挤压铝型材为换热器单元件,附加强化传热结构和进出口连接组件,设计出可工业化批量生产的挤压铝冷凝换热器。At present, there is an urgent need on the market for a condensing heat exchanger that can truly achieve condensation, corrosion resistance, low cost, good heat exchange, and compact size. It can improve boiler efficiency while reducing water vapor emissions, taking into account environmental protection and economic benefits. The current condensing heat exchanger materials include stainless steel, cast aluminum silicon, copper alloy, etc., but stainless steel has low thermal conductivity, high cost of cast aluminum silicon, and poor corrosion resistance of copper alloy. The alloy is equivalent and has excellent corrosion resistance, which is the best choice for condensing heat exchangers. At present, the commonly used 6063 series extruded aluminum alloy has a tensile strength of more than 150MPa. After anodizing and surface electrophoresis coating, it can be used for a long time in an environment of
在挤压铝冷凝换热器的头部加上燃烧器,并削去部分外翅片增大炉膛空间即可作为一个冷凝式锅炉。采用挤压铝材料制作冷凝式锅炉,与传统的铸铝硅、不锈钢冷凝式锅炉相比,造价可降低约30%以上。一体式挤压铝锅炉要求燃烧器安装在挤压铝换热单元之间,空间狭小,但具有较高的燃烧热负荷;满足低氮燃烧的要求,利用内置烟气再循环、合理配风,或水冷火焰等原理,降低燃烧区火焰温度。目前的全预混低氮燃烧器多采用面板式或圆柱状燃烧头,无法满足一体式挤压铝锅炉的燃烧器需求;大气式燃烧器采用火排结构可以满足空间要求,但燃烧热强度较低,锅炉功率较低。本专利将设计一种火排型的全预混燃烧器,燃烧头放置在挤压铝换热单元之间,实现较高的燃烧热负荷以及低氮燃烧。Adding a burner to the head of the extruded aluminum condensing heat exchanger and cutting off part of the outer fins to increase the furnace space can be used as a condensing boiler. Using extruded aluminum materials to make condensing boilers, compared with traditional cast aluminum-silicon and stainless steel condensing boilers, the cost can be reduced by more than 30%. The integrated extruded aluminum boiler requires the burner to be installed between the extruded aluminum heat exchange units. The space is small, but it has a high combustion heat load; to meet the requirements of low-nitrogen combustion, the built-in flue gas recirculation and reasonable air distribution are used. Or water-cooled flame and other principles to reduce the flame temperature in the combustion zone. The current full-premixed low-nitrogen burners mostly use panel or cylindrical combustion heads, which cannot meet the burner requirements of an integrated extruded aluminum boiler; the atmospheric burner adopts a fire row structure to meet the space requirements, but the combustion heat intensity is relatively high. low, the boiler power is low. This patent will design a fire exhaust type full premix burner, the combustion head is placed between the extruded aluminum heat exchange units, to achieve higher combustion heat load and low nitrogen combustion.
发明内容SUMMARY OF THE INVENTION
为了降低烟气冷凝换热器的造价,促进燃油燃气锅炉烟气余热回收技术的发展,本实用新型的目的在于提供一种模块化挤压铝冷凝换热器及一体化挤压铝冷凝式锅炉,本实用新型解决了烟气冷凝换热器易腐蚀、造价高、占地面积大的难题,通过引入热泵和生活用水等多种冷源,回收利用烟气余热,冷凝脱除烟气中的水蒸气,促进燃油燃气锅炉低温余热回收和烟气消白技术的发展,为减缓和消除雾霾做出贡献;将挤压铝材料引入冷凝式锅炉体系,通过设计全预混火排式燃烧器,在冷凝换热器头部安装燃烧器,并切削部分翅片,解决了冷凝式锅炉造价过高,推广缓慢的问题,提高天然气的利用率,为缓解天然气紧缺的现状做出贡献。In order to reduce the cost of the flue gas condensing heat exchanger and promote the development of the waste heat recovery technology of the fuel gas boiler flue gas, the purpose of this utility model is to provide a modular extruded aluminum condensing heat exchanger and an integrated extruded aluminum condensing boiler The utility model solves the problems that the flue gas condensing heat exchanger is easy to corrode, high in cost, and occupies a large area. Water vapor promotes the development of low-temperature waste heat recovery and flue gas whitening technology for oil-fired gas boilers, and contributes to alleviating and eliminating smog; introducing extruded aluminum materials into the condensing boiler system, and designing a fully premixed fire row burner , install a burner at the head of the condensing heat exchanger, and cut some fins, which solves the problems of high cost and slow promotion of condensing boilers, improves the utilization rate of natural gas, and contributes to alleviating the current situation of natural gas shortage.
为了达到上述目的,本实用新型采用如下技术方案:In order to achieve the above purpose, the utility model adopts the following technical solutions:
一种模块化挤压铝冷凝换热器结构,包括挤压铝传热单元1、进口渐扩烟道2、承露盘3、进口集箱4和出口集箱5;所述进口渐扩烟道2位于挤压铝传热单元1顶部,承露盘3位于挤压铝传热单元1底部,进口集箱4和出口集箱5置于冷凝换热器同侧,与所有挤压铝传热单元1连接,冷却工质选用热泵蒸发器循环水、锅炉给水或自来水;冷凝液汇集于承露盘3的底部,通过U型水封管排出。A modular extruded aluminum condensing heat exchanger structure includes an extruded aluminum
所述挤压铝传热单元1包括中间挤压铝片及左右挤压铝片;中间挤压铝片由水室1-1、外翅片1-2、内翅片1-3和连接部1-4四部分组成;水室1-1由多个长度为2cm~10cm、宽度为1cm~3cm的中间水室单元和长度为1cm~4cm、宽度为6cm~15cm的两端水室单元组成,水室1-1的壁厚为4mm~8mm,多单元的水室结构有助于增强锅炉的耐压能力;外翅片1-2在水室1-1两侧外表面,与从进口渐扩烟道2进入的烟气接触换热,翅片舌比小于5,根部宽度为3mm~10mm,翅高为5mm~50mm,翅片表面为锯齿或波浪形状,以增大翅片表面积、拓展受热面;内翅片1-3布置在水室1-1内侧,翅片舌比小于5,根部宽度为2mm~5mm,翅高为4mm~14mm,翅片表面为锯齿或波浪形状,以增大翅片表面积、拓展受热面;连接部1-4位于两端水室单元的两侧短边,起到连接相邻两个挤压铝传热单元1并密封烟气的作用;左右挤压铝片也由水室1-1、外翅片1-2、内翅片1-3和连接部1-4四部分组成,外翅片1-2和连接部1-4仅在水室1-1的烟气侧,水室1-1的空气侧没有外翅片1-2和连接部1-4。The extruded aluminum
所述挤压铝传热单元1经挤压机挤压成型后还要进行二次加工;在两端水室单元的长边壁面上切出直径为20mm~60mm的圆形进口1-5和圆形出口1-6;在挤压铝传热单元1的上下端面上加工出螺丝孔,用于固定上下密封盖板;将距水室1-1的上下两端20mm~60mm的水侧通道壁面和内翅片1-3切去,形成高度20mm~60mm的连通水室空间1-8,作为多个水侧通道的上下集箱;将距烟气入口50mm~300mm的外翅片1-2部分切除,保留2mm~5mm高的翅片根部,形成入口的矮翅区1-10;矮翅区1-10和正常外翅片1-2之间斜切出长度100mm以上的过渡区1-9,通过改变外翅片的高度改变烟气流通截面积,控制烟气流速,避免入口段烟气流速过高;将挤压铝传热单元1的表面进行阳极氧化和电泳镀膜处理,以增强抗冷凝液腐蚀性能。The extruded aluminum
所述挤压铝传热单元1经过二次加工之后与内六角螺丝1-11、密封盖板1-12、均流板1-13和流芯1-14装配;内六角螺丝1-11用于固定密封盖板1-12;密封盖板1-12上有沉头孔,紧贴挤压铝传热单元1端部侧有密封沟槽,密封沟槽中放置硅胶密封圈,密封挤压铝传热单元1的上下两端;均流板1-13放置在连通水室空间1-8与水室1-1之间,利用小孔阻力使每个水室1-1的水流量均匀分配;流芯1-14通过上下侧的均流板1-13固定,由多个贯通水室1-1的圆柱或螺旋圆柱组成,用于扰乱水侧流动,缩小每个水室1-1流通面积,提高水侧流速,强化水侧换热;冷却工质经下部的圆形进口1-5进入挤压铝传热单元1下部的连通水室空间1-8,经下侧的均流板1-13下部进入各个水室1-1,随后从上侧的均流板1-13上部离开水室1-1进入上部的连通水室空间1-8,从圆形出口1-6离开挤压铝传热单元1。The extruded aluminum
所述挤压铝传热单元1与进口集箱4和出口集箱5通过软连接方式连接,进口集箱4和出口集箱5布置在所有挤压铝传热单元1的外侧,与所有挤压铝传热单元1连接;挤压铝壁厚只有4mm~8mm,直接在壁面上攻出螺纹孔容易滑丝漏水,所述进口集箱4和出口集箱5采用内置外丝接头4-1、外置内丝活接头4-2和硅胶密封圈4-3与挤压铝传热单元1连接;内置外丝接头4-1置于水室1-1的两端水室单元内,内置外丝接头4-1通过圆形进口1-5和圆形出口1-6伸出水室1-1与外置内丝活接头4-2连接,硅胶密封圈4-3位于内置外丝接头4-1的圆环固定底座与水室1-1的内壁面之间;所述挤压铝传热单元1与进口渐扩烟道2和承露盘3之间通过法兰螺栓连接,挤压铝传热单元1两端的密封盖板1-12预留半圆螺栓孔,两个密封盖板之间的半圆螺栓孔组成完整的螺栓孔,与渐扩烟道2和承露盘3连接法兰上的螺栓孔一一对应,中间加上密封垫片,使用螺栓连接。The extruded aluminum
一种模块化挤压铝冷凝式锅炉结构,包括挤压铝传热单元1、全预混火排式燃烧器6、承露盘3、进口集箱4和出口集箱5;所述模块化挤压铝冷凝式锅炉在模块化挤压铝冷凝换热器的基础上将进口渐扩烟道2替换为全预混火排式燃烧器6后形成单体冷凝式锅炉,加长挤压铝传热单元1并削去燃烧器火焰区域的部分外翅片,其余组件不变;所述全预混火排式燃烧器6,由增压风罩6-1、等压燃气分配室6-2、引射器6-3、气体混合腔6-4和燃烧头6-5组成;增压风罩6-1的上端法兰盘与增压风机相连,内部的气压大于大气压,增强引射器6-3的引射能力,实现过量空气系数大于1.1;等压燃气分配室6-2布置在增压风罩6-1的下方,采用等压风道设计,确保其上的各个喷嘴分配到等量的燃气;引射器6-3布置在等压燃气分配室6-2各个喷嘴的下方;气体混合腔6-4布置在引射器6-3下方,气体混合腔6-4通过多个引射器6-3和等压燃气分配室6-2上的多个喷嘴与等压燃气分配室6-2连通,燃气引射空气后进入气体混合腔6-4,燃气与空气均匀混合;燃烧头6-5连通气体混合腔6-4底部并分布在挤压铝传热单元1之间,混合气离开气体混合腔6-4后进入燃烧头6-5燃烧。A modular extruded aluminum condensing boiler structure includes an extruded aluminum
所述燃烧头6-5伸入入口矮翅区1-10所形成的炉膛空间内,燃烧头底部6-5-1固定在挤压铝传热单元1的密封盖板1-12上,燃烧头中间部分6-5-2呈等腰梯形,燃烧头头部6-5-4为半圆形;燃烧头中间部分6-5-2的高度为50mm~150mm,等腰梯形段壁面上加工出三角形开孔6-5-3,利用燃烧头6-5内部的高速气流形成的负压区引射炉膛中的正压烟气,从而延缓燃烧、削弱火焰高温区,减少热力型氮氧化物的生成;燃烧头头部6-5-4上均布着直径2mm~5mm的圆形开孔,用以均流混合气和防止回火,燃烧头头部6-5-4的半圆形头部相比平板头部的燃烧面积增大了50%;燃烧头头部6-5-4外包裹着一层金属纤维丝网,混合气在金属纤维丝网表面点火燃烧;燃烧头6-5还配备点火器和火焰探测器,用以点火和探测火焰燃烧状态并调整引射比。The combustion head 6-5 extends into the furnace space formed by the inlet low-fin area 1-10, and the combustion head bottom 6-5-1 is fixed on the sealing cover plate 1-12 of the extruded aluminum
为保证换热的充分进行,所述模块化挤压铝冷凝式锅炉的挤压铝传热单元1的长度为200mm~3000mm;为提供充足的燃烧空间,避免燃烧区翅片温度过高,将入口的矮翅区1-10的翅片高度控制在2mm~8mm,入口的矮翅区1-10长度为150mm~450mm;根据烟气温度的变化确定合理的烟气流通截面积,进而确定外翅片的高度,确定斜切区域的长度和翅片高度,保证烟气流速全程控制在4m/s~10m/s的经济换热区间;将挤压铝传热单元1进行阳极氧化处理,以增强抗高温腐蚀能力。In order to ensure sufficient heat exchange, the length of the extruded aluminum
所述模块化挤压铝冷凝式锅炉,有多种组合形式;多个挤压铝传热单元1水平方向上相连组成一级挤压铝传热模块,冷凝式锅炉包含一个或两个挤压铝传热模块;全预混火排式燃烧器6底置向上燃烧或顶置向下燃烧;两个挤压铝传热模块的烟气同向流动或逆向流动;综合考虑冷凝液的收集和燃烧器的安全工作,提出五种组合方式:当全预混火排式燃烧器6底置且包含两个挤压铝传热模块时,全预混火排式燃烧器6置于模块化挤压铝冷凝式锅炉底部且燃烧头6-5朝上,燃气在底部点火,烟气由下至上穿过第一挤压铝传热模块1-A,进入连接烟道7后180°转弯向下进入第二挤压铝传热模块1-B,烟气向下流动,并被冷凝降温,烟气最后进入承露盘3,冷凝液由底部的承露盘3收集后排出;当全预混火排式燃烧器6底置且包含一个挤压铝传热模块时,全预混火排式燃烧器6置于锅炉底部且燃烧头6-5朝上,燃气在底部点火,烟气进入挤压铝传热模块中上升流动至顶部排出,此时要保证模块化挤压铝冷凝式锅炉出水温度大于50℃;当全预混火排式燃烧器6顶置且包含一个挤压铝传热模块时,全预混火排式燃烧器6置于模块化挤压铝冷凝式锅炉顶部且燃烧头6-5朝下,燃气顶部点火,烟气向下流动,进入挤压铝传热模块并被冷却、冷凝,承露盘3布置在挤压铝传热模块下方,收集冷凝液;当全预混火排式燃烧器6顶置且包含两个挤压铝传热模块时,全预混火排式燃烧器6置于锅炉顶部且燃烧头6-5朝下,第一挤压铝传热模块1-A布置在全预混火排式燃烧器6下方,第二挤压铝传热模块1-B布置在第一挤压铝传热模块1-A下方,燃气顶部点火,烟气一直向下流动,先后进入第一挤压铝传热模块1-A和第二挤压铝传热模块1-B被冷却和冷凝,承露盘3布置在第二挤压铝传热模块1-B下方,收集冷凝液;当全预混火排式燃烧器6顶置且包含两个挤压铝传热模块时,全预混火排式燃烧器6置于模块化挤压铝冷凝式锅炉顶部且燃烧头6-5朝下,燃气在顶部点火,烟气向下进入第一挤压铝传热模块1-A被冷却,经过连接烟道7后180度转弯向上流动,进入第二挤压铝传热模块1-B中被冷却冷凝,烟气在第二挤压铝传热模块1-B的顶部排出锅炉,冷凝液汇集于承露盘3的底部排出。The modular extruded aluminum condensing boiler has various combinations; a plurality of extruded aluminum
所述模块化挤压铝冷凝式锅炉包含两个挤压铝传热模块时,第二级挤压铝传热模块的工质采用锅炉回水、热泵蒸发器循环水或自来水;当采用锅炉回水作为工质时,第二级挤压铝传热模块的烟气冷凝量取决于回水温度,回水温度过高将导致烟气冷凝量减少;当采用热泵蒸发器循环水作为工质时,工质水温较低且温度稳定,烟气冷凝量维持在较高水平,深度回收烟气中的余能,热泵冷凝器用于预加热锅炉回水或加热自来水得到洗浴用水;当采用自来水作为工质时,自来水温度较低,深度冷凝烟气,回收烟气余能,将自来水加热到30℃以上,但自来水直接通入挤压铝传热单元1易带来腐蚀问题,将自来水与板式换热器换热,板式换热器与第二级挤压铝传热模块换热,避免自来水直接接触挤压铝带来的腐蚀问题。When the modular extruded aluminum condensing boiler includes two extruded aluminum heat transfer modules, the working fluid of the second-stage extruded aluminum heat transfer module adopts boiler return water, heat pump evaporator circulating water or tap water; When water is used as the working fluid, the condensed amount of flue gas of the second-stage extruded aluminum heat transfer module depends on the return water temperature. If the return water temperature is too high, the condensed amount of flue gas will be reduced; when the circulating water of the heat pump evaporator is used as the working fluid , the temperature of the working fluid is low and the temperature is stable, the condensation amount of the flue gas is maintained at a high level, and the residual energy in the flue gas is deeply recovered. The heat pump condenser is used to preheat the boiler return water or heat the tap water to obtain bath water; When the temperature of the tap water is low, the flue gas is deeply condensed, the residual energy of the flue gas is recovered, and the tap water is heated to more than 30 ℃, but the tap water directly enters the extruded aluminum
本实用新型创新点、优点和积极效果是:The innovation points, advantages and positive effects of the present utility model are:
1、本实用新型的一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构以挤压铝传热单元为主体,将铝棒挤压成型后进过二次加工和装配成为带有上下集箱、进出水口、自密封连接结构的挤压铝传热单元,改变挤压铝传热单元的数量和数量即可得到不同功率的冷凝换热器及冷凝式锅炉,只需要一套挤压铝模具即可,极大的降低了设计和制造成本。1. A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure of the present utility model take the extruded aluminum heat transfer unit as the main body. Extruded aluminum heat transfer unit with header, water inlet and outlet, and self-sealing connection structure, changing the number and quantity of extruded aluminum heat transfer units can obtain condensing heat exchangers and condensing boilers of different powers, only one set of extrusion Aluminum molds are sufficient, which greatly reduces design and manufacturing costs.
2、本实用新型的一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构,将挤压铝材料引入锅炉及换热器领域,挤压铝的成本只有铸铝硅的30%,不锈钢的60%,经过表面阳极氧化和电泳镀膜处理后有着优异的抗冷凝液腐蚀能力;挤压铝材料在成型方向上长度可以无限长,相比铸铝硅和不锈钢材料,有着更长的受热面,换热更加充分,可实现深度冷凝。2. A modular extruded aluminum condensing heat exchanger structure and a condensing boiler structure of the present invention introduce extruded aluminum materials into the field of boilers and heat exchangers, and the cost of extruded aluminum is only 30% of that of cast aluminum silicon. 60% of stainless steel, after surface anodizing and electrophoretic coating treatment, it has excellent corrosion resistance to condensate; extruded aluminum material can be infinitely long in the forming direction, and has a longer heat resistance than cast aluminum silicon and stainless steel materials. On the surface, the heat exchange is more sufficient, and deep condensation can be achieved.
3、本实用新型的一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构采用全预混火排式燃烧器,利用增压风机实现全预混燃烧;根据挤压铝锅炉的特点将燃烧头布置在挤压铝传热单元形成的炉膛空间中,火焰中心远离上下集箱,避免引起过冷沸腾;解决了分体式挤压铝锅炉上下密封盖板易受到火焰冲刷带来的过冷沸腾和密封板膨胀开裂问题。3. A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure of the present utility model adopts a fully premixed fire row type burner, and uses a booster fan to realize fully premixed combustion; according to the characteristics of the extruded aluminum boiler The combustion head is arranged in the furnace space formed by the extruded aluminum heat transfer unit, and the center of the flame is far away from the upper and lower headers to avoid supercooled boiling; Cold boiling and seal plate expansion cracking problems.
4、本实用新型的一种模块化挤压铝冷凝冷凝式锅炉结构具有多种布置和组合方式,可底置也可顶置燃烧器;冷凝式锅炉尾部可连接冷凝换热器,二者采用不同的循环工质,深度冷凝烟气,供暖的同时提供生活热水;当布置空间受限时,冷凝式锅炉可采用两段式的组合方式,锅炉高度降低一半;将各个模块加工好后在锅炉房统一组装,锅炉房无需预留吊装门;多样的组合方式可以满足各种场地要求。4. The modular extruded aluminum condensing condensing boiler structure of the present utility model has various arrangements and combinations, and the burner can be placed on the bottom or on the top; Different circulating working fluids, deep condensing flue gas, provide domestic hot water while heating; when the layout space is limited, the condensing boiler can adopt a two-stage combination, and the height of the boiler is reduced by half; The boiler room is assembled uniformly, and there is no need to reserve a hoisting door in the boiler room; various combinations can meet various site requirements.
5、本实用新型的一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构采用自来水、热泵蒸发器循环水作为冷凝换热器或冷凝段的工质,工质温度可控制在20℃以下,实现排烟温度低于30℃的深度冷凝目标。5. A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure of the present utility model use tap water and heat pump evaporator circulating water as the working fluid of the condensing heat exchanger or the condensing section, and the temperature of the working fluid can be controlled at 20°C. ℃ below, to achieve the deep condensation target that the exhaust gas temperature is lower than 30 ℃.
附图说明Description of drawings
图1是本实用新型一种模块化挤压铝冷凝换热器结构示意图。Figure 1 is a schematic structural diagram of a modular extruded aluminum condensing heat exchanger of the present invention.
图2是本实用新型一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构的挤压铝传热单元截面示意图,其中:图2a是中间挤压铝传热单元的截面示意图;图2b是左右挤压铝传热单元和中间挤压铝传热单元自密封组装在一起的截面示意图。2 is a schematic cross-sectional view of an extruded aluminum heat transfer unit of a modular extruded aluminum condensing heat exchanger structure and a condensing boiler structure of the present utility model, wherein: FIG. 2a is a cross-sectional schematic diagram of the middle extruded aluminum heat transfer unit; FIG. 2b is a cross-sectional schematic diagram of the self-sealing assembly of the left and right extruded aluminum heat transfer units and the middle extruded aluminum heat transfer unit.
图3是本实用新型一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构进行过二次加工后的挤压铝传热单元立体示意图。Fig. 3 is a three-dimensional schematic diagram of an extruded aluminum heat transfer unit after secondary processing of a modular extruded aluminum condensing heat exchanger structure and a condensing boiler structure of the present invention.
图4是本实用新型一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构的装配后的挤压铝传热单元立体示意图。4 is a perspective view of the assembled extruded aluminum heat transfer unit of a modular extruded aluminum condensing heat exchanger structure and a condensing boiler structure of the present invention.
图5是本实用新型一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构的挤压铝传热单元水侧和烟气侧的连接示意图,其中,图5a是水侧连接示意图;图5b是烟气侧的连接示意图。5 is a schematic diagram of the connection between the water side and the flue gas side of an extruded aluminum heat transfer unit of a modular extruded aluminum condensing heat exchanger structure and a condensing boiler structure of the present invention, wherein FIG. 5a is a schematic diagram of the water side connection; Figure 5b is a schematic diagram of the connection on the flue gas side.
图6是本实用新型一种模块化挤压铝冷凝式锅炉结构的示意图。Fig. 6 is a schematic diagram of the structure of a modular extruded aluminum condensing boiler of the present invention.
图7是本实用新型一种模块化挤压铝冷凝式锅炉结构的顶置全预混火排式燃烧器的示意图,其中图7a为全预混火排式燃烧器的示意图;图7b为燃烧头的示意图。7 is a schematic diagram of an overhead full premixed fire row burner of a modular extruded aluminum condensing boiler structure of the present invention, wherein FIG. 7a is a schematic diagram of a full premixed fire row burner; FIG. 7b is a combustion Schematic diagram of the head.
图8是本实用新型一种模块化挤压铝冷凝换热器结构及冷凝式锅炉结构的冷凝式锅炉组装示意图,其中,图8a是底置燃烧器双传热模块示意图;图8b是顶置燃烧器双传热模块示意图。8 is a schematic diagram of the assembly of a modular extruded aluminum condensing heat exchanger structure and a condensing boiler with a condensing boiler structure of the present invention, wherein, FIG. 8 a is a schematic diagram of a double heat transfer module with a bottom burner; Schematic diagram of the dual heat transfer module of the burner.
图9是本实用新型一种模块化挤压铝冷凝式锅炉结构的双传热模块冷凝式锅炉的水侧连接示意图,其中,图9a是第二级传热模块采用锅炉回水作为工质的示意图;图9b是第二级传热模块采用热泵蒸发器循环水作为工质并预加热锅炉回水的示意图;图9c是第二级传热模块通过板式换热器加热自来水的示意图。9 is a schematic diagram of the water side connection of a dual heat transfer module condensing boiler with a modular extruded aluminum condensing boiler structure of the present invention, wherein, FIG. 9a is a second-stage heat transfer module using boiler return water as the working fluid Schematic diagram; Figure 9b is a schematic diagram of the second-stage heat transfer module using the heat pump evaporator circulating water as a working fluid and preheating the boiler return water; Figure 9c is a schematic diagram of the second-stage heat transfer module heating tap water through a plate heat exchanger.
具体实施方式Detailed ways
下面结合附图和具体实施方式对实用新型进行详细说明。The utility model will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,本实用新型一种模块化挤压铝冷凝换热器结构,模块化挤压铝冷凝换热器结构包括挤压铝传热单元1、进口渐扩烟道2、承露盘3、进口集箱4和出口集箱5;燃油燃气锅炉本体尾部与进口渐扩烟道2相连,80℃~130℃的锅炉排烟通过进口渐扩烟道2均匀进入每一个挤压铝传热单元1被冷凝降温至45℃以下,经承露盘3进入烟囱排放;进口集箱4和出口集箱5置于冷凝换热器同侧,与所有挤压铝传热单元1连接,冷却工质可选用热泵蒸发器循环水、锅炉给水或自来水;冷凝液汇集于承露盘3的底部,通过U型水封管排出。As shown in FIG. 1, the present utility model has a modular extruded aluminum condensing heat exchanger structure, and the modular extruded aluminum condensing heat exchanger structure includes an extruded aluminum
如图2中图2a和图2b所示,所述挤压铝传热单元1,包括中间挤压铝片及左右挤压铝片;中间挤压铝片由水室1-1、外翅片1-2、内翅片1-3和连接部1-4四部分组成;水室1-1由多个长度为2cm~10cm、宽度为1cm~3cm的中间水室单元和长度为1cm~4cm、宽度为6cm~15cm的两端水室单元组成,水室1-1的壁厚为4mm~8mm,多单元的水室结构有助于增强锅炉的耐压能力;外翅片1-2在水室1-1两侧外表面,与从进口渐扩烟道2进入的烟气接触换热,翅片舌比小于5,根部宽度为3mm~10mm,翅高为5mm~50mm,翅片表面为锯齿或波浪形状,以增大翅片表面积、拓展受热面;内翅片1-3布置在水室1-1内侧,翅片舌比小于5,根部宽度为2mm~5mm,翅高为4mm~14mm,翅片表面为锯齿或波浪形状,以增大翅片表面积、拓展受热面;连接部1-4位于两端水室单元的两侧短边,起到连接相邻两个挤压铝传热单元1并密封烟气的作用;左右挤压铝片也由水室1-1、外翅片1-2、内翅片1-3和连接部1-4四部分组成,外翅片1-2和连接部1-4仅在水室1-1的烟气侧,水室1-1的空气侧没有外翅片1-2和连接部1-4。As shown in Fig. 2a and Fig. 2b, the extruded aluminum
如图3所示,所述挤压铝传热单元1,经挤压机挤压成型后还要进行二次加工;在两端水室单元的长边壁面上切出直径为20mm~60mm的圆形进口1-5和圆形出口1-6;在挤压铝传热单元1的上下端面上加工出螺丝孔,用于固定上下密封盖板;将距水室1-1的上下两端20mm~60mm的水侧通道壁面和内翅片1-3切去,形成高度20mm~60mm的连通水室空间1-8,作为多个水侧通道的上下集箱;将距烟气入口50mm~300mm的外翅片1-2部分切除,保留2mm~5mm高的翅片根部,形成入口的矮翅区1-10;矮翅区1-10和正常外翅片1-2之间斜切出长度100mm以上的过渡区1-9,通过改变外翅片的高度改变烟气流通截面积,控制烟气流速,避免入口段烟气流速过高;将挤压铝传热单元1的表面进行阳极氧化和电泳镀膜处理,以增强抗冷凝液腐蚀性能。As shown in Figure 3, the extruded aluminum heat transfer unit 1 is subjected to secondary processing after being extruded by the extruder; Circular inlet 1-5 and circular outlet 1-6; screw holes are machined on the upper and lower end faces of the extruded aluminum heat transfer unit 1 to fix the upper and lower sealing cover plates; the upper and lower ends of the water chamber 1-1 are The 20mm~60mm water side channel wall and inner fins 1-3 are cut off to form connected water chamber spaces 1-8 with a height of 20mm~60mm, which are used as the upper and lower headers of multiple water side channels; The 300mm outer fins 1-2 are partially cut off, and the 2mm to 5mm high fin roots are retained to form the entry short fin area 1-10; the short fin area 1-10 and the normal outer fin 1-2 are cut out obliquely For the transition zone 1-9 with a length of more than 100mm, the cross-sectional area of flue gas flow can be changed by changing the height of the outer fins, so as to control the flue gas flow rate and prevent the flue gas flow rate from being too high in the inlet section; the surface of the extruded aluminum heat transfer unit 1 is anodic Oxidized and electrophoretic coated for enhanced condensate resistance.
如图4所示,所述挤压铝传热单元1,二次加工之后与内六角螺丝1-11、密封盖板1-12、均流板1-13和流芯1-14装配;内六角螺丝1-11用于固定密封盖板1-12;密封盖板1-12上有沉头孔,紧贴挤压铝端部侧有密封沟槽,密封沟槽中放置硅胶密封圈,密封挤压铝传热单元1的上下两端,均流板1-13放置在连通水室空间1-8与水室1-1之间,利用小孔阻力使每个水室1-1的水流量均匀分配;流芯1-14通过上下侧的均流板1-13固定,由多个贯通水室1-1的圆柱或螺旋圆柱组成,用于扰乱水侧流动,缩小每个水室1-1流通截面积,提高水侧流速,强化水侧换热。冷却工质经下部的圆形进口1-5进入挤压铝传热单元1下部的连通水室空间1-8,经下侧的均流板1-13下部进入各个水室1-1,随后从上侧的均流板1-13上部离开水室1-1进入上部的连通水室空间1-8,从圆形出口1-6离开挤压铝传热单元1。As shown in FIG. 4 , the extruded aluminum
如图5所示,为确保模块化挤压铝冷凝换热器及冷凝式锅炉的烟气侧和水侧的密封与连接,进口集箱4、出口集箱5布置在所有挤压铝传热单元1的外侧,通过软连接与所有挤压铝传热单元1连接;挤压铝壁厚只有4mm~8mm,直接在壁面上攻出螺纹孔容易滑丝漏水,如图5a和图5b所示,采用内置外丝接头4-1、外置内丝活接头4-2和硅胶密封圈4-3将挤压铝传热单元1与集箱连接,形成完整水路;内置外丝接头4-1置于水室1-1的两端水室单元内,内置外丝接头4-1通过圆形进口1-5和圆形出口1-6伸出水室1-1与外置内丝活接头4-2连接,硅胶密封圈4-3位于内置外丝接头4-1的圆环固定底座与水室1-1的内壁面之间;如图5c所示,所述挤压铝传热单元1与进口渐扩烟道2和承露盘3之间通过法兰螺栓连接,挤压铝传热单元1两端的密封盖板1-12预留半圆螺栓孔,两个密封盖板之间的半圆螺栓孔组成完整的螺栓孔,与渐扩烟道2和承露盘3连接法兰上的螺栓孔一一对应,中间加上密封垫片,使用螺栓连接。As shown in Figure 5, in order to ensure the sealing and connection of the modular extruded aluminum condensing heat exchanger and the flue gas side and the water side of the condensing boiler, the inlet header 4 and the outlet header 5 are arranged in all extruded aluminum heat transfer The outside of unit 1 is connected to all extruded aluminum heat transfer units 1 through soft connections; the thickness of the extruded aluminum wall is only 4mm to 8mm, and tapping threaded holes directly on the wall is easy to slip and leak water, as shown in Figure 5a and Figure 5b , using the built-in outer wire joint 4-1, the outer inner wire joint 4-2 and the silicone sealing ring 4-3 to connect the extruded aluminum heat transfer unit 1 with the header to form a complete water circuit; the built-in outer wire joint 4-1 Placed in the water chamber units at both ends of the water chamber 1-1, the built-in outer wire joint 4-1 extends out of the water chamber 1-1 through the circular inlet 1-5 and the circular outlet 1-6 and the external inner wire union 4 -2 connection, the silicone sealing ring 4-3 is located between the annular fixed base of the built-in outer wire joint 4-1 and the inner wall surface of the water chamber 1-1; as shown in Figure 5c, the extruded aluminum heat transfer unit 1 It is connected with the inlet gradually expanding flue 2 and the dew receiving plate 3 by flange bolts, and the sealing cover plates 1-12 at both ends of the aluminum heat transfer unit 1 are extruded to reserve semicircular bolt holes, and the semicircular bolt holes between the two sealing cover plates are reserved. The bolt holes form a complete bolt hole, which corresponds to the bolt holes on the connecting flange of the gradually expanding flue 2 and the
如图6所示,本实用新型模块化挤压铝冷凝式锅炉结构,包括:挤压铝传热单元1、承露盘3、进口集箱4、出口集箱5和全预混火排式燃烧器6;混合均匀的燃气空气在挤压铝传热单元1形成的炉膛空间内点火燃烧,烟气向下流动过程中被冷却、冷凝至45℃以下,经承露盘3进入烟囱排放;进口集箱4和出口集箱5与所有挤压铝传热单元1连接;冷凝液汇集于承露盘3的底部,通过U型水封管排出。As shown in Fig. 6, the modular extruded aluminum condensing boiler structure of the present invention includes: extruded aluminum
如图7中图7a所示,所述全预混火排式燃烧器6,由增压风罩6-1、等压燃气分配室6-2、引射器6-3、气体混合腔6-4和燃烧头6-5组成;增压风罩6-1的上端法兰盘与增压风机相连,内部的气压略大于大气压,增强引射器6-3的引射能力,实现过量空气系数大于1.1;等压燃气分配室6-2采用等压风道设计,确保各个喷嘴分配到等量的燃气;引射器6-3布置在等压燃气分配室6-2的下方;燃气引射空气后进入气体混合腔6-4,燃气与空气均匀混合;燃烧头6-5连通气体混合腔6-4底部并分布在挤压铝传热单元1之间,混合气离开气体混合腔6-4后进入燃烧头6-5,在挤压铝传热单元1形成的炉膛空间中燃烧。所述燃烧头6-5伸入入口矮翅区1-10所形成的炉膛空间内,如图7b所示,燃烧头底部6-5-1固定在挤压铝传热单元1的密封盖板1-12上,燃烧头中间部分6-5-2呈等腰梯形,燃烧头头部6-5-4为半圆形;燃烧头中间部分6-5-2的高度为50mm~150mm,等腰梯形段壁面上加工出三角形开孔6-5-3,利用燃烧头6-5内部的高速气流形成的负压区引射炉膛中的正压烟气,从而延缓燃烧、削弱火焰高温区,减少热力型氮氧化物的生成;燃烧头头部6-5-4上均布着直径2mm~5mm的圆形开孔,用以均流混合气和防止回火,燃烧头头部6-5-4的半圆形头部相比平板头部的燃烧面积增大了50%;燃烧头头部6-5-4外包裹着一层金属纤维丝网,混合气在金属纤维丝网表面点火燃烧;燃烧头6-5还配备点火器和火焰探测器,用以点火和探测火焰燃烧状态并调整引射比。As shown in FIG. 7 a in FIG. 7 , the fully premixed fire row burner 6 is composed of a pressurized air hood 6-1, an isobaric gas distribution chamber 6-2, an ejector 6-3, and a gas mixing chamber 6 -4 is composed of the combustion head 6-5; the upper flange of the booster hood 6-1 is connected to the booster fan, and the internal air pressure is slightly higher than the atmospheric pressure, which enhances the ejection capacity of the ejector 6-3 and realizes excess air The coefficient is greater than 1.1; the isobaric gas distribution chamber 6-2 adopts an equal pressure air duct design to ensure that each nozzle distributes the same amount of gas; the ejector 6-3 is arranged below the isobaric gas distribution chamber 6-2; After the air is injected, it enters the gas mixing chamber 6-4, and the gas and air are evenly mixed; the combustion head 6-5 is connected to the bottom of the gas mixing chamber 6-4 and is distributed between the extruded aluminum heat transfer units 1, and the mixed gas leaves the gas mixing chamber 6 After -4, it enters the combustion head 6-5, and burns in the furnace space formed by the extruded aluminum heat transfer unit 1. The combustion head 6-5 protrudes into the furnace space formed by the inlet low fin area 1-10. As shown in Figure 7b, the combustion head bottom 6-5-1 is fixed on the sealing cover plate of the extruded aluminum
为保证换热的充分进行,所述模块化挤压铝冷凝式锅炉结构的挤压铝传热单元1的长度为200mm~3000mm;为提供充足的燃烧空间,避免燃烧区翅片温度过高,将入口的矮翅区1-10的翅片高度控制在2mm~8mm,入口的矮翅区1-10长度为150mm~450mm;根据烟气温度的变化确定合理的烟气流通截面积,进而确定外翅片的高度,确定斜切区域的长度和翅片高度,保证烟气流速全程控制在4m/s~10m/s的经济换热区间;将挤压铝传热单元1进行阳极氧化处理,以增强抗高温腐蚀能力。In order to ensure sufficient heat exchange, the length of the extruded aluminum
所述模块化挤压铝冷凝式锅炉结构,有多种组合形式;多个挤压铝传热单元1水平方向上相连组成一级挤压铝传热模块,冷凝式锅炉包含一个或两个挤压铝传热模块;全预混火排式燃烧器6底置向上燃烧或顶置向下燃烧;两个挤压铝传热模块的烟气同向流动或逆向流动;综合考虑冷凝液的收集和燃烧器的安全工作,提出五种组合方式:如图8中图8a所示,当全预混火排式燃烧器6底置且包含两个挤压铝传热模块时,全预混火排式燃烧器6置于模块化挤压铝冷凝式锅炉底部且燃烧头6-5朝上,燃气在底部点火,烟气由下至上穿过第一挤压铝传热模块1-A,进入连接烟道7后180°转弯向下进入第二挤压铝传热模块1-B,烟气向下流动,并被冷凝降温,烟气最后进入承露盘3,冷凝液由底部的承露盘3收集后排出,锅炉回水先进入第二挤压铝传热模块1-B的进口集箱,从出口集箱离开,之后进入第一挤压铝传热模块1-A的进口集箱,从出口集箱离开;如图8中图8b所示,当全预混火排式燃烧器6顶置且且包含两个挤压铝传热模块时,全预混火排式燃烧器6置于锅炉顶部且燃烧头6-5朝下,第一挤压铝传热模块1-A布置在全预混火排式燃烧器6下方,第二挤压铝传热模块1-B布置在第一挤压铝传热模块1-A下方,燃气顶部点火,烟气一直向下流动,先后进入第一挤压铝传热模块1-A和第二挤压铝传热模块1-B被冷却和冷凝,承露盘3布置在第二挤压铝传热模块1-B下方,收集冷凝液;;锅炉回水先进入第二挤压铝传热模块1-B的进口集箱,从出口集箱离开,之后进入第一挤压铝传热模块1-A的进口集箱,从出口集箱离开,冷凝液由底部的承露盘3收集后排出。当全预混火排式燃烧器6底置且包含一个挤压铝传热模块时,全预混火排式燃烧器6置于锅炉底部且燃烧头6-5朝上,燃气在底部点火,烟气进入挤压铝传热模块中上升流动至顶部排出,此时要保证模块化挤压铝冷凝式锅炉出水温度大于50℃。当全预混火排式燃烧器6顶置且包含一个挤压铝传热模块时,全预混火排式燃烧器6置于模块化挤压铝冷凝式锅炉顶部且燃烧头6-5朝下,燃气顶部点火,烟气向下流动,进入挤压铝传热模块并被冷却、冷凝,承露盘3布置在挤压铝传热模块下方,收集冷凝液,当全预混火排式燃烧器6顶置且包含两个挤压铝传热模块时,全预混火排式燃烧器6置于模块化挤压铝冷凝式锅炉顶部且燃烧头6-5朝下,燃气在顶部点火,烟气向下进入第一挤压铝传热模块1-A被冷却,经过连接烟道7后180度转弯向上流动,进入第二挤压铝传热模块1-B中被冷却冷凝,烟气在第二挤压铝传热模块1-B的顶部排出锅炉,冷凝液汇集于承露盘3的底部排出。The modular extruded aluminum condensing boiler structure has various combinations; a plurality of extruded aluminum
如图9所示,所述挤压铝模块化冷凝式锅炉结构中的挤压铝传热单元1两级布置时,第二级挤压铝传热模块的工质可以采用锅炉回水、热泵蒸发器循环水、自来水等;如图9a所示,当采用锅炉回水作为工质时,锅炉回水先进入第二级挤压铝传热模块的进口集箱,从出口集箱离开后进入第一级挤压铝传热模块的进口集箱,从出口集箱离开后对外供热;如图9b所示,当采用热泵蒸发器循环水作为工质时,锅炉回水先进入热泵冷凝器预热,之后进入第一级挤压铝传热模块的进口集箱,从出口集箱离开后对外供热;如图9c所示,当第二级挤压铝传热模块用于加热自来水时,通过板式换热器间接加热自来水,避免直接加热自来水带来的腐蚀和结垢问题。As shown in Figure 9, when the extruded aluminum
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920363590.2U CN209944755U (en) | 2019-03-21 | 2019-03-21 | A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920363590.2U CN209944755U (en) | 2019-03-21 | 2019-03-21 | A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209944755U true CN209944755U (en) | 2020-01-14 |
Family
ID=69125444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920363590.2U Active CN209944755U (en) | 2019-03-21 | 2019-03-21 | A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209944755U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110006174A (en) * | 2019-03-21 | 2019-07-12 | 西安交通大学 | A modular extruded aluminum condensing heat exchanger and condensing boiler |
-
2019
- 2019-03-21 CN CN201920363590.2U patent/CN209944755U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110006174A (en) * | 2019-03-21 | 2019-07-12 | 西安交通大学 | A modular extruded aluminum condensing heat exchanger and condensing boiler |
CN110006174B (en) * | 2019-03-21 | 2023-12-19 | 西安交通大学 | Modularized extruded aluminum condensation heat exchanger and condensation type boiler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110006174B (en) | Modularized extruded aluminum condensation heat exchanger and condensation type boiler | |
CN205448333U (en) | Fine copper boiler that low nitrogen full premix return water condensation is preheated | |
CN208295933U (en) | A kind of energy-saving type gas flare | |
CN209944755U (en) | A modular extruded aluminum condensing heat exchanger structure and condensing boiler structure | |
CN100520268C (en) | Fume-fume hot pipe heater exchanger for fume desulphurization in heat-engine plant | |
CN202056844U (en) | Pressure-less multipurpose boiler for water and gasoline with an extremely fast heat conducting device | |
CN202221159U (en) | Condensing boiler capable of realizing convection and condensation integral heat exchange | |
CN203147726U (en) | Pi-structural catalytic unit CO incineration waste heat boiler | |
CN100549553C (en) | Taking-out back water reciprocating flue type boiler | |
CN201028494Y (en) | Environment-friendly energy-saving boiler group | |
CN101078564A (en) | Condensation type heat-storage type gas-firing boiler system | |
CN209622916U (en) | A kind of new energy source energy-saving steam heating furnace | |
CN203533872U (en) | Biomass double-flue counter-burning water heating heat-supply device | |
CN204400929U (en) | A kind of biomass gasifying furnace and the efficient heating system of industrial combustion gas unified boiler | |
CN102778026A (en) | High-efficiency and energy-saving boiler | |
CN101943475B (en) | Combustion chamber structure for heat exchanger | |
CN200996720Y (en) | Efficient heater with multiple temperature zone under normal pressure | |
CN101021358B (en) | Energy conserving environmental protective non-pressure heating furnace | |
CN204513747U (en) | A kind of cornue forced circulation burning coal powder hot-water boiler | |
CN206160468U (en) | Safe energy -concerving and environment -protective hot water heating device | |
CN219693933U (en) | Secondary energy-saving utilization device for flue gas waste heat of power station boiler | |
CN220771371U (en) | Stainless steel high-efficiency hot water boiler | |
CN201387131Y (en) | High-efficiency energy-saving environment-friendly heating boiler | |
CN203744212U (en) | Small-capacity supercritical pressure fuel gas once-through boiler | |
CN113483489B (en) | A large flow indirect heat exchange type high temperature and high pressure hot blast stove |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |