CN209570499U - On-line monitoring device for formaldehyde content in ambient air - Google Patents
On-line monitoring device for formaldehyde content in ambient air Download PDFInfo
- Publication number
- CN209570499U CN209570499U CN201920001991.3U CN201920001991U CN209570499U CN 209570499 U CN209570499 U CN 209570499U CN 201920001991 U CN201920001991 U CN 201920001991U CN 209570499 U CN209570499 U CN 209570499U
- Authority
- CN
- China
- Prior art keywords
- module
- formaldehyde
- liquid
- reaction
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 title claims abstract description 322
- 239000012080 ambient air Substances 0.000 title description 32
- 238000012806 monitoring device Methods 0.000 title description 15
- 238000001514 detection method Methods 0.000 claims abstract description 63
- 238000006243 chemical reaction Methods 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 40
- 238000005070 sampling Methods 0.000 claims abstract description 34
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 239000011521 glass Substances 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims description 61
- 230000003287 optical effect Effects 0.000 claims description 45
- 239000000243 solution Substances 0.000 claims description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 18
- 230000002572 peristaltic effect Effects 0.000 claims description 15
- 239000007791 liquid phase Substances 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 10
- 230000009471 action Effects 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 8
- 238000012423 maintenance Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000013618 particulate matter Substances 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000011229 interlayer Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 2
- 229910052731 fluorine Inorganic materials 0.000 claims 2
- 239000011737 fluorine Substances 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 230000002745 absorbent Effects 0.000 claims 1
- 239000002250 absorbent Substances 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 238000005253 cladding Methods 0.000 claims 1
- 238000010790 dilution Methods 0.000 claims 1
- 239000012895 dilution Substances 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 claims 1
- 239000007921 spray Substances 0.000 claims 1
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 26
- 238000012544 monitoring process Methods 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 6
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 abstract description 4
- 238000004847 absorption spectroscopy Methods 0.000 abstract description 3
- 238000000862 absorption spectrum Methods 0.000 abstract description 3
- 238000007704 wet chemistry method Methods 0.000 abstract description 2
- 229930040373 Paraformaldehyde Natural products 0.000 abstract 1
- 229920002866 paraformaldehyde Polymers 0.000 abstract 1
- 239000003570 air Substances 0.000 description 31
- 239000007789 gas Substances 0.000 description 26
- 239000000306 component Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000001212 derivatisation Methods 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 6
- 239000012086 standard solution Substances 0.000 description 6
- 238000004611 spectroscopical analysis Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 3
- -1 3,5-diacetyl-1,4-dihydrodi methylpyridine Chemical compound 0.000 description 3
- 239000008098 formaldehyde solution Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 231100000003 human carcinogen Toxicity 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- RIPZIAOLXVVULW-UHFFFAOYSA-N pentane-2,4-dione Chemical compound CC(=O)CC(C)=O.CC(=O)CC(C)=O RIPZIAOLXVVULW-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- WRFWAYDBNCOWRA-UHFFFAOYSA-N 3,4-dichloro-1-(6-iodo-4-oxo-2-thiophen-2-ylquinazolin-3-yl)pyrrole-2,5-dione Chemical compound O=C1C(Cl)=C(Cl)C(=O)N1N1C(=O)C2=CC(I)=CC=C2N=C1C1=CC=CS1 WRFWAYDBNCOWRA-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 238000003445 Hantzsch reaction Methods 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
技术领域technical field
本实用新型属于环境监测技术领域,涉及环境空气质量在线监测技术,尤其涉及一种环境空气中甲醛含量的在线监测装置。The utility model belongs to the technical field of environmental monitoring and relates to an online monitoring technology of ambient air quality, in particular to an online monitoring device for formaldehyde content in ambient air.
背景技术Background technique
甲醛(HCHO)是一种高活性的化合物,它不仅是一种大气挥发性有机物氧化反应的示踪物质,在自由基和臭氧的光化学反应中也起着重要的作用。除室外大气外,室内也往往检测出几倍于室外浓度的甲醛,人体长期暴露于高浓度的甲醛下,会刺激眼睛、呼吸道,继而引发头疼、恶心等症状,严重的会诱发鼻咽癌、白血病等癌症。为此,美国环保署从1991年开始将甲醛认定为人体潜在致癌物,国际癌症研究机构(IARC)于2004年将甲醛列为人体致癌物。因此,对大气中甲醛进行准确测量不仅能更好地研究对流层化学,并且也对公共健康有至关重要的作用。Formaldehyde (HCHO) is a highly active compound. It is not only a tracer substance in the oxidation reaction of atmospheric volatile organic compounds, but also plays an important role in the photochemical reaction of free radicals and ozone. In addition to the outdoor atmosphere, formaldehyde is often detected indoors at a concentration several times that of the outdoors. The human body is exposed to high concentrations of formaldehyde for a long time, which can irritate the eyes and respiratory tract, and then cause headaches, nausea and other symptoms. In severe cases, it can induce nasopharyngeal cancer, Cancers such as leukemia. For this reason, the U.S. Environmental Protection Agency has identified formaldehyde as a potential human carcinogen since 1991, and the International Agency for Research on Cancer (IARC) has listed formaldehyde as a human carcinogen in 2004. Therefore, accurate measurements of formaldehyde in the atmosphere will not only enable better studies of tropospheric chemistry, but are also of critical importance to public health.
目前,常见的环境空气甲醛的监测技术有光谱法、质谱法和湿化学法。光谱法和质谱法都具有较高的时间分辨率,且光谱法准确度高,但其造价高、体积大、维修困难及灵敏度低等特性也限制了其在甲醛测定方面的运用。湿化学法因其成本低、运行简便且灵敏度高的优点成为气态甲醛检测的常用方法,主要包括2,4-二硝基苯肼法(DNPH)和Hantzsch法。DNPH法是大气甲醛测定的标准方法,该方法具有测量结果准确、能同时测定大气中多种羰基化合物含量的优点,但该方法通常为离线检测,较难实现在线测量,时间分辨率较低。德国Aerolaser公司的甲醛分析仪是一种基于Hantzsch反应与荧光法的甲醛在线检测仪器,虽然其具有灵敏度高、选择性高及实现较快速在线检测等优点,但该方法和仪器仍然存在基线容易漂移、维护频繁及易受震动影响等不足。At present, the common monitoring techniques for formaldehyde in ambient air include spectrometry, mass spectrometry and wet chemical method. Both spectrometry and mass spectrometry have high time resolution and high accuracy of spectrometry, but their high cost, large volume, difficult maintenance and low sensitivity also limit their application in formaldehyde determination. Wet chemical methods have become common methods for the detection of gaseous formaldehyde due to their advantages of low cost, simple operation and high sensitivity, mainly including 2,4-dinitrophenylhydrazine method (DNPH) and Hantzsch method. The DNPH method is a standard method for the determination of atmospheric formaldehyde. This method has the advantages of accurate measurement results and the ability to simultaneously determine the content of multiple carbonyl compounds in the atmosphere. However, this method is usually offline detection, which is difficult to achieve online measurement, and the time resolution is low. The formaldehyde analyzer of the German Aerolaser company is an online formaldehyde detection instrument based on the Hantzsch reaction and fluorescence method. Although it has the advantages of high sensitivity, high selectivity, and faster online detection, the method and instrument still have a baseline that is prone to drift , frequent maintenance and susceptible to vibration and other deficiencies.
专利《一种检测空气中甲醛浓度的方法》中采用吸收液萃取空气中甲醛,并通过丙酮内标溶液与其反应后,采用液相色谱检测。《空气中甲醛检测仪》采用试纸反射式比色法提供了一种可以现场快速定量空气中甲醛含量的分析仪器。虽然它们实现了现场的快速准确测量,却无法做到甲醛的在线连续监测。In the patent "A Method for Detecting the Concentration of Formaldehyde in the Air", an absorption liquid is used to extract formaldehyde in the air, and after reacting with the acetone internal standard solution, it is detected by liquid chromatography. "Formaldehyde Detector in Air" adopts test paper reflective colorimetry to provide an analytical instrument that can quickly quantify the formaldehyde content in the air on site. Although they have achieved rapid and accurate on-site measurement, they cannot achieve online continuous monitoring of formaldehyde.
专利《低功耗快速甲醛检测设备》和《一种抗干扰的检测空气中微量甲醛的分析仪器》则提供了采用电化学传感器的甲醛测定仪器,但电化学传感器存在受其他气体干扰大、传感器寿命有限、测量不准确及测量浓度范围小等不足。The patents "Low Power Consumption Fast Formaldehyde Detecting Equipment" and "An Anti-Interference Analytical Instrument for Detecting Trace Formaldehyde in the Air" provide a formaldehyde measuring instrument using an electrochemical sensor, but the electrochemical sensor is subject to interference from other gases, and the sensor The disadvantages are limited life, inaccurate measurement and small concentration range.
实用新型内容Utility model content
为了克服上述现有技术的不足,本实用新型提供一种环境空气中甲醛含量的在线监测装置,该装置基于气体扩散吸收捕集的湿化学法和吸收光谱检测技术,实现对环境空气种甲醛含量进行实时在线检测,可现场在线连续监测环境空气中的甲醛含量。In order to overcome the deficiencies of the prior art above, the utility model provides an online monitoring device for formaldehyde content in ambient air. Real-time online detection can continuously monitor the formaldehyde content in the ambient air on-site.
本实用新型的原理是:本实用新型提供了利用湿式气体扩散捕集原理和长光程在线流通池技术的环境空气甲醛在线监测装置,采样模块、反应模块、检测模块、溶液输送模块、控制与数据采集电路以及显示屏均置于机壳内;采用电磁驱动微量泵,对微量溶液进行精准控制,并减少日常维护,实现大气中低浓度甲醛的快速、在线和连续测量。本实用新型采用结合湿化学法和光谱法进行环境空气甲醛的在线监测,为大气中甲醛在线测量提供一种新型测量技术。采样过程中,空气在真空隔膜泵的作用下通过螺旋管捕集阱,吸收液也从同一端进入螺旋管捕集阱,吸收液依靠液体张力在管壁形成液膜。由于在螺旋管捕集阱中气液界面增大,空气的气体组分在界面间扩散、传质,与吸收液充分接触吸收。然后在螺旋管捕集阱的另一端实现气液分离。使用2,4-戊二酮(乙酰丙酮)作为甲醛的衍生液,甲醛溶液与乙酰丙酮在高温条件下发生衍生化反应生成黄色化合物(3,5-二乙酰基-1,4-二氢二甲基吡啶(DDL)),在波长为415nm处的吸收最强。采用全反射长光程在线流通池使溶液在全反射流通池中多次吸收反射光,从而提高检测灵敏度和检测限。吸收了待测组分(甲醛)的液相待测样品经衍生化反应后进入到全反射长光程在线流通池,此时根据朗伯比尔定律,在波长为415nm的特殊光源照射和一定的吸收层厚度下,待测组分的浓度大小与其吸光度成正比。根据吸光度即可实现环境空气中甲醛含量的在线监测。The principle of the utility model is: the utility model provides an ambient air formaldehyde online monitoring device utilizing the principle of wet gas diffusion capture and long optical path online flow cell technology, a sampling module, a reaction module, a detection module, a solution delivery module, control and The data acquisition circuit and display screen are placed in the casing; the electromagnetically driven micropump is used to precisely control the microsolution, reduce daily maintenance, and realize rapid, online and continuous measurement of low-concentration formaldehyde in the atmosphere. The utility model adopts a combination of wet chemical method and spectroscopic method to carry out online monitoring of ambient air formaldehyde, and provides a new measurement technology for online measurement of formaldehyde in the atmosphere. During the sampling process, the air passes through the spiral tube trap under the action of the vacuum diaphragm pump, and the absorption liquid also enters the spiral tube trap from the same end, and the absorption liquid forms a liquid film on the tube wall by the liquid tension. Due to the increase of the gas-liquid interface in the spiral tube trap, the gas components of the air diffuse and mass transfer between the interfaces, and fully contact with the absorption liquid for absorption. Then the gas-liquid separation is realized at the other end of the spiral tube trap. Using 2,4-pentanedione (acetylacetone) as the derivative solution of formaldehyde, the formaldehyde solution and acetylacetone undergo a derivatization reaction under high temperature conditions to generate a yellow compound (3,5-diacetyl-1,4-dihydrodi methylpyridine (DDL)), with the strongest absorption at a wavelength of 415 nm. The total reflection long optical path online flow cell is used to make the solution absorb reflected light multiple times in the total reflection flow cell, thereby improving the detection sensitivity and detection limit. The liquid-phase sample that has absorbed the component to be measured (formaldehyde) enters the total reflection long optical path online flow cell after derivatization reaction. Under the thickness of the absorbing layer, the concentration of the component to be measured is proportional to its absorbance. On-line monitoring of formaldehyde content in ambient air can be realized according to the absorbance.
本实用新型提供的技术方案是:The technical scheme provided by the utility model is:
一种环境空气中甲醛含量的在线监测装置,包括机壳、采样模块、反应模块、检测模块、溶液输送模块、控制与数据采集电路以及显示屏。其中,采样模块、反应模块、检测模块、溶液输送模块、控制与数据采集电路以及显示屏均置于机壳内,且显示屏内嵌在机壳上。An on-line monitoring device for formaldehyde content in ambient air comprises a casing, a sampling module, a reaction module, a detection module, a solution delivery module, a control and data acquisition circuit and a display screen. Among them, the sampling module, the reaction module, the detection module, the solution delivery module, the control and data acquisition circuit and the display screen are all placed in the casing, and the display screen is embedded in the casing.
所述采样模块包括采样管路、除甲醛装置、电磁三通阀、颗粒物过滤头、螺旋管捕集阱、冷凝装置、气液分离装置、干燥管、气体流量计和真空隔膜泵。所述反应模块包括混合三通、反应釜和除气泡装置。采样模块的螺旋管捕集阱的后端连接溶液输送模块的第二电磁驱动微量泵,再通过反应模块的混合三通与反应模块的反应釜连接;所述检测模块包括微孔过滤膜、全反射长光程在线流通池、光源、光电探测器以及恒温箱。反应釜连接到除气泡装置,除气泡装置与溶液输送模块的第四电磁驱动微量泵连接,再接入微孔过滤膜,之后进入检测模块的全反射长光程在线流通池;所述溶液输送模块包括四个电磁驱动微量泵和两个蠕动泵。第一电磁驱动微量泵将吸收液与采样模块相连,第二电磁驱动微量泵将螺旋管捕集阱与反应模块的混合三通相连,第三电磁驱动微量泵将衍生液与反应模块的混合三通相连,第四电磁驱动微量泵将反应模块的除气泡装置与检测模块的微孔过滤膜相连。第一蠕动泵与检测模块中的全反射长光程在线流通池相连;第二蠕动泵与采样模块中的气液分离装置后端相连。The sampling module includes a sampling pipeline, a formaldehyde removal device, an electromagnetic three-way valve, a particle filter head, a spiral tube trap, a condensation device, a gas-liquid separation device, a drying tube, a gas flow meter and a vacuum diaphragm pump. The reaction module includes a mixing tee, a reaction kettle and a bubble removal device. The rear end of the spiral tube trap of the sampling module is connected to the second electromagnetically driven micropump of the solution delivery module, and then connected to the reaction kettle of the reaction module through the mixing tee of the reaction module; the detection module includes a microporous filter membrane, a full Reflective long pathlength online flow cell, light source, photodetector and thermostat. The reaction kettle is connected to the bubble removal device, and the bubble removal device is connected to the fourth electromagnetically driven micropump of the solution delivery module, and then connected to the microporous filter membrane, and then enters the total reflection long optical path online flow cell of the detection module; the solution delivery The module includes four solenoid-driven micropumps and two peristaltic pumps. The first electromagnetically driven micropump connects the absorption liquid with the sampling module, the second electromagnetically driven micropump connects the spiral tube trap with the mixing tee of the reaction module, and the third electromagnetically driven micropump connects the derivative liquid with the reaction module. The fourth electromagnetically driven micropump connects the air-removing device of the reaction module with the microporous filter membrane of the detection module. The first peristaltic pump is connected with the total reflection long optical path online flow cell in the detection module; the second peristaltic pump is connected with the rear end of the gas-liquid separation device in the sampling module.
所述控制与数据采集电路包括设有USB端口的主电路板,通过主电路板对各模块温度进行控制、对溶液输送模块进行控制,并采集和输出各模块温度信息和检测信号,信号数据从USB端口输出。各模块温度、流量、检测信号及空气甲醛含量于显示屏上显示,所述的控制与数据采集电路与显示屏相连接。采样模块用于对环境空气中的甲醛进行采样,将空气中的甲醛转化为液相待测样品;反应模块用于对液相待测样品进行染色,使含有甲醛的液相待测样品在恒定高温下与2,4-戊二酮发生衍生化反应生成黄色待测样品DDL;检测模块用于检测光信号强度;光信号强度通过控制与数据采集电路转化输出为电压信号数据进行存储,并在显示屏上显示。溶液输送模块用于精确配送吸收液、衍生液和待测组分,并输送清洗溶液和排出废液。The control and data acquisition circuit includes a main circuit board with a USB port, controls the temperature of each module and the solution delivery module through the main circuit board, and collects and outputs temperature information and detection signals of each module, and the signal data is from USB port output. The temperature, flow rate, detection signal and air formaldehyde content of each module are displayed on the display screen, and the control and data acquisition circuit is connected with the display screen. The sampling module is used to sample the formaldehyde in the ambient air, and convert the formaldehyde in the air into the liquid phase sample to be tested; The derivatization reaction with 2,4-pentanedione at high temperature generates the yellow sample DDL; the detection module is used to detect the intensity of the optical signal; the intensity of the optical signal is converted and output as voltage signal data by the control and data acquisition circuit for storage, and stored in the displayed on the display. The solution delivery module is used for precise distribution of absorbing fluid, derivative fluid and components to be measured, as well as delivering cleaning solution and discharging waste fluid.
针对上述环境空气中甲醛含量的在线监测装置,进一步地:For the online monitoring device for the formaldehyde content in the above-mentioned ambient air, further:
所述机壳采用铝制材料,整体采用聚四氟涂层进行喷涂加工,以防酸性溶液腐蚀。机壳设显示屏窗口和可操作窗口,其中所述可操作窗口中放置微量泵、蠕动泵、螺旋管捕集阱以及微孔过滤膜,以便日常维护及测量过程的观察。The casing is made of aluminum, and the whole is sprayed with polytetrafluoroethylene coating to prevent acid solution corrosion. The casing is equipped with a display screen window and an operable window, wherein micropumps, peristaltic pumps, spiral tube traps and microporous filter membranes are placed in the operable windows for daily maintenance and observation of the measurement process.
所述采样模块中,所述采样管路采用1/4”四氟硬管,使用真空隔膜泵抽取空气样品,通入螺旋管捕集阱中,同时采用1/16”的四氟管通入螺旋管捕集阱pH=5的稀硫酸溶液作为甲醛吸收液。其中,核心部件螺旋管捕集阱采用内径2mm的玻璃管,绕制成直径为22mm的螺纹状结构,一端(左端)是气体和液体的入口,另一端(右端)是气液分离腔,整体用硬质玻璃管包覆,以增强结构和提供水浴夹层。同时,水浴夹层为捕集阱提供恒温水浴,稳定于20℃。捕集阱恒温单元保障了待测组分在恒定温度下被捕捉,避免温度变化导致的样品捕集效率波动;且除泡功能避免了气泡对检测的干扰。所述冷凝装置包括循环水泵、制冷片、小型水箱、风扇、散热片和温度传感器,并通过硅胶管将水泵、水箱与螺旋管捕集阱外部冷凝水相连。In the sampling module, the sampling pipeline adopts 1/4" PTFE hard tube, uses a vacuum diaphragm pump to extract air samples, passes them into the spiral tube trap, and uses 1/16" PTFE tubes to pass into The dilute sulfuric acid solution with pH=5 in the spiral tube trap is used as the formaldehyde absorption solution. Among them, the core component of the spiral tube trap is a glass tube with an inner diameter of 2mm, which is wound into a spiral structure with a diameter of 22mm. One end (left end) is the inlet of gas and liquid, and the other end (right end) is the gas-liquid separation chamber. Clad with rigid glass tubing for structural reinforcement and to provide intercalation to the water bath. At the same time, the water bath interlayer provides a constant temperature water bath for the trap, which is stable at 20°C. The trap constant temperature unit ensures that the components to be tested are captured at a constant temperature, avoiding fluctuations in sample capture efficiency caused by temperature changes; and the defoaming function avoids the interference of air bubbles on the detection. The condensing device includes a circulating water pump, a refrigerating sheet, a small water tank, a fan, a cooling fin and a temperature sensor, and the water pump and the water tank are connected to the external condensed water of the spiral tube trap through a silicone tube.
所述反应模块中,衍生液与吸收甲醛的待测溶液同时通过混合三通(聚四氟三通)进入反应釜中,在高温条件下发生衍生化反应生成黄色物质DDL。由于该反应在室温下反应较缓慢,所述反应釜具体采用长度为90cm的四氟管盘绕在导热金属圆柱体上制成,内置的加热棒和温度传感器将反应釜温度控制于75℃以加速衍生化反应。In the reaction module, the derivatization liquid and the solution to be tested for absorbing formaldehyde enter the reaction kettle through the mixing tee (polytetrafluoro tee) at the same time, and a derivatization reaction occurs under high temperature conditions to generate a yellow substance DDL. Since the reaction is relatively slow at room temperature, the reaction kettle is specifically made of a 90cm-long tetrafluoro tube coiled on a heat-conducting metal cylinder. The built-in heating rod and temperature sensor control the temperature of the reaction kettle at 75°C to accelerate Derivatization reaction.
所述检测模块中,全反射长光程在线流通池的核心包括凸透镜、光路液路切入交汇端口、全反射石英毛细柱、光路液路切出分叉端口、恒温等模块。光经过透镜后进入光路液路切入交汇端口,使光路与液路混合;为减少死体积及加快测量响应时间,流通池采用全反射石英毛细柱,长度可在0.5~1.5米之间进行择优选择,通过选择不同长度的毛细柱可以获得不同的测量范围,当长度为1.0米时检测限为50pptv,检测范围为0-80ppbv。最后光路和液路均经光路液路切出分叉端口流出。为了避免光源发热量较大且频谱随温度波动比较明显,所述光源采用稳定的LED冷白光源。根据LED的频段特征,选取波长为415nm。所述除气泡装置为微型的除气泡装置,采用玻璃材质。温度不仅影响气体和液体的流速,温度的波动还可能使吸收液中气泡逸出,是数据失效的主要原因,此外,温度造成溶液折射率变化会扰动光的吸收。为了确保光谱吸收及染色反应的稳定性,所述光源和光电探测器置于大容量铝制恒温箱以保持检测单元的温度稳定性,所述恒温箱中内置加热片和温度传感器,温度控制精度在±0.1度。In the detection module, the core of the total reflection long optical path online flow cell includes modules such as a convex lens, an optical path liquid path cut-in intersection port, a total reflection quartz capillary column, an optical path liquid path cut-out bifurcation port, and a constant temperature. After passing through the lens, the light enters the optical path and the liquid path cuts into the intersection port, so that the optical path and the liquid path are mixed; in order to reduce the dead volume and speed up the measurement response time, the flow cell adopts a fully reflective quartz capillary column, and the length can be selected between 0.5 and 1.5 meters. , Different measurement ranges can be obtained by selecting capillary columns of different lengths. When the length is 1.0 meters, the detection limit is 50pptv, and the detection range is 0-80ppbv. Finally, both the optical path and the liquid path are cut out of the bifurcated port through the optical path and the liquid path to flow out. In order to avoid the large heat generation of the light source and the obvious fluctuation of the frequency spectrum with temperature, the light source adopts a stable LED cool white light source. According to the frequency band characteristics of the LED, the selected wavelength is 415nm. The air-removing device is a miniature air-removing device made of glass. Temperature not only affects the flow rate of gases and liquids, but temperature fluctuations may also cause air bubbles in the absorbing liquid to escape, which is the main cause of data failure. In addition, changes in the refractive index of the solution caused by temperature will disturb the absorption of light. In order to ensure the stability of spectral absorption and dyeing reaction, the light source and photodetector are placed in a large-capacity aluminum incubator to maintain the temperature stability of the detection unit. A heating plate and a temperature sensor are built in the incubator to ensure the accuracy of temperature control. within ±0.1 degrees.
所述溶液输送模块中四个电磁驱动微量泵用于精确配送吸收液、衍生液和待测组分。两个蠕动泵则分别用于输送清洗溶液和排出废液。Four electromagnetically driven micro-pumps in the solution delivery module are used to accurately distribute absorption liquid, derivative liquid and components to be measured. Two peristaltic pumps are used to transport the cleaning solution and discharge the waste liquid respectively.
利用上述环境空气中甲醛含量的在线监测装置实现环境空气中甲醛含量的在线监测,包括以下工作步骤:Utilizing the above-mentioned online monitoring device for formaldehyde content in ambient air to realize online monitoring of formaldehyde content in ambient air includes the following working steps:
1)溶液配制,配制稀硫酸溶液,作为吸收液:将15mL浓硫酸稀释至5L配制成吸收液,摇晃均匀;由385g醋酸铵、12.5mL冰醋酸和10mL乙酰丙酮用去离子水稀释至5L配制成衍生液并避光、低温保存,静置12小时。连续不间断的工作时,以上溶液的使用能够维持6天。1) Solution preparation, prepare dilute sulfuric acid solution as absorption solution: dilute 15mL concentrated sulfuric acid to 5L to prepare absorption solution, shake evenly; prepare by diluting 385g ammonium acetate, 12.5mL glacial acetic acid and 10mL acetylacetone to 5L with deionized water Make a derivative solution and store it in the dark, at low temperature, and let it stand for 12 hours. When working continuously without interruption, the use of the above solution can last for 6 days.
2)测量过程:测量过程包括甲醛的采样过程、反应过程和检测过程。2) Measurement process: The measurement process includes the sampling process, reaction process and detection process of formaldehyde.
采样过程包括获得零气和环境空气采样;The sampling process includes obtaining zero air and ambient air samples;
采用螺旋管捕集阱作为气态污染物捕集阱,以稀硫酸溶液作为吸收液,将采样样品中的甲醛转化为液相待测样品。具体实施时,采用玻璃螺旋管捕集阱。The spiral tube trap is used as the gaseous pollutant trap, and the dilute sulfuric acid solution is used as the absorption liquid to convert the formaldehyde in the sampling sample into a liquid phase sample to be tested. During specific implementation, a glass spiral tube trap is used.
采样过程中,零气或环境空气在真空隔膜泵的作用下通过螺旋管捕集阱,吸收液也从同一端进入螺旋管捕集阱,吸收液依靠液体张力在管壁形成液膜。由于在螺旋管捕集阱中气液界面增大,空气的气体组分在界面间扩散、传质,与吸收液充分接触吸收。然后在螺旋管捕集阱的另一端实现气液分离。同时,通过恒温水浴使采样温度稳定于20℃,恒温水浴能有效避免室外温差干扰,保证采样过程捕集效率的稳定性。对空气中甲醛的捕集效率达98.5%。During the sampling process, zero air or ambient air passes through the spiral tube trap under the action of the vacuum diaphragm pump, and the absorption liquid also enters the spiral tube trap from the same end, and the absorption liquid forms a liquid film on the tube wall by the liquid tension. Due to the increase of the gas-liquid interface in the spiral tube trap, the gas components of the air diffuse and mass transfer between the interfaces, and fully contact with the absorption liquid for absorption. Then the gas-liquid separation is realized at the other end of the spiral tube trap. At the same time, the sampling temperature is stabilized at 20°C through a constant temperature water bath, which can effectively avoid the interference of outdoor temperature difference and ensure the stability of the capture efficiency during the sampling process. The capture efficiency of formaldehyde in the air reaches 98.5%.
反应过程:使用乙酰丙酮(2,4-戊二酮)作为甲醛的衍生液,甲醛溶液(液相待测样品)与乙酰丙酮在高温条件下发生衍生化反应生成黄色化合物(3,5-二乙酰基-1,4-二氢二甲基吡啶(DDL)),在波长为415nm处的吸收最强。反应过程中温度可以调控,初始设定为75℃,高温加速了衍生化反应,可以提高稳定性和检测限。同时进行避光设计,防止光对反应稳定性的影响。Reaction process: using acetylacetone (2,4-pentanedione) as the derivative solution of formaldehyde, the formaldehyde solution (liquid phase sample to be tested) and acetylacetone undergo derivatization reaction under high temperature conditions to generate a yellow compound (3,5-dione Acetyl-1,4-dihydrolutidine (DDL)) has the strongest absorption at a wavelength of 415nm. The temperature can be adjusted during the reaction, and the initial setting is 75°C. High temperature accelerates the derivatization reaction, which can improve the stability and detection limit. At the same time, it is designed to avoid light to prevent the influence of light on the reaction stability.
检测过程:采用全反射长光程在线流通池使溶液在全反射流通池中多次反射吸收光,从而提高检测灵敏度和检测限。采样过程中吸收了待测组分(甲醛)的液相待测样品,经反应过程的衍生化生成DDL后,进入到全反射长光程在线流通池,光源产生的特征波长光被待测组分DDL吸收,之后光信号强度从全反射长光程在线流通池光路出口被光电探测器检出。本实用新型采用415nm的单一波长光源。另外,全反射长光程在线流通池前端的除泡功能避免了气泡对后端光学检测的干扰;同时,检测过程的温度恒定控制于35℃,确保光信号强度检测的稳定性;可获得最佳检测限为50pptv。Detection process: The total reflection long optical path online flow cell is used to make the solution reflect and absorb light multiple times in the total reflection flow cell, thereby improving the detection sensitivity and detection limit. During the sampling process, the liquid-phase sample that absorbs the component to be tested (formaldehyde) is derivatized in the reaction process to generate DDL, and enters the total reflection long optical path online flow cell, and the characteristic wavelength light generated by the light source is absorbed by the sample to be tested. DDL absorption, after which the optical signal intensity is detected by the photodetector from the outlet of the optical path of the total reflection long optical path online flow cell. The utility model adopts a single wavelength light source of 415nm. In addition, the defoaming function at the front end of the total reflection long optical path online flow cell avoids the interference of air bubbles on the optical detection at the rear end; at the same time, the temperature during the detection process is kept constant at 35°C to ensure the stability of the optical signal intensity detection; The best detection limit is 50pptv.
3)标零过程:在步骤2)之前需进行30分钟零点标定。标零时,空气首先通过除甲醛装置获取零气,经步骤2)测量得到的光信号强度即为零点的光信号强度。3) Zero calibration process: 30 minutes of zero calibration is required before step 2). When zeroing, the air first passes through the formaldehyde removal device to obtain zero air, and the optical signal intensity measured in step 2) is the optical signal intensity at the zero point.
4)标定过程:每次更换步骤1)配制的溶液后需进行标定过程。4) Calibration process: The calibration process is required after each replacement of the solution prepared in step 1).
标定过程中,空气首先通过除甲醛装置获取零气。之后进行步骤3)获得零点的光信号强度;再将步骤2)中吸收液换成实验室制备的梯度浓度的甲醛标准溶液,对零气经步骤2)进行测量,得到甲醛标准溶液光信号强度。During the calibration process, the air first passes through the formaldehyde removal device to obtain zero gas. Then carry out step 3) to obtain the optical signal intensity of zero point; then change the absorbing liquid in step 2) into the formaldehyde standard solution of gradient concentration prepared in the laboratory, and measure the zero gas through step 2) to obtain the formaldehyde standard solution optical signal intensity .
5)甲醛含量计算:步骤4)得到甲醛标准溶液光信号强度和零点光信号强度,此时根据朗伯比尔定律,甲醛的浓度大小与吸光度成正比,吸光度与浓度关系如下:5) formaldehyde content calculation: step 4) obtain formaldehyde standard solution optical signal intensity and zero-point optical signal intensity, now according to Lambert Beer's law, the concentration size of formaldehyde is directly proportional to absorbance, and absorbance and concentration relation are as follows:
A=Kc 式2A=Kc Formula 2
式中,A为吸光度,I0为步骤4)得到的零点光信号强度,I为步骤4)中的甲醛标准溶液光信号强度,K为系数,c为甲醛的浓度。根据式1和式2,根据步骤4)测量得到的I0,I,和已知相应的c(甲醛标准溶液中甲醛的浓度),计算得到系数K。In the formula, A is the absorbance, I is the zero -point optical signal intensity obtained in step 4), I is the optical signal intensity of the formaldehyde standard solution in the step 4), K is a coefficient, and c is the concentration of formaldehyde. According to formula 1 and formula 2, according to step 4) measured I 0 , I, and known corresponding c (concentration of formaldehyde in the formaldehyde standard solution), the coefficient K is calculated.
利用得到的系数K,可以根据步骤2)测量得到的某环境空气样本的光信号强度,利用式1和式2计算得到该样本中甲醛的含量,即液相甲醛浓度。Using the obtained coefficient K, the light signal intensity of an ambient air sample obtained by measuring according to step 2) can be calculated by using formula 1 and formula 2 to obtain the formaldehyde content in the sample, that is, the concentration of formaldehyde in the liquid phase.
另外,需将液相甲醛浓度换算为气相甲醛浓度,即为环境空气甲醛浓度,换算方法如下:In addition, the concentration of formaldehyde in the liquid phase needs to be converted to the concentration of formaldehyde in the gas phase, that is, the concentration of formaldehyde in the ambient air. The conversion method is as follows:
式中,P为大气压(101kPa),MHCHO为甲醛的摩尔质量(g/mol),R为8.314Pa·m3·mol-1·K-1,T为采样模块中螺旋管捕集阱中的温度(单位为K),Fl为液体流速(0.5mL/min),Fg为气体流量(0.7L/min),γ为螺旋管捕集阱对空气甲醛的捕集效率(本实用新型为98.5%)。In the formula, P is the atmospheric pressure (101kPa), M HCHO is the molar mass of formaldehyde (g/mol), R is 8.314Pa·m 3 ·mol -1 ·K -1 , T is the spiral tube trap in the sampling module The temperature (unit is K), F l is the liquid flow rate (0.5mL/min), F g is the gas flow rate (0.7L/min), and γ is the trapping efficiency of the spiral tube trap to air formaldehyde (the utility model is 98.5%).
与现有技术相比,本实用新型的有益效果是:Compared with the prior art, the beneficial effects of the utility model are:
本实用新型提供一种环境空气中甲醛含量的在线监测装置,The utility model provides an online monitoring device for formaldehyde content in ambient air.
基于气体扩散吸收捕集的湿化学法和吸收光谱检测技术,实现对环境空气种甲醛含量进行实时在线检测,可现场在线连续监测环境空气中的甲醛含量。Based on the wet chemical method and absorption spectrum detection technology of gas diffusion absorption and capture, real-time online detection of formaldehyde content in ambient air can be realized, and the formaldehyde content in ambient air can be continuously monitored on-site and online.
本实用新型是一种结合湿化学法和光谱法的环境空气甲醛在线监测技术,为大气中甲醛在线测量提供一种新型测量技术手段。与现有技术相比,本实用新型的技术优势主要体现为如下几方面:The utility model is an on-line monitoring technology of formaldehyde in ambient air combined with wet chemical method and spectroscopic method, and provides a new measurement technical means for on-line measurement of formaldehyde in the atmosphere. Compared with the prior art, the technical advantages of the utility model are mainly reflected in the following aspects:
(一)结合化学法和光学法,利用湿式气体扩散捕集原理和全反射长光程在线流通池技术,实现大气中低浓度甲醛的快速、在线和连续测量,响应速度比化学法更快(响应时间为3分钟,数据时间分辨率可达秒级),测量检测限比光学法高,受干扰程度相比传感器法显著降低。(1) Combining chemical and optical methods, using the principle of wet gas diffusion and trapping and total reflection long optical path online flow cell technology, to achieve rapid, online and continuous measurement of low-concentration formaldehyde in the atmosphere, and the response speed is faster than chemical methods ( The response time is 3 minutes, and the data time resolution can reach the second level), the detection limit of the measurement is higher than that of the optical method, and the degree of interference is significantly lower than that of the sensor method.
(二)采用玻璃螺旋管作为气态甲醛捕集阱,对空气中甲醛的捕集效率高达98.5%,具有捕集效率高、体积小、结构简单、可放置室外等特性。(2) Using a glass spiral tube as a gaseous formaldehyde trap, the trapping efficiency for formaldehyde in the air is as high as 98.5%. It has the characteristics of high trapping efficiency, small size, simple structure, and can be placed outdoors.
(三)通过长光程在线流通池的应用,利用吸收光谱法,提高了湿化学与吸收光谱技术对甲醛检测的灵敏度和检测限,适用于多种环境下(室外如市区和工业区、室内等)空气甲醛的在线、连续监测。(3) Through the application of long optical path online flow cell, the sensitivity and detection limit of formaldehyde detection by wet chemistry and absorption spectroscopy technology are improved by using absorption spectroscopy, which is suitable for various environments (outdoors such as urban areas and industrial areas, Indoor, etc.) online and continuous monitoring of air formaldehyde.
(四)通过多级精准的温度控制确保了准确、稳定的测量。(4) Accurate and stable measurement is ensured through multi-level precise temperature control.
(五)通过电磁驱动微量泵精准地控制溶液流速,减少日常维护和由于蠕动泵老化导致的数据丢失。(5) The flow rate of the solution is precisely controlled by the electromagnetically driven micropump, reducing routine maintenance and data loss due to aging of the peristaltic pump.
附图说明Description of drawings
图1为本实用新型实施例提供的环境空气甲醛在线监测装置的外观图;Fig. 1 is the exterior view of the ambient air formaldehyde on-line monitoring device provided by the utility model embodiment;
图2为本实用新型实施例提供的环境空气甲醛在线监测装置的组成结构图;Fig. 2 is the structural diagram of the ambient air formaldehyde on-line monitoring device provided by the utility model embodiment;
图3为本实用新型实施例提供的环境空气甲醛在线监测装置中螺旋管捕集阱的结构示意图;Fig. 3 is the schematic structural diagram of the spiral tube trap in the ambient air formaldehyde on-line monitoring device provided by the embodiment of the present invention;
图4为本实用新型实施例提供的环境空气甲醛在线监测装置中反应釜的结构示意图;Fig. 4 is the schematic structural view of the reactor in the ambient air formaldehyde on-line monitoring device provided by the utility model embodiment;
图1~图4中,1—可操作窗口;2—显示屏;3—除甲醛装置;4—电磁三通阀;5—颗粒物过滤头;6—冷凝装置;7—螺旋管捕集阱;8—反应釜;9—除气泡装置;10—全反射长光程在线流通池;11—光源;12—光电探测器;13—恒温箱;14—气液分离装置;15—干燥管;16—气体流量计;17—真空隔膜泵;18、19、20、21—分别为第一~第四电磁驱动微量泵;22、23—第一蠕动泵、第二蠕动泵;24—冷凝水循环泵;25—温度传感器;26—加热棒;27—加热片;28—三通;29—螺旋管;30—水浴夹层;31—气液分离腔;32—反应釜外壳;33—隔热材料;34—导热金属;35—四氟管;36—温度传感器;37—加热棒。In Figures 1 to 4, 1—operable window; 2—display screen; 3—formaldehyde removal device; 4—electromagnetic three-way valve; 5—particulate filter head; 6—condensing device; 7—coil trap; 8—reactor; 9—bubble removal device; 10—total reflection long optical path online flow cell; 11—light source; 12—photoelectric detector; 13—incubator; 14—gas-liquid separation device; 15—drying tube; 16 —gas flowmeter; 17—vacuum diaphragm pump; 18, 19, 20, 21—respectively the first to fourth electromagnetically driven micropumps; 22, 23—first peristaltic pump, second peristaltic pump; 24—condensate water circulation pump ;25—temperature sensor; 26—heating rod; 27—heating plate; 28—tee; 29—spiral tube; 30—water bath interlayer; 31—gas-liquid separation chamber; 32—reactor shell; 33—insulation material; 34—heat conducting metal; 35—tetrafluoro tube; 36—temperature sensor; 37—heating rod.
具体实施方式Detailed ways
下面结合附图,通过实施例进一步描述本实用新型,但不以任何方式限制本实用新型的范围。Below in conjunction with accompanying drawing, further describe the utility model through the embodiment, but do not limit the scope of the utility model in any way.
本实用新型提供一种环境空气中甲醛含量的在线监测装置,基于气体扩散吸收捕集的湿化学法和吸收光谱检测技术,实现对环境空气种甲醛含量进行实时在线检测,可现场在线连续监测环境空气中的甲醛含量。本实用新型采用全反射长光程在线流通池溶液在全反射流通池中多次反射吸收光,根据吸光度即可实现环境空气中甲醛含量的在线监测,提高检测灵敏度和检测限。本实用新型提供利用湿式气体扩散捕集原理和长光程在线流通池技术的环境空气甲醛在线监测装置,采用电磁驱动微量泵,对微量溶液进行精准控制,并减少日常维护。The utility model provides an online monitoring device for formaldehyde content in ambient air. Based on the wet chemical method of gas diffusion, absorption and capture and absorption spectrum detection technology, real-time online detection of formaldehyde content in ambient air can be realized, and the environment can be continuously monitored on-site. Formaldehyde content in the air. The utility model adopts the solution of the total reflection long optical path online flow cell to reflect and absorb light multiple times in the total reflection flow cell, and the online monitoring of the formaldehyde content in the ambient air can be realized according to the absorbance, and the detection sensitivity and detection limit are improved. The utility model provides an ambient air formaldehyde online monitoring device utilizing the principle of wet gas diffusion and trapping and long optical path online flow cell technology, adopts an electromagnetically driven micropump, precisely controls the microsolution, and reduces daily maintenance.
图1为本实用新型实施例提供的环境空气甲醛在线监测装置的外观图;图2所示为装置的组成结构。利用该装置对环境空气中甲醛含量进行在线监测,具体实施如下:将15mL浓硫酸稀释至5L配制成吸收液,摇晃均匀;由385g醋酸铵、12.5mL冰醋酸和10mL乙酰丙酮用去离子水稀释至5L配制成衍生液并避光、低温保存,静置12小时。Fig. 1 is the exterior view of the ambient air formaldehyde on-line monitoring device provided by the embodiment of the present invention; Fig. 2 shows the composition and structure of the device. Use this device to monitor the formaldehyde content in the ambient air online. The specific implementation is as follows: dilute 15mL of concentrated sulfuric acid to 5L to prepare an absorption solution, and shake it evenly; Make up to 5L to prepare a derivative solution and store it in the dark, at low temperature, and let it stand for 12 hours.
采样时,电磁三通阀4切换到采样模式,样气直接经过颗粒物过滤头5去除颗粒物,在真空隔膜泵17的作用下,通过螺旋管捕集阱7(图3所示为本实施例中螺旋管捕集阱的结构),同时吸收液在第一电磁驱动微量泵18和气流的同时作用下进入螺旋管中并在管壁形成液膜,甲醛组分被吸收转移至液相。通过恒温水浴控制捕集温度在20℃。气流通过气体流量计16和气泵17前需经过气液分离装置14和干燥管15除去气体中水分,以防积液损坏流量计和气泵,废液通过第二蠕动泵23排出。液相待测样品和衍生液分别在第二电磁驱动微量泵19和第三电磁驱动微量泵20的控制作用下通过小型四氟三通并混合,混合后待测样品进入反应釜8中进行染色反应(图4所示为本实施例中反应釜的结构),反应温度恒定于75℃。进入检测模块前,待测样品通入微型气泡去除装置9,以避免气泡对测量的影响。去除气泡后,第四电磁驱动微量泵21将待测样品推入全反射长光程在线流通池10中,在415nm的特定光源11下,光电探测器12检出待测样品的光信号强度。检测模块温度恒定控制于35℃。When sampling, the electromagnetic three-way valve 4 is switched to the sampling mode, and the sample gas directly passes through the particulate matter filter head 5 to remove particulate matter, and under the action of the vacuum diaphragm pump 17, passes through the spiral tube trap 7 (shown in FIG. The structure of the helical tube trap), while the absorption liquid enters the helical tube under the simultaneous action of the first electromagnetically driven micropump 18 and the air flow and forms a liquid film on the tube wall, and the formaldehyde component is absorbed and transferred to the liquid phase. The trapping temperature was controlled at 20 °C by a constant temperature water bath. Before the gas flow passes through the gas flow meter 16 and the gas pump 17, it needs to pass through the gas-liquid separation device 14 and the drying pipe 15 to remove the moisture in the gas, so as to prevent the damage of the flow meter and the gas pump due to accumulation of liquid, and the waste liquid is discharged through the second peristaltic pump 23. In the liquid phase, the sample to be tested and the derivative liquid are respectively passed through the small PTFE tee under the control of the second electromagnetically driven micropump 19 and the third electromagnetically driven micropump 20 and mixed. After mixing, the sample to be tested enters the reaction kettle 8 for dyeing Reaction (Figure 4 shows the structure of the reactor in this embodiment), the reaction temperature is constant at 75°C. Before entering the detection module, the sample to be tested passes through the micro-bubble removal device 9 to avoid the influence of bubbles on the measurement. After removing air bubbles, the fourth electromagnetically driven micropump 21 pushes the sample to be tested into the total reflection long optical path online flow cell 10, and under the specific light source 11 of 415 nm, the photodetector 12 detects the optical signal intensity of the sample to be tested. The temperature of the detection module was kept constant at 35°C.
标零时,电磁三通阀4切入除甲醛装置3通道从而获取零气。零气经过颗粒物过滤头3去除颗粒物,在真空隔膜泵17的作用下,通过螺旋管捕集阱7,同时吸收液在第一电磁驱动微量泵18和气流的同时作用下进入螺旋管中。气流通过依次通过When marking zero, the electromagnetic three-way valve 4 cuts into the channel 3 of the formaldehyde removal device to obtain zero gas. The zero air passes through the particulate matter filter head 3 to remove particulate matter, and under the action of the vacuum diaphragm pump 17, passes through the helical tube trap 7, while the absorption liquid enters into the helical tube under the simultaneous action of the first electromagnetically driven micropump 18 and air flow. air flow through
气液分离装置14、干燥管15、气体流量计16和气泵17后排出,废液通过第二蠕动泵23排出。吸收液和衍生液分别在第二电磁驱动微量泵19和第三电磁驱动微量泵20的控制作用下混合后进入反应釜8中。再通入微型气泡去除装置9后,进入检测模块进行零点标定。液相标定时,相同地,电磁三通阀4切入除甲醛装置3通道从而获取零气,另设置一系列梯度浓度的甲醛溶液,在第一电磁驱动微量泵18和气流的同时作用下进入螺旋管中。甲醛溶液和衍生液通过相同的控制和反应步骤依次进入反应模块和检测模块,最后吸光信号被检出。标零和标定时,反应模块、检测模块和溶液输送模块所有控制与采样时相同。The gas-liquid separation device 14 , the drying pipe 15 , the gas flow meter 16 and the gas pump 17 are then discharged, and the waste liquid is discharged through the second peristaltic pump 23 . The absorption liquid and the derivative liquid are mixed under the control of the second electromagnetically driven micropump 19 and the third electromagnetically driven micropump 20 respectively, and then enter the reaction vessel 8 . After passing through the micro-bubble removal device 9, it enters the detection module for zero point calibration. In the liquid phase calibration, similarly, the electromagnetic three-way valve 4 is cut into the channel 3 of the formaldehyde removal device to obtain zero gas, and a series of formaldehyde solutions with gradient concentrations are set, and enter the spiral under the simultaneous action of the first electromagnetically driven micropump 18 and the air flow. tube. The formaldehyde solution and the derivative solution enter the reaction module and the detection module sequentially through the same control and reaction steps, and finally the light absorption signal is detected. During zeroing and calibration, all controls of the reaction module, detection module and solution delivery module are the same as those during sampling.
清洗时,气泵17和第一至第四电磁驱动微量泵18~21停止工作,第一蠕动泵22开启,配制质量浓度为1mol/L的氢氧化钾溶液作为清洗液,清洗液在蠕动泵的作用下进入长光程检测池中进行清洗检测池内管路。During cleaning, the air pump 17 and the first to fourth electromagnetically driven micropumps 18 to 21 stop working, the first peristaltic pump 22 is turned on, and a potassium hydroxide solution with a mass concentration of 1 mol/L is prepared as a cleaning solution. Under the action, it enters the long optical path detection pool to clean the pipeline in the detection pool.
需要注意的是,公布实施例的目的在于帮助进一步理解本实用新型,但是本领域的技术人员可以理解:在不脱离本实用新型及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本实用新型不应局限于实施例所公开的内容,本实用新型要求保护的范围以权利要求书界定的范围为准。It should be noted that the purpose of the disclosed embodiments is to help further understand the utility model, but those skilled in the art can understand that: without departing from the spirit and scope of the utility model and the appended claims, various replacements and modifications are possible. It is possible. Therefore, the utility model should not be limited to the content disclosed in the embodiments, and the protection scope of the utility model is subject to the scope defined in the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920001991.3U CN209570499U (en) | 2019-01-02 | 2019-01-02 | On-line monitoring device for formaldehyde content in ambient air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920001991.3U CN209570499U (en) | 2019-01-02 | 2019-01-02 | On-line monitoring device for formaldehyde content in ambient air |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209570499U true CN209570499U (en) | 2019-11-01 |
Family
ID=68331760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920001991.3U Active CN209570499U (en) | 2019-01-02 | 2019-01-02 | On-line monitoring device for formaldehyde content in ambient air |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209570499U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109459401A (en) * | 2019-01-02 | 2019-03-12 | 北京大学 | The on-line monitoring method and device of Formaldehyde Determination |
CN110926888A (en) * | 2019-12-10 | 2020-03-27 | 武汉羽芒智能科技有限公司 | Constant-temperature constant-current continuous automatic air sampler adaptable to low-temperature environment |
CN114199778A (en) * | 2021-11-27 | 2022-03-18 | 珠海鼎正国信科技有限公司 | Benzene series monitoring device and monitoring method thereof |
CN115165765A (en) * | 2022-06-01 | 2022-10-11 | 广州伊创科技股份有限公司 | Air formaldehyde online detection method |
-
2019
- 2019-01-02 CN CN201920001991.3U patent/CN209570499U/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109459401A (en) * | 2019-01-02 | 2019-03-12 | 北京大学 | The on-line monitoring method and device of Formaldehyde Determination |
CN110926888A (en) * | 2019-12-10 | 2020-03-27 | 武汉羽芒智能科技有限公司 | Constant-temperature constant-current continuous automatic air sampler adaptable to low-temperature environment |
CN110926888B (en) * | 2019-12-10 | 2020-12-22 | 安徽风雷机械设备制造有限公司 | Constant-temperature constant-current continuous automatic air sampler adaptable to low-temperature environment |
CN114199778A (en) * | 2021-11-27 | 2022-03-18 | 珠海鼎正国信科技有限公司 | Benzene series monitoring device and monitoring method thereof |
CN115165765A (en) * | 2022-06-01 | 2022-10-11 | 广州伊创科技股份有限公司 | Air formaldehyde online detection method |
CN115165765B (en) * | 2022-06-01 | 2024-03-29 | 广州伊创科技股份有限公司 | Online detection method for air formaldehyde |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109459401A (en) | The on-line monitoring method and device of Formaldehyde Determination | |
CN209570499U (en) | On-line monitoring device for formaldehyde content in ambient air | |
CN106769929B (en) | Atmospheric gaseous nitric acid online measurement method and device based on flow injection analysis | |
CN104062247B (en) | The measurement apparatus of a kind of high accuracy in-situ detection sea water pH and measuring method | |
CN105954192B (en) | A kind of double light path water body environment on-line measurement device based on spectral measurement methods | |
CN106290163B (en) | On-line monitoring system and monitoring method of nitrogen pentoxide and nitric acid concentration in atmosphere | |
CN105067542B (en) | Ship borne type pH and pCO based on photometry2Measuring device and measuring method | |
Bianchi et al. | On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber | |
CN212622243U (en) | Simultaneous online monitoring device for gas phase and particulate phase formaldehyde content in air | |
CN201449368U (en) | Sample-introducing and cleaning device for comprehensive analyzer | |
CN109799204B (en) | Low concentration COD measuring device based on spectrum method | |
CN101852723B (en) | Sea-air carbon dioxide flux measuring device and measuring method thereof | |
CN112378905B (en) | Accurate online monitoring method and system for ammonia content of ambient air | |
CN111562257A (en) | Online detection method and device for content of ultralow-concentration ammonia gas | |
CN102967588A (en) | Formaldehyde fluorescence detector | |
CN111610161B (en) | Circulation system, seawater nutrient salt in-situ measurement device and measurement method | |
CN111812081B (en) | Synchronous on-line monitoring method and device for formaldehyde content of gas phase and particle phase in air | |
CN104964940A (en) | Detection device and method for rapidly detecting content of total phosphorus in water sample | |
CN212622245U (en) | An online detection device for ultra-low concentration ammonia gas content | |
CN110687062B (en) | System and method for detecting content of sulfur trioxide in flue gas | |
CN219496241U (en) | An ion selective electrode detection chlorine ion analyzer | |
CN214584920U (en) | An accurate online monitoring system for ammonia content in ambient air | |
CN101169451B (en) | Integrated multi-component fermentation tail gas on-line detection device | |
CN103487416A (en) | Fluorescent sensor for detecting zinc ions based on asymmetrical porphyrin fluorescence ratio | |
CN205038147U (en) | A flow -through cell and adjustable optical distance circulation formula beam split detecting system for divide optical detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |