CN209435132U - power conversion device - Google Patents
power conversion device Download PDFInfo
- Publication number
- CN209435132U CN209435132U CN201920291884.9U CN201920291884U CN209435132U CN 209435132 U CN209435132 U CN 209435132U CN 201920291884 U CN201920291884 U CN 201920291884U CN 209435132 U CN209435132 U CN 209435132U
- Authority
- CN
- China
- Prior art keywords
- conductive layer
- power conversion
- signal input
- drive signal
- switching element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 188
- 239000000758 substrate Substances 0.000 claims abstract description 96
- 125000006850 spacer group Chemical group 0.000 claims description 29
- 238000009413 insulation Methods 0.000 abstract description 18
- 239000004020 conductor Substances 0.000 description 37
- 238000010586 diagram Methods 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 17
- 238000004804 winding Methods 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- 238000009499 grossing Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 102100029781 NEDD8-activating enzyme E1 regulatory subunit Human genes 0.000 description 4
- 101100539461 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ULA1 gene Proteins 0.000 description 4
- 101100539459 Schizosaccharomyces pombe (strain 972 / ATCC 24843) uba5 gene Proteins 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
Landscapes
- Inverter Devices (AREA)
Abstract
本实用新型提供一种电力转换装置,既能确保必要的绝缘距离,又能使电力转换装置整体的尺寸小型化。电力转换装置包括:开关元件,在其中一面配置有第1电极与输入驱动信号的第2电极;第1基板,包括与所述第1电极相向的第1导电层、第1电绝缘层、及隔着所述第1电绝缘层而配置在所述第1导电层的相反侧的第2导电层;以及连接线,连接所述第2电极与驱动信号输入部,所述开关元件的所述第1电极电连接于所述第1基板的所述第1导电层,所述第1导电层中的所述驱动信号输入部侧的端部相较于所述第2导电层中的所述驱动信号输入部侧的端部而位于远离所述驱动信号输入部的一侧。
The utility model provides a power conversion device, which can not only ensure the necessary insulation distance, but also reduce the overall size of the power conversion device. The power conversion device includes: a switching element, one of which has a first electrode and a second electrode for inputting a driving signal; a first substrate, including a first conductive layer facing the first electrode, a first electrical insulating layer, and a second conductive layer arranged on the opposite side of the first conductive layer via the first electrically insulating layer; and a connection line connecting the second electrode and the drive signal input part, and the The first electrode is electrically connected to the first conductive layer of the first substrate, and the end of the first conductive layer on the side of the drive signal input part The end portion on the side of the drive signal input portion is located on a side away from the drive signal input portion.
Description
技术领域technical field
本实用新型涉及一种电力转换装置。The utility model relates to a power conversion device.
背景技术Background technique
以往,已知有一种包含混合动力电源控制单元(hybrid power control unit)的混合动力车辆(例如参照专利文献1)。所述混合动力电源控制单元包括:电源模块,内部配置有在动作中产生热的芯片(chip);以及冷却器,对来自电源模块的热进行冷却。在所述混合动力电源控制单元中,设有将芯片与电源模块予以接合的芯片焊接界面材料,形成内部焊料层。更低温的焊接界面材料将电力模块及冷却器予以粘合而形成外部焊料层。Conventionally, a hybrid vehicle including a hybrid power control unit is known (for example, refer to Patent Document 1). The hybrid power control unit includes: a power module internally provided with a chip that generates heat during operation; and a cooler that cools the heat from the power module. In the hybrid power supply control unit, there is provided a chip welding interface material for bonding the chip and the power module to form an internal solder layer. The lower temperature solder interface material bonds the power module and cooler to form the outer solder layer.
[现有技术文献][Prior art literature]
[专利文献][Patent Document]
专利文献1:美国专利申请公开第2017/0096066号说明书Patent Document 1: Specification of US Patent Application Publication No. 2017/0096066
实用新型内容Utility model content
[实用新型所要解决的问题][Problems to be solved by the utility model]
然而,所述混合动力车辆中,并未充分致力于应如何构成对开关元件的其中一面的第1电极电连接的构件、和与开关元件的其中一面的输入驱动信号的第2电极相连接的连接线,以既能确保必要的绝缘距离,又能使电源模块整体小型化。因而,所述混合动力车辆中,电源模块整体尚未充分小型化。However, in the above-mentioned hybrid vehicle, no sufficient attention has been paid to how to configure the member electrically connected to the first electrode on one side of the switching element and the second electrode connected to the input drive signal on one side of the switching element. Connecting wires to ensure the necessary insulation distance and reduce the size of the power module as a whole. Therefore, in the above-mentioned hybrid vehicle, the entire power module has not yet been sufficiently miniaturized.
鉴于所述问题,本实用新型的目的在于提供一种电力转换装置,既能确保必要的绝缘距离,又能使电力转换装置的尺寸小型化。In view of the above problems, an object of the present invention is to provide a power conversion device capable of reducing the size of the power conversion device while ensuring a necessary insulation distance.
[解决问题的技术手段][Technical means to solve the problem]
(1)本实用新型的一实施例的电力转换装置包括:开关元件,在其中一面配置有第1电极与输入驱动信号的第2电极;第1基板,包括与所述第1电极相向的第1导电层、第1电绝缘层、及隔着所述第1电绝缘层而配置在所述第1导电层的相反侧的第2导电层;以及连接线,连接所述第2电极与驱动信号输入部,所述开关元件的所述第1电极电连接于所述第1基板的所述第1导电层,所述第1导电层中的所述驱动信号输入部侧的端部相较于所述第2导电层中的所述驱动信号输入部侧的端部而位于远离所述驱动信号输入部的一侧。(1) A power conversion device according to an embodiment of the present invention includes: a switching element, a first electrode and a second electrode for inputting a driving signal are disposed on one side thereof; a first substrate includes a first electrode facing the first electrode. 1 conductive layer, a first electrically insulating layer, and a second conductive layer disposed on the opposite side of the first electrically insulating layer via the first electrically insulating layer; and a connecting line connecting the second electrode and the drive A signal input part, the first electrode of the switching element is electrically connected to the first conductive layer of the first substrate, and the end of the first conductive layer on the side of the drive signal input part is compared to An end portion of the second conductive layer on the side of the drive signal input portion is located on a side away from the drive signal input portion.
(2)所述(1)所述的电力转换装置中,也可为,在所述开关元件的另一面,配置有第3电极,所述电力转换装置还包括第2基板,所述第2基板包括与所述第3电极相向的第3导电层、第2电绝缘层、及隔着所述第2电绝缘层而配置在所述第3导电层的相反侧的第4导电层,所述第3电极电连接于所述第3导电层,所述第3导电层中的所述驱动信号输入部侧的端部相较于所述第4导电层中的所述驱动信号输入部侧的端部而位于远离所述驱动信号输入部的一侧。(2) In the power conversion device described in (1), a third electrode may be arranged on the other surface of the switching element, the power conversion device may further include a second substrate, and the second The substrate includes a third conductive layer facing the third electrode, a second electrical insulating layer, and a fourth conductive layer disposed on the opposite side of the third conductive layer via the second electrical insulating layer, so The third electrode is electrically connected to the third conductive layer, and the end of the third conductive layer on the side of the drive signal input part is compared with the end part of the fourth conductive layer on the side of the drive signal input part. The end portion is located on the side away from the drive signal input portion.
(3)所述(2)所述的电力转换装置中,也可为,所述第1导电层中的所述驱动信号输入部侧的端部相较于所述第3导电层中的所述驱动信号输入部侧的端部而位于远离所述驱动信号输入部的一侧。(3) In the power conversion device described in (2), the end portion of the first conductive layer on the side of the drive signal input unit may be smaller than the end portion of the third conductive layer. The end portion on the side of the drive signal input portion is located on the side away from the drive signal input portion.
(4)所述(1)至(3)中任一项所述的电力转换装置也可还包括:间隔部(spacer),具有电连接于所述第1导电层的其中一面、及电连接于所述第1电极的另一面,所述第1导电层的所述端部以所述第1导电层的厚度量以上,相较于所述间隔部中的所述驱动信号输入部侧的端部而位于所述驱动信号输入部侧。(4) The power conversion device described in any one of (1) to (3) may further include: a spacer having one side electrically connected to the first conductive layer, and an electrically connected On the other surface of the first electrode, the end portion of the first conductive layer is more than the thickness of the first conductive layer, compared to the side of the drive signal input portion in the spacer. The end portion is located on the side of the drive signal input portion.
[实用新型的效果][effect of utility model]
所述(1)所述的电力转换装置中,第1基板包括第1导电层、第1电绝缘层、及隔着第1电绝缘层而配置在第1导电层的相反侧的第2导电层。第1导电层电连接于配置在开关元件的其中一面的第1电极。驱动信号输入部通过连接线而连接至配置于开关元件的其中一面的第2电极。第1导电层中的驱动信号输入部侧的端部相较于第2导电层中的驱动信号输入部侧的端部而位于远离驱动信号输入部的一侧。In the power conversion device described in (1), the first substrate includes a first conductive layer, a first electrical insulating layer, and a second conductive layer disposed on the opposite side of the first conductive layer via the first electrical insulating layer. Floor. The first conductive layer is electrically connected to the first electrode arranged on one surface of the switching element. The drive signal input unit is connected to the second electrode arranged on one surface of the switching element through a connection line. An end of the first conductive layer on the drive signal input portion side is located farther from the drive signal input portion than an end of the second conductive layer on the drive signal input portion side.
因此,所述(1)所述的电力转换装置中,相较于第1导电层中的驱动信号输入部侧的端部与第2导电层中的驱动信号输入部侧的端部位于距驱动信号输入部为等距离处的情况,既能确保第1导电层与连接线之间的绝缘距离,又能使电力转换装置的尺寸小型化。详细而言,能够使电力转换装置的尺寸在开关元件的厚度方向上小型化。Therefore, in the power conversion device described in (1), the end of the first conductive layer on the side of the drive signal input part is located at a distance from the end of the second conductive layer on the side of the drive signal input part. When the signal input parts are equidistant, the insulation distance between the first conductive layer and the connection wire can be ensured, and the size of the power conversion device can be reduced. Specifically, the size of the power conversion device can be reduced in the thickness direction of the switching element.
即,所述(1)所述的电力转换装置中,既能确保必要的绝缘距离,又能使电力转换装置的尺寸小型化。That is, in the power conversion device described in (1), the size of the power conversion device can be reduced while ensuring a necessary insulation distance.
所述(2)所述的电力转换装置中,第2基板包括第3导电层、第2电绝缘层、及隔着第2电绝缘层而配置在第3导电层的相反侧的第4导电层。第3导电层电连接于配置在开关元件的另一面的第3电极。第3导电层中的驱动信号输入部侧的端部相较于第4导电层中的驱动信号输入部侧的端部而位于远离驱动信号输入部的一侧。In the power conversion device described in (2), the second substrate includes a third conductive layer, a second electrical insulating layer, and a fourth conductive layer disposed on the opposite side of the third conductive layer via the second electrical insulating layer. Floor. The third conductive layer is electrically connected to the third electrode arranged on the other surface of the switching element. An end of the third conductive layer on the drive signal input portion side is located farther from the drive signal input portion than an end of the fourth conductive layer on the drive signal input portion side.
因此,所述(2)所述的电力转换装置中,相较于第3导电层中的驱动信号输入部侧的端部与第4导电层中的驱动信号输入部侧的端部位于距驱动信号输入部为等距离处的情况,既能确保第3导电层与连接线之间的绝缘距离,又能使电力转换装置的尺寸小型化。详细而言,能够使电力转换装置的尺寸在开关元件的宽度方向上小型化。Therefore, in the power conversion device described in (2), the end portion on the drive signal input portion side of the third conductive layer is located farther from the drive signal input portion side than the end portion of the fourth conductive layer on the drive signal input portion side. When the signal input parts are equidistant, the insulation distance between the third conductive layer and the connection wire can be ensured, and the size of the power conversion device can be reduced. Specifically, the size of the power conversion device can be reduced in the width direction of the switching element.
所述(3)所述的电力转换装置中,第1导电层中的驱动信号输入部侧的端部相较于第3导电层中的驱动信号输入部侧的端部而位于远离驱动信号输入部的一侧。In the power conversion device described in (3), the end of the first conductive layer on the side of the drive signal input part is located farther from the drive signal input than the end of the third conductive layer on the side of the drive signal input part. side of the department.
因此,所述(3)所述的电力转换装置中,相较于第1导电层中的驱动信号输入部侧的端部与第3导电层中的驱动信号输入部侧的端部位于距驱动信号输入部为等距离处的情况,能够确保第1导电层与连接线之间的绝缘距离。Therefore, in the power conversion device described in (3), the end portion on the drive signal input portion side of the first conductive layer is located at a distance from the drive signal input portion side of the third conductive layer. When the signal input parts are equidistant, the insulation distance between the first conductive layer and the connecting wire can be ensured.
所述(4)所述的电力转换装置还包括电连接第1导电层与第1电极的间隔部。所述(4)所述的电力转换装置中,第1导电层中的驱动信号输入部侧的端部以第1导电层的厚度量以上,相较于间隔部中的驱动信号输入部侧的端部而位于驱动信号输入部侧。The power conversion device described in (4) further includes a spacer that electrically connects the first conductive layer and the first electrode. In the power conversion device described in (4), the end portion of the first conductive layer on the side of the drive signal input portion is equal to or greater than the thickness of the first conductive layer, compared to the end portion of the spacer portion on the side of the drive signal input portion. The end is located on the side of the drive signal input part.
因此,所述(4)所述的电力转换装置中,能够抑制开关元件产生的热的扩散受到阻碍的可能。Therefore, in the power conversion device described in (4), it is possible to suppress the possibility that the diffusion of heat generated by the switching element is hindered.
附图说明Description of drawings
图1是表示第1实施方式的电力转换装置的主要部分的概略性的铅垂剖面的一例的图。FIG. 1 is a diagram showing an example of a schematic vertical cross-section of a main part of a power conversion device according to a first embodiment.
图2是仅提取图1中的开关元件而表示的图。FIG. 2 is a diagram showing only switching elements in FIG. 1 .
图3是用于说明第1实施方式的电力转换装置的特征的图。FIG. 3 is a diagram for explaining features of the power conversion device according to the first embodiment.
图4是比较例的电力转换装置的主要部分的铅垂剖面图。4 is a vertical cross-sectional view of main parts of a power conversion device of a comparative example.
图5是第2实施方式的电力转换装置的一例的分解立体图。Fig. 5 is an exploded perspective view of an example of a power conversion device according to a second embodiment.
图6(A)及图6(B)是表示第2实施方式的电力转换装置的主要部分的概略性的铅垂剖面的一例的图。6(A) and 6(B) are diagrams showing an example of a schematic vertical cross-section of a main part of a power conversion device according to a second embodiment.
图7是仅提取图6(B)中的低侧开关元件而表示的图。FIG. 7 is a diagram showing only the low-side switching elements in FIG. 6(B) extracted.
图8是表示第3实施方式的电力转换装置的高侧的主要部分的概略性的铅垂剖面的一例的图。8 is a diagram showing an example of a schematic vertical cross-section of main parts on the high side of a power conversion device according to a third embodiment.
图9是表示第3实施方式的电力转换装置的低侧的主要部分的概略性的铅垂剖面的一例的图。9 is a diagram showing an example of a schematic vertical cross-section of main parts on the lower side of a power conversion device according to a third embodiment.
图10是表示可适用第1实施方式至第3实施方式的电力转换装置的车辆的一部的一例的图。FIG. 10 is a diagram showing an example of a part of a vehicle to which the power conversion devices of the first to third embodiments are applicable.
[符号的说明][explanation of the symbol]
1:电力转换装置1: Power conversion device
UH:开关元件UH: switching element
UHA:面UHA: face
UHA1:电极UHA1: electrode
UHB:面UHB: surface
UHB1:电极UHB1: electrode
UHB2:电极UHB2: electrode
UL:开关元件UL: switching element
ULA:面ULA: surface
ULA1:电极ULA1: electrode
ULB:面ULB: surface
ULB1:电极ULB1: electrode
ULB2:电极ULB2: electrode
SA:基板SA: Substrate
SA1:电绝缘层SA1: electrical insulating layer
SA2A:导电层SA2A: Conductive layer
SA2A1:端部SA2A1: end
tSA2A:厚度tSA2A: Thickness
X:突出量X: amount of protrusion
PSA:上端位置PSA: upper position
SA2B:导电层SA2B: Conductive layer
SA2B1:端部SA2B1: end
SA3:导电层SA3: Conductive layer
SA3A:端部SA3A: end
SA3B:端部SA3B: end
SB:基板SB: Substrate
SB1:电绝缘层SB1: electrical insulating layer
SB2:导电层SB2: conductive layer
SB2A:端部SB2A: end
SB2B:端部SB2B: end
SB3A:导电层SB3A: Conductive layer
SB3A1:端部SB3A1: end
SB3B:导电层SB3B: Conductive layer
SB3B1:端部SB3B1: end
SH:驱动信号输入部SH: Drive signal input section
SL:驱动信号输入部SL: Drive signal input section
SPUH:间隔部SPUH: septal part
SUH1:端部SUH1: end
PSP:上端位置PSP: upper position
SPUL:间隔部SPUL: Partition
SPUL1:端部SPUL1: end
WH:连接线WH: connection line
WL:连接线WL: connection line
10:车辆10: Vehicle
具体实施方式Detailed ways
以下,参照附图来说明本实用新型的电力转换装置的实施方式。Hereinafter, embodiments of the power conversion device of the present invention will be described with reference to the drawings.
<第1实施方式><First Embodiment>
图1是表示第1实施方式的电力转换装置1的主要部分的概略性的铅垂剖面的一例的图。图2是仅提取图1中的开关元件UH而表示的图。图3是用于说明第1实施方式的电力转换装置1的特征的图。图4是比较例的电力转换装置1的主要部分的铅垂剖面图。FIG. 1 is a diagram showing an example of a schematic vertical cross-section of a main part of a power conversion device 1 according to a first embodiment. FIG. 2 is a diagram showing only the switching element UH in FIG. 1 . FIG. 3 is a diagram illustrating features of the power conversion device 1 according to the first embodiment. FIG. 4 is a vertical cross-sectional view of main parts of a power conversion device 1 of a comparative example.
图1至图3所示的示例中,电力转换装置1包括开关元件UH、基板SA、基板SB、驱动信号输入部SH、间隔部SPUH及连接线WH。In the example shown in FIGS. 1 to 3 , the power conversion device 1 includes a switching element UH, a substrate SA, a substrate SB, a drive signal input portion SH, a spacer portion SPUH, and a connection wire WH.
开关元件UH例如为绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应晶体管(Metal Oxide Semi-conductor FieldEffectTransistor,MOSFET)等之类的开关元件。The switch element UH is, for example, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a metal oxide semiconductor field effect transistor (Metal Oxide Semi-conductor Field Effect Transistor, MOSFET) and the like.
如图2所示,在开关元件UH的其中一(图2的上侧)面UHB上,配置有电极UHB1、及输入驱动信号的电极UHB2。在开关元件UH的另一(图2的下侧)面UHA上,配置有电极UHA1。As shown in FIG. 2 , on one (upper side in FIG. 2 ) surface UHB of the switching element UH, an electrode UHB1 and an electrode UHB2 for inputting a drive signal are disposed. On the other (lower side in FIG. 2 ) surface UHA of switching element UH, electrode UHA1 is arranged.
图1至图3所示的示例中,基板SA包括与开关元件UH的电极UHB1相向的导电层SA2A、电绝缘层SA1、及隔着电绝缘层SA1而配置在导电层SA2A的相反侧的导电层SA3。开关元件UH的电极UHB2例如通过接合线(bonding wire)等之类的连接线WH而连接于驱动信号输入部SH。开关元件UH的电极UHB1经由以导电体所形成的间隔部SPUH而电连接于基板SA的导电层SA2A。In the example shown in FIGS. 1 to 3 , the substrate SA includes a conductive layer SA2A facing the electrode UHB1 of the switching element UH, an electrical insulating layer SA1 , and a conductive layer SA1 arranged on the opposite side of the conductive layer SA2A through the electrical insulating layer SA1. Layer SA3. The electrode UHB2 of the switching element UH is connected to the drive signal input part SH via a connection wire WH such as a bonding wire, for example. Electrode UHB1 of switching element UH is electrically connected to conductive layer SA2A of substrate SA via spacer SPUH formed of a conductor.
图1至图3所示的示例中,基板SB包括与开关元件UH的电极UHA1相向的导电层SB3A、电绝缘层SB1、及隔着电绝缘层SB1而配置在导电层SB3A的相反侧的导电层SB2。开关元件UH的电极UHA1电连接于基板SB的导电层SB3A。In the example shown in FIGS. 1 to 3 , the substrate SB includes a conductive layer SB3A facing the electrode UHA1 of the switching element UH, an electrical insulating layer SB1 , and a conductive layer SB3A arranged on the opposite side of the conductive layer SB3A through the electrical insulating layer SB1 . Layer SB2. The electrode UHA1 of the switching element UH is electrically connected to the conductive layer SB3A of the substrate SB.
基板SA及基板SB各自例如为直接覆铜(Direct Copper Bonding,DCB)基板。即,DCB基板是包括陶瓷基板、及设在陶瓷基板的厚度方向两侧的铜板而构成。两铜板从厚度方向的两侧包夹陶瓷基板,并且通过陶瓷基板而电绝缘。Each of the substrate SA and the substrate SB is, for example, a direct copper bonding (DCB) substrate. That is, the DCB substrate includes a ceramic substrate and copper plates provided on both sides in the thickness direction of the ceramic substrate. The two copper plates sandwich the ceramic substrate from both sides in the thickness direction, and are electrically insulated by the ceramic substrate.
在基板SA的外侧(图1的上侧)与基板SB的外侧(图1的下侧),分别配置有散热器(未图示),通过此散热器来冷却开关元件UH。Heat sinks (not shown) are disposed on the outer sides of the substrate SA (upper side in FIG. 1 ) and the outer side of the substrate SB (lower side in FIG. 1 ), respectively, and the switching elements UH are cooled by the heat sinks.
图1至图3所示的示例中,开关元件UH的电极UHA1电连接于具有电绝缘层SB1、导电层SB3A及导电层SB2的基板SB的导电层SB3A,但在其他例中,与开关元件UH的电极UHA1电连接的对象也可不具备电绝缘层SB1之类的电绝缘层和导电层SB2之类的不与开关元件UH的电极UHA1电连接的导电层。In the examples shown in FIGS. 1 to 3, the electrode UHA1 of the switching element UH is electrically connected to the conductive layer SB3A of the substrate SB having the electrically insulating layer SB1, the conductive layer SB3A, and the conductive layer SB2, but in other examples, the electrode UHA1 of the switching element The object to which the electrode UHA1 of the UH is electrically connected may not have an electrically insulating layer such as the electrically insulating layer SB1 and a conductive layer such as the conductive layer SB2 that is not electrically connected to the electrode UHA1 of the switching element UH.
图1至图3所示的示例中,基板SA的导电层SA2A中的驱动信号输入部SH侧(图1的右侧)的端部SA2A1相较于基板SA的导电层SA3中的驱动信号输入部SH侧(图1的右侧)的端部SA3A,而位于远离驱动信号输入部SH的一侧(图1的左侧)。因此,如图1中的双向箭头所示,基板SA的导电层SA2A与连接线WH之间的绝缘距离在开关元件UH的宽度方向(图1的左右方向)上得到确保。In the examples shown in FIGS. 1 to 3 , the end portion SA2A1 on the drive signal input portion SH side (the right side of FIG. 1 ) in the conductive layer SA2A of the substrate SA is compared with the drive signal input portion SA3 in the conductive layer SA3 of the substrate SA. The end portion SA3A on the SH side (the right side in FIG. 1 ) is located on the side away from the drive signal input portion SH (the left side in FIG. 1 ). Therefore, as indicated by the double-headed arrow in FIG. 1 , the insulation distance between the conductive layer SA2A of the substrate SA and the connection wire WH is ensured in the width direction of the switching element UH (left-right direction in FIG. 1 ).
另一方面,图4所示的比较例中,基板SA的导电层SA2A中的驱动信号输入部SH侧(图4的右侧)的端部SA2A1、与基板SA的导电层SA3中的驱动信号输入部SH侧(图4的右侧)的端部SA3A位于在开关元件UH的宽度方向(图4的左右方向)上距驱动信号输入部SH为等距离处。因此,如图4中的双向箭头所示,必须在开关元件UH的厚度方向(图4的上下方向)上确保基板SA的导电层SA2A与连接线WH之间的绝缘距离。而且,图4所示的比较例中,由于间隔部SPUH厚,因此电力转换装置1的电感Ls增加。On the other hand, in the comparative example shown in FIG. 4 , the end portion SA2A1 on the side of the drive signal input portion SH (the right side of FIG. 4 ) in the conductive layer SA2A of the substrate SA is connected to the drive signal in the conductive layer SA3 of the substrate SA. End SA3A on the side of input portion SH (right side in FIG. 4 ) is located equidistant from drive signal input portion SH in the width direction (left-right direction in FIG. 4 ) of switching element UH. Therefore, as shown by the double-headed arrow in FIG. 4 , it is necessary to ensure an insulating distance between the conductive layer SA2A of the substrate SA and the connection wire WH in the thickness direction of the switching element UH (up-and-down direction in FIG. 4 ). Furthermore, in the comparative example shown in FIG. 4 , since the spacer portion SPUH is thick, the inductance Ls of the power conversion device 1 increases.
如上所述,图1至图3所示的示例中,基板SA的导电层SA2A与连接线WH之间的绝缘距离在开关元件UH的宽度方向(图1的左右方向)上得到确保,因此相较于图4所示的比较例,能够使电力转换装置1整体的尺寸在开关元件UH的厚度方向(图1的上下方向)上小型化。而且,图1至图3所示的示例中,相较于图4所示的比较例,由于间隔部SPUH薄,因此能够抑制电力转换装置1的电感Ls。As described above, in the examples shown in FIGS. 1 to 3 , the insulation distance between the conductive layer SA2A of the substrate SA and the connection wire WH is ensured in the width direction of the switching element UH (left-right direction in FIG. 1 ), so Compared with the comparative example shown in FIG. 4 , the overall size of the power conversion device 1 can be downsized in the thickness direction of the switching element UH (vertical direction in FIG. 1 ). Furthermore, in the examples shown in FIGS. 1 to 3 , since the spacer portion SPUH is thinner than the comparative example shown in FIG. 4 , the inductance Ls of the power conversion device 1 can be suppressed.
即,图1至图3所示的示例中,既能确保基板SA的导电层SA2A与连接线WH之间的绝缘距离,又能较图4所示的比较例而使电力转换装置1整体的尺寸小型化。That is, in the examples shown in FIGS. 1 to 3 , the insulation distance between the conductive layer SA2A of the substrate SA and the connection wire WH can be ensured, and the overall power conversion device 1 can be reduced compared to the comparative example shown in FIG. 4 . Miniaturized size.
而且,图1至图3所示的示例中,能够使基板SA的导电层SA3的端部SA3A延伸到驱动信号输入部SH侧(图1的右侧)为止,因此能够确保高的冷却性能。Furthermore, in the examples shown in FIGS. 1 to 3 , the end portion SA3A of the conductive layer SA3 of the substrate SA can be extended to the drive signal input portion SH side (right side in FIG. 1 ), thereby ensuring high cooling performance.
图1至图3所示的示例中,间隔部SPUH的其中一(图1的上侧)面电连接于基板SA的导电层SA2A。间隔部SPUH的另一(图1的下侧)面电连接于开关元件UH的电极UHB1。In the example shown in FIGS. 1 to 3 , one (upper side in FIG. 1 ) surface of the spacer SPUH is electrically connected to the conductive layer SA2A of the substrate SA. The other (lower side in FIG. 1 ) surface of the spacer SPUH is electrically connected to the electrode UHB1 of the switching element UH.
如图3所示,基板SA的导电层SA2A中的驱动信号输入部SH侧(图3的右侧)的端部SA2A1相较于间隔部SPUH中的驱动信号输入部SH侧(图3的右侧)的端部SPUH1而位于驱动信号输入部SH侧(图3的右侧)。即,基板SA的导电层SA2A的端部SA2A1相较于间隔部SPUH的端部SPUH1而向驱动信号输入部SH侧(图3的右侧)突出。As shown in FIG. 3 , the end portion SA2A1 on the drive signal input portion SH side (right side in FIG. 3 ) in the conductive layer SA2A of the substrate SA is compared to the end portion SA2A1 on the drive signal input portion SH side (right side in FIG. 3 ) in the spacer SPUH. The end SPUH1 on the side) is located on the side of the drive signal input part SH (the right side in FIG. 3 ). That is, the end portion SA2A1 of the conductive layer SA2A of the substrate SA protrudes toward the drive signal input portion SH side (the right side in FIG. 3 ) rather than the end portion SPUH1 of the spacer portion SPUH.
经过本创作人的专心研究发现,若基板SA的导电层SA2A的端部SA2A1相对于间隔部SPUH的端部SPUH1的、朝向驱动信号输入部SH侧(图3的右侧)的突出量过小,则热阻将变大,其结果,开关元件UH所产生的热的扩散会受到阻碍。After intensive research by the creators, it was found that if the end portion SA2A1 of the conductive layer SA2A of the substrate SA protrudes toward the side of the drive signal input portion SH (right side of FIG. 3 ) with respect to the end portion SPUH1 of the spacer SPUH, , the thermal resistance becomes large, and as a result, the diffusion of the heat generated by the switching element UH is hindered.
鉴于此点,图1至图3所示的示例中,基板SA的导电层SA2A的端部SA2A1相对于间隔部SPUH的端部SPUH1的、朝向驱动信号输入部SH侧(图3的右侧)的突出量X被设定为导电层SA2A的厚度tSA2A以上的值。即,基板SA的导电层SA2A的端部SA2A1以导电层SA2A的厚度tSA2A以上,相较于间隔部SPUH的端部SPUH1而位于驱动信号输入部SH侧(图3的右侧)。即,连结图3中的间隔部SPUH的端部SPUH1的上端位置PSP和导电层SA2A的端部SA2A1的上端位置PSA的直线、与间隔部SPUH的上表面所成的角度θ被设定为45°以下的值。In view of this, in the examples shown in FIGS. 1 to 3 , the end portion SA2A1 of the conductive layer SA2A of the substrate SA faces the drive signal input portion SH side (the right side in FIG. 3 ) with respect to the end portion SPUH1 of the spacer portion SPUH. The protrusion amount X is set to a value equal to or greater than the thickness tSA2A of the conductive layer SA2A. That is, end SA2A1 of conductive layer SA2A of substrate SA is located on the drive signal input portion SH side (right side in FIG. 3 ) than end SPUH1 of spacer SPUH by thickness tSA2A or more of conductive layer SA2A. That is, the angle θ formed by the straight line connecting the upper end position PSP of the end portion SPUH1 of the spacer SPUH in FIG. ° below the value.
因此,图1至图3所示的示例中,能够抑制开关元件UH所产生的热的扩散受到阻碍的可能。图1至图3所示的示例中,开关元件UH所产生的热经由间隔部SPUH、基板SA而扩散。Therefore, in the examples shown in FIGS. 1 to 3 , it is possible to suppress the possibility that the diffusion of the heat generated by the switching element UH is hindered. In the examples shown in FIGS. 1 to 3 , the heat generated by the switching element UH is diffused through the spacer SPUH and the substrate SA.
在图1至图3所示的电力转换装置1被适用于(例如U相等的)高侧的情况下,基板SB的导电层SB3A电连接于正极侧导电体(P母线),基板SA的导电层SA2A电连接于输出侧导电体(输出母线)。When the power conversion device 1 shown in FIGS. 1 to 3 is applied to the high side (for example, U is equal), the conductive layer SB3A of the substrate SB is electrically connected to the positive side conductor (P bus bar), and the conductive layer SB3A of the substrate SA Layer SA2A is electrically connected to the output-side conductor (output bus bar).
在图1至图3所示的电力转换装置1被适用于(例如U相等的)低侧的情况下,基板SB的导电层SB3A电连接于输出侧导电体(输出母线),基板SA的导电层SA2A电连接于负极侧导电体(N母线)。In the case where the power conversion device 1 shown in FIGS. 1 to 3 is applied to the low side (for example, U is equal), the conductive layer SB3A of the substrate SB is electrically connected to the output-side conductor (output bus bar), and the conductive layer SB3A of the substrate SA Layer SA2A is electrically connected to the negative electrode side conductor (N bus bar).
<第2实施方式><Second Embodiment>
以下,对本实用新型的电力转换装置1的第2实施方式进行说明。Hereinafter, a second embodiment of the power conversion device 1 of the present invention will be described.
第2实施方式的电力转换装置1除了后述的点以外,与所述第1实施方式的电力转换装置1同样地构成。因而,根据第2实施方式的电力转换装置1,除了后述的点以外,起到与所述第1实施方式的电力转换装置1同样的效果。The power conversion device 1 of the second embodiment is configured in the same manner as the power conversion device 1 of the first embodiment except for points described later. Therefore, according to the power conversion device 1 of the second embodiment, the same effects as those of the power conversion device 1 of the first embodiment are exhibited except for the points described later.
图5是第2实施方式的电力转换装置1的一例的分解立体图。FIG. 5 is an exploded perspective view of an example of the power conversion device 1 according to the second embodiment.
图5所示的示例中,电力转换装置1包括高侧开关元件UH、低侧开关元件UL、基板SA、基板SB、高侧驱动信号输入部SH、低侧驱动信号输入部SL、高侧间隔部SPUH、低侧间隔部SPUL、高侧连接线WH(参照图6(A))、及低侧连接线WL(参照图6(B))。In the example shown in FIG. 5 , the power conversion device 1 includes a high-side switching element UH, a low-side switching element UL, a substrate SA, a substrate SB, a high-side drive signal input part SH, a low-side drive signal input part SL, a high-side spacer part SPUH, the low-side spacer part SPUL, the high-side connecting line WH (see FIG. 6(A)), and the low-side connecting line WL (see FIG. 6(B)).
图6(A)及图6(B)是表示第2实施方式的电力转换装置1的主要部分的概略性的铅垂剖面的一例的图。详细而言,图6(A)是表示电力转换装置1的高侧的主要部分的铅垂剖面的图。图6(B)是表示电力转换装置1的低侧的主要部分的铅垂剖面的图。图7是仅提取图6(B)中的低侧开关元件UL而表示的图。6(A) and 6(B) are diagrams showing an example of a schematic vertical cross-section of a main part of the power conversion device 1 according to the second embodiment. In detail, FIG. 6(A) is a diagram showing a vertical cross-section of main parts on the high side of the power conversion device 1 . FIG. 6(B) is a diagram showing a vertical cross-section of main parts on the lower side of the power conversion device 1 . FIG. 7 is a diagram showing only the low-side switching element UL in FIG. 6(B) extracted.
图5至图7所示的示例中,开关元件UL与开关元件UH同样地,例如为绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应晶体管(Metal Oxide Semi-conductor Field Effect Transistor,MOSFET)等之类的开关元件。In the examples shown in FIGS. 5 to 7 , the switching element UL is the same as the switching element UH, for example, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a metal oxide semiconductor field effect transistor (Metal Oxide Semi-conductor) Field Effect Transistor, MOSFET) and other switching elements.
如图7所示,在开关元件UL的其中一(图7的上侧)面ULB上,配置有电极ULB1、及输入驱动信号的电极ULB2。在开关元件UL的另一(图7的下侧)面ULA上,配置有电极ULA1。As shown in FIG. 7 , on one (upper side in FIG. 7 ) surface ULB of the switching element UL, an electrode ULB1 and an electrode ULB2 for inputting a drive signal are arranged. On the other (lower side in FIG. 7 ) surface ULA of the switching element UL, an electrode ULA1 is arranged.
图5至图7所示的示例中,基板SA包括与开关元件UH的电极UHB1相向的导电层SA2A、与开关元件UL的电极ULB1相向的导电层SA2B、电绝缘层SA1、及隔着电绝缘层SA1而配置在导电层SA2A、SA2B的相反侧的导电层SA3。In the examples shown in FIGS. 5 to 7, the substrate SA includes a conductive layer SA2A facing the electrode UHB1 of the switching element UH, a conductive layer SA2B facing the electrode ULB1 of the switching element UL, an electrical insulating layer SA1, and an electrically insulating layer SA1. Conductive layer SA3 is disposed on the opposite side of conductive layers SA2A and SA2B from layer SA1.
开关元件UH的电极UHB2例如通过接合线等之类的连接线WH而连接于驱动信号输入部SH。开关元件UH的电极UHB1经由间隔部SPUH而电连接于基板SA的导电层SA2A。The electrode UHB2 of the switching element UH is connected to the drive signal input part SH via a connection wire WH such as a bonding wire, for example. Electrode UHB1 of switching element UH is electrically connected to conductive layer SA2A of substrate SA via spacer SPUH.
开关元件UL的电极ULB2例如通过接合线等之类的连接线WL而连接于驱动信号输入部SL。开关元件UL的电极ULB1经由间隔部SPUL而电连接于基板SA的导电层SA2B。The electrode ULB2 of the switching element UL is connected to the drive signal input part SL through, for example, a connection wire WL such as a bonding wire. Electrode ULB1 of switching element UL is electrically connected to conductive layer SA2B of substrate SA via spacer SPUL.
图5至图7所示的示例中,基板SB包括与开关元件UH的电极UHA1相向的导电层SB3A、与开关元件UL的电极ULA1相向的导电层SB3B、电绝缘层SB1、及隔着电绝缘层SB1而配置在导电层SB3A、SB3B的相反侧的导电层SB2。In the examples shown in FIGS. 5 to 7 , the substrate SB includes a conductive layer SB3A facing the electrode UHA1 of the switching element UH, a conductive layer SB3B facing the electrode ULA1 of the switching element UL, an electrical insulating layer SB1, and an electrically insulating layer SB1. Conductive layer SB2 is disposed on the opposite side of conductive layers SB3A and SB3B from layer SB1.
开关元件UH的电极UHA1电连接于基板SB的导电层SB3A。开关元件UL的电极ULA1电连接于基板SB的导电层SB3B。The electrode UHA1 of the switching element UH is electrically connected to the conductive layer SB3A of the substrate SB. The electrode ULA1 of the switching element UL is electrically connected to the conductive layer SB3B of the substrate SB.
基板SA的导电层SA2A与基板SB的导电层SB3B经由连接部(未图示)而电连接。The conductive layer SA2A of the substrate SA and the conductive layer SB3B of the substrate SB are electrically connected through a connection part (not shown).
图5至图7所示的示例中,基板SA的导电层SA2A中的驱动信号输入部SH侧(图6(A)的右侧)的端部SA2A1相较于基板SA的导电层SA3中的驱动信号输入部SH侧(图6(A)的右侧)的端部SA3A而位于远离驱动信号输入部SH的一侧(图6(A)的左侧)。因此,如图6(A)中的双向箭头所示,基板SA的导电层SA2A与连接线WH之间的绝缘距离在开关元件UH的宽度方向(图6(A)的左右方向)上得到确保。In the examples shown in FIGS. 5 to 7 , the end portion SA2A1 on the drive signal input portion SH side (the right side in FIG. 6(A)) in the conductive layer SA2A of the substrate SA is smaller than the end portion SA2A1 in the conductive layer SA3 of the substrate SA. End SA3A on the drive signal input portion SH side (right side in FIG. 6(A) ) is located away from the drive signal input portion SH side (left side in FIG. 6(A) ). Therefore, as shown by the double-headed arrow in FIG. 6(A), the insulation distance between the conductive layer SA2A of the substrate SA and the connection wire WH is ensured in the width direction of the switching element UH (left-right direction in FIG. 6(A) ). .
基板SA的导电层SA2B中的驱动信号输入部SL侧(图6(B)的左侧)的端部SA2B1相较于基板SA的导电层SA3中的驱动信号输入部SL侧(图6(B)的左侧)的端部SA3B而位于远离驱动信号输入部SL的一侧(图6(B)的右侧)。因此,如图6(B)中的双向箭头所示,基板SA的导电层SA2B与连接线WL之间的绝缘距离在开关元件UL的宽度方向(图6(B)的左右方向)上得到确保。The end portion SA2B1 of the drive signal input portion SL side (the left side of FIG. 6(B)) in the conductive layer SA2B of the substrate SA is compared to the end portion SA2B1 of the drive signal input portion SL side in the conductive layer SA3 of the substrate SA (FIG. 6(B) ) on the left side) end SA3B is located on the side away from the drive signal input portion SL (right side in FIG. 6(B) ). Therefore, as shown by the double-headed arrow in FIG. 6(B), the insulation distance between the conductive layer SA2B of the substrate SA and the connection wire WL is ensured in the width direction of the switching element UL (left-right direction in FIG. 6(B) ). .
如上所述,图5至图7所示的示例中,基板SA的导电层SA2A与连接线WH之间的绝缘距离在开关元件UH的宽度方向(图6(A)的左右方向)上得到确保,基板SA的导电层SA2B与连接线WL之间的绝缘距离在开关元件UL的宽度方向(图6(B)的左右方向)上得到确保,因此能够使电力转换装置1整体的尺寸在开关元件UH、UL的厚度方向(图6(A)及图6(B)的上下方向)上小型化。As described above, in the examples shown in FIGS. 5 to 7 , the insulation distance between the conductive layer SA2A of the substrate SA and the connection wire WH is ensured in the width direction of the switching element UH (left-right direction in FIG. 6(A) ). Since the insulation distance between the conductive layer SA2B of the substrate SA and the connecting wire WL is ensured in the width direction of the switching element UL (left-right direction in FIG. The thickness direction of UH and UL (up-and-down direction in FIG. 6(A) and FIG. 6(B) ) is miniaturized.
图5至图7所示的示例中,间隔部SPUL的其中一(图6(B)的上侧)面电连接于基板SA的导电层SA2B。间隔部SPUL的另一(图6(B)的下侧)面电连接于开关元件UL的电极ULB1。In the examples shown in FIGS. 5 to 7 , one (upper side in FIG. 6(B) ) surface of the spacer SPUL is electrically connected to the conductive layer SA2B of the substrate SA. The other (lower side in FIG. 6(B) ) surface of spacer SPUL is electrically connected to electrode ULB1 of switching element UL.
如图6(B)所示,基板SA的导电层SA2B中的驱动信号输入部SL侧(图6(B)的左侧)的端部SA2B1相较于间隔部SPUL中的驱动信号输入部SL侧(图6(B)的左侧)的端部SPUL1而位于驱动信号输入部SL侧(图6(B)的左侧)。即,基板SA的导电层SA2B的端部SA2B1相较于间隔部SPUL的端部SPUL1而向驱动信号输入部SL侧(图6(B)的左侧)突出。As shown in FIG. 6(B), the end portion SA2B1 on the side of the drive signal input portion SL (the left side of FIG. 6(B)) in the conductive layer SA2B of the substrate SA is smaller than the end portion SA2B1 of the drive signal input portion SL in the spacer SPUL. The end portion SPUL1 on the side (the left side of FIG. 6(B) ) is located on the drive signal input portion SL side (the left side of FIG. 6(B )). That is, the end portion SA2B1 of the conductive layer SA2B of the substrate SA protrudes toward the drive signal input portion SL side (the left side in FIG. 6(B) ) rather than the end portion SPUL1 of the spacer portion SPUL.
图5至图7所示的示例中,基板SA的导电层SA2B的端部SA2B1相对于间隔部SPUL的端部SPUL1的、朝向驱动信号输入部SL侧(图6(B)的左侧)的突出量被设定为导电层SA2B的厚度以上的值。即,基板SA的导电层SA2B的端部SA2B1以导电层SA2B的厚度量以上,相较于间隔部SPUL的端部SPUL1而位于驱动信号输入部SL侧(图6(B)的左侧)。In the examples shown in FIGS. 5 to 7 , the end portion SA2B1 of the conductive layer SA2B of the substrate SA faces the drive signal input portion SL side (the left side of FIG. 6(B) ) with respect to the end portion SPUL1 of the spacer portion SPUL. The protrusion amount is set to a value equal to or greater than the thickness of the conductive layer SA2B. That is, the end portion SA2B1 of the conductive layer SA2B of the substrate SA is located on the drive signal input portion SL side (left side in FIG. 6(B) ) than the end portion SPUL1 of the spacer SPUL by the thickness of the conductive layer SA2B.
因此,图5至图7所示的示例中,能够抑制开关元件UL所产生的热的扩散受到阻碍的可能。Therefore, in the examples shown in FIGS. 5 to 7 , it is possible to suppress the possibility that the diffusion of the heat generated in the switching element UL is hindered.
图5至图7所示的示例中,基板SB的导电层SB3A连接于正极侧导电体(P母线)。基板SA的导电层SA2A与基板SB的导电层SB3B电连接于输出侧导电体(输出母线)。基板SA的导电层SA2A电连接于负极侧导电体(N母线)。In the examples shown in FIGS. 5 to 7 , the conductive layer SB3A of the substrate SB is connected to the positive electrode side conductor (P bus bar). The conductive layer SA2A of the substrate SA and the conductive layer SB3B of the substrate SB are electrically connected to an output-side conductor (output bus bar). The conductive layer SA2A of the substrate SA is electrically connected to the negative electrode side conductor (N bus bar).
<第3实施方式><Third embodiment>
以下,对本实用新型的电力转换装置1的第3实施方式进行说明。Hereinafter, a third embodiment of the power conversion device 1 of the present invention will be described.
第3实施方式的电力转换装置1除了后述的点以外,与所述第2实施方式的电力转换装置1同样地构成。因而,根据第3实施方式的电力转换装置1,除了后述的点以外,起到与所述第2实施方式的电力转换装置1同样的效果。The power conversion device 1 of the third embodiment is configured in the same manner as the power conversion device 1 of the second embodiment except for points described later. Therefore, according to the power conversion device 1 of the third embodiment, the same effects as those of the power conversion device 1 of the second embodiment are exhibited except for the points described later.
图8是表示第3实施方式的电力转换装置1的高侧的主要部分的概略性的铅垂剖面的一例的图。图9是表示第3实施方式的电力转换装置1的低侧的主要部分的概略性的铅垂剖面的一例的图。FIG. 8 is a diagram showing an example of a schematic vertical cross-section of main parts on the high side of the power conversion device 1 according to the third embodiment. FIG. 9 is a diagram showing an example of a schematic vertical cross-section of main parts on the lower side of the power conversion device 1 according to the third embodiment.
图6(A)所示的第2实施方式的电力转换装置1中,开关元件UH的宽度方向(图6(A)的左右方向)上的基板SB的导电层SB3A的右端部的位置、与导电层SB2的右端部的位置一致。In the power conversion device 1 according to the second embodiment shown in FIG. The positions of the right end portions of the conductive layer SB2 are identical.
另一方面,图8所示的第3实施方式的电力转换装置1中,开关元件UH的宽度方向(图8的左右方向)上的基板SB的导电层SB3A的右端部SB3A1的位置、与导电层SB2的右端部SB2A的位置不同。On the other hand, in the power conversion device 1 of the third embodiment shown in FIG. 8 , the position of the right end portion SB3A1 of the conductive layer SB3A of the substrate SB in the width direction of the switching element UH (left-right direction in FIG. 8 ) and the conductive The position of the right end portion SB2A of the layer SB2 is different.
详细而言,图8所示的示例中,基板SB的导电层SB3A中的驱动信号输入部SH侧(图8的右侧)的端部SB3A1相较于导电层SB2中的驱动信号输入部SH侧(图8的右侧)的端部SB2A而位于远离驱动信号输入部SH的一侧(图8的左侧)。In detail, in the example shown in FIG. 8 , the end portion SB3A1 on the drive signal input portion SH side (the right side of FIG. 8 ) in the conductive layer SB3A of the substrate SB is smaller than the end portion SB3A1 of the drive signal input portion SH in the conductive layer SB2. The end portion SB2A on the side (the right side of FIG. 8 ) is located on the side away from the drive signal input portion SH (the left side of FIG. 8 ).
因此,图8所示的示例中,相较于开关元件UH的宽度方向(图6(A)的左右方向)上的基板SB的导电层SB3A的右端部的位置与导电层SB2的右端部的位置一致的图6(A)所示的示例,既能确保基板SB的导电层SB3A与连接线WH之间的绝缘距离,又能使开关元件UH的宽度方向(图8的左右方向)上的电力转换装置1的整体尺寸小型化。即,图8所示的示例中,相较于图6(A)所示的示例,能够使驱动信号输入部SH靠近开关元件UH的电极UHB2。Therefore, in the example shown in FIG. 8 , the position of the right end portion of the conductive layer SB3A of the substrate SB in the width direction of the switching element UH (the left-right direction of FIG. 6(A) ) is compared with the position of the right end portion of the conductive layer SB2 . The example shown in FIG. 6(A) with consistent positions can not only ensure the insulation distance between the conductive layer SB3A of the substrate SB and the connecting wire WH, but also make the switching element UH in the width direction (the left-right direction of FIG. 8 ) The overall size of the power conversion device 1 is reduced. That is, in the example shown in FIG. 8 , the drive signal input portion SH can be brought closer to the electrode UHB2 of the switching element UH than in the example shown in FIG. 6(A).
而且,图8所示的示例中,基板SA的导电层SA2A中的驱动信号输入部SH侧(图8的右侧)的端部SA2A1相较于基板SB的导电层SB3A中的驱动信号输入部SH侧(图8的右侧)的端部SB3A1而位于远离驱动信号输入部SH的一侧(图8的左侧)。Moreover, in the example shown in FIG. 8 , the end portion SA2A1 on the drive signal input portion SH side (the right side of FIG. 8 ) in the conductive layer SA2A of the substrate SA is compared with the drive signal input portion in the conductive layer SB3A of the substrate SB. The end SB3A1 on the SH side (right side in FIG. 8 ) is located on the side away from the drive signal input portion SH (left side in FIG. 8 ).
因此,相较于开关元件UH的宽度方向(图8的左右方向)上的基板SA的导电层SA2A的右端部的位置与基板SB的导电层SB3A的右端部的位置一致的情况,能够确保基板SA的导电层SA2A与连接线WH之间的绝缘距离。Therefore, compared with the case where the position of the right end portion of the conductive layer SA2A of the substrate SA in the width direction (left-right direction of FIG. 8 ) of the switching element UH coincides with the position of the right end portion of the conductive layer SB3A of the substrate SB, it is possible to ensure that the substrate The insulation distance between the conductive layer SA2A of SA and the connecting wire WH.
图6(B)所示的第2实施方式的电力转换装置1中,开关元件UL的宽度方向(图6(B)的左右方向)上的基板SB的导电层SB3B的左端部的位置、与导电层SB2的左端部的位置一致。In the power conversion device 1 according to the second embodiment shown in FIG. The positions of the left end portions of the conductive layer SB2 are identical.
另一方面,图9所示的第3实施方式的电力转换装置1中,开关元件UL的宽度方向(图9的左右方向)上的基板SB的导电层SB3B的左端部SB3B1的位置、与导电层SB2的左端部SB2B的位置不同。On the other hand, in the power conversion device 1 of the third embodiment shown in FIG. 9 , the position of the left end portion SB3B1 of the conductive layer SB3B of the substrate SB in the width direction of the switching element UL (left-right direction in FIG. 9 ) and the conductive The position of the left end portion SB2B of the layer SB2 is different.
详细而言,图9所示的示例中,基板SB的导电层SB3B中的驱动信号输入部SL侧(图9的左侧)的端部SB3B1相较于导电层SB2中的驱动信号输入部SL侧(图9的左侧)的端部SB2B而位于远离驱动信号输入部SL的一侧(图9的右侧)。In detail, in the example shown in FIG. 9 , the end portion SB3B1 on the side of the drive signal input portion SL (the left side in FIG. 9 ) in the conductive layer SB3B of the substrate SB is smaller than the end portion SB3B1 of the drive signal input portion SL in the conductive layer SB2. The end portion SB2B on the side (left side in FIG. 9 ) is located on the side (right side in FIG. 9 ) away from the drive signal input portion SL.
因此,图9所示的示例中,相较于开关元件UL的宽度方向(图6(B)的左右方向)上的基板SB的导电层SB3B的左端部的位置与导电层SB2的左端部的位置一致的图6(B)所示的示例,既能确保基板SB的导电层SB3B与连接线WL之间的绝缘距离,又能使开关元件UL的宽度方向(图9的左右方向)上的电力转换装置1的整体尺寸小型化。即,图9所示的示例中,相较于图6(B)所示的示例,能够使驱动信号输入部SL靠近开关元件UL的电极ULB2。Therefore, in the example shown in FIG. 9 , compared with the position of the left end portion of the conductive layer SB3B of the substrate SB in the width direction of the switching element UL (the left-right direction of FIG. 6(B) ) and the position of the left end portion of the conductive layer SB2 The example shown in FIG. 6(B) with consistent positions can not only ensure the insulation distance between the conductive layer SB3B of the substrate SB and the connecting wire WL, but also make the width direction of the switching element UL (the left-right direction of FIG. 9 ) The overall size of the power conversion device 1 is reduced. That is, in the example shown in FIG. 9 , compared with the example shown in FIG. 6(B), it is possible to bring the drive signal input portion SL closer to the electrode ULB2 of the switching element UL.
而且,图9所示的示例中,基板SA的导电层SA2B中的驱动信号输入部SL侧(图9的左侧)的端部SA2B1相较于基板SB的导电层SB3B中的驱动信号输入部SL侧(图9的左侧)的端部SB3B1而位于远离驱动信号输入部SL的一侧(图9的右侧)。Moreover, in the example shown in FIG. 9 , the end portion SA2B1 on the drive signal input portion SL side (the left side in FIG. 9 ) in the conductive layer SA2B of the substrate SA is compared to the drive signal input portion in the conductive layer SB3B of the substrate SB. The end SB3B1 on the SL side (left side in FIG. 9 ) is located away from the drive signal input portion SL side (right side in FIG. 9 ).
因此,相较于开关元件UL的宽度方向(图9的左右方向)上的基板SA的导电层SA2B的左端部的位置与基板SB的导电层SB3B的左端部的位置一致的情况,能够确保基板SA的导电层SA2B与连接线WL之间的绝缘距离。Therefore, compared with the case where the position of the left end portion of the conductive layer SA2B of the substrate SA in the width direction (left-right direction of FIG. 9 ) of the switching element UL coincides with the position of the left end portion of the conductive layer SB3B of the substrate SB, it is possible to ensure that the substrate The insulation distance between the conductive layer SA2B of SA and the connecting wire WL.
<适用例><Application example>
以下,参照附图来说明本实用新型的电力转换装置1的适用例。Hereinafter, an application example of the power conversion device 1 of the present invention will be described with reference to the drawings.
图10表示可适用第1实施方式至第3实施方式的电力转换装置1的车辆10的一部分的一例的图。FIG. 10 is a diagram showing an example of a part of a vehicle 10 to which the power conversion device 1 according to the first to third embodiments is applicable.
在将第1实施方式的电力转换装置1适用于图10所示的示例的情况下,将十四个第1实施方式的电力转换装置1用于图10所示的车辆10。In the case where the power conversion device 1 of the first embodiment is applied to the example shown in FIG. 10 , fourteen power conversion devices 1 of the first embodiment are used in the vehicle 10 shown in FIG. 10 .
在将第2实施方式或第3实施方式的电力转换装置1适用于图10所示的示例的情况下,将七个第2实施方式或第3实施方式的电力转换装置1用于图10所示的车辆10。When applying the power conversion device 1 of the second embodiment or the third embodiment to the example shown in FIG. 10, seven power conversion devices 1 of the second embodiment or the third embodiment are used in the example shown in FIG. The vehicle 10 shown.
图10所示的示例中,车辆10除了电力转换装置1以外,还包括电池(battery)11(BATT)、行驶驱动用的第1马达12(MOT)以及发电用的第2马达13(GEN)。In the example shown in FIG. 10 , a vehicle 10 includes, in addition to the power conversion device 1 , a battery 11 (BATT), a first motor 12 (MOT) for driving, and a second motor 13 (GEN) for power generation. .
电池11包括电池壳体(battery case)、及收容在电池壳体内的多个电池模块(battery module)。电池模块包括串联连接的多个电池单元(battery cell)。电池11包括与电力转换装置1的直流连接器1a连接的正极端子PB及负极端子NB。正极端子PB及负极端子NB连接于在电池壳体内串联连接的多个电池模块的正极端及负极端。The battery 11 includes a battery case and a plurality of battery modules accommodated in the battery case. The battery module includes a plurality of battery cells connected in series. The battery 11 includes a positive terminal PB and a negative terminal NB connected to the DC connector 1 a of the power conversion device 1 . The positive terminal PB and the negative terminal NB are connected to positive terminals and negative terminals of a plurality of battery modules connected in series in the battery case.
第1马达12通过从电池11供给的电力来产生旋转驱动力(动力运行动作)。第2马达13通过输入至旋转轴的旋转驱动力来产生发电电力。此处,第2马达13中,是可传递内燃机的旋转动力地构成。例如,第1马达12及第2马达13各自为三相交流无刷(brush less)直流(Direct Current,DC)马达。三相为U相、V相及W相。第1马达12及第2马达13各自为内转子(inner rotor)型。第1马达12及第2马达13分别包括:转子,具有励磁用的永磁铁;以及定子,具有用于产生使转子旋转的旋转磁场的三相的定子绕组。第1马达12的三相的定子绕组连接于电力转换装置1的第1三相连接器1b。第2马达13的三相的定子绕组连接于电力转换装置1的第2三相连接器1c。The first motor 12 generates rotational driving force (power running operation) by electric power supplied from the battery 11 . The second motor 13 generates generated electric power by the rotational driving force input to the rotary shaft. Here, the second motor 13 is configured to be able to transmit the rotational power of the internal combustion engine. For example, each of the first motor 12 and the second motor 13 is a three-phase AC brushless (brushless) DC (Direct Current, DC) motor. The three phases are U phase, V phase and W phase. Each of the first motor 12 and the second motor 13 is an inner rotor type. The first motor 12 and the second motor 13 each include: a rotor having permanent magnets for excitation; and a stator having three-phase stator windings for generating a rotating magnetic field for rotating the rotors. Three-phase stator windings of the first motor 12 are connected to a first three-phase connector 1 b of the power converter 1 . The three-phase stator windings of the second motor 13 are connected to the second three-phase connector 1 c of the power conversion device 1 .
图10所示的电力转换装置1包括电源模块(power module)21、电抗器(reactor)22、电容器单元(condenser unit)23、电阻器24、第1电流传感器25、第2电流传感器26、第3电流传感器27、电子控制单元28(MOT GEN ECU)及栅极驱动单元(gate drive unit)29(G/DVCU ECU)。The power conversion device 1 shown in FIG. 10 includes a power module (power module) 21, a reactor (reactor) 22, a capacitor unit (condenser unit) 23, a resistor 24, a first current sensor 25, a second current sensor 26, a 3 Current sensor 27, electronic control unit 28 (MOT GEN ECU) and gate drive unit (gate drive unit) 29 (G/DVCU ECU).
电源模块21包括第1电力转换电路部31、第2电力转换电路部32及第3电力转换电路部33。The power module 21 includes a first power conversion circuit unit 31 , a second power conversion circuit unit 32 , and a third power conversion circuit unit 33 .
在将十四个第1实施方式的电力转换装置1用于图10所示的车辆10的情况下,第1电力转换电路部31包含六个图1至图3所示的第1实施方式的电力转换装置1。When fourteen power conversion devices 1 of the first embodiment are used in the vehicle 10 shown in FIG. 10 , the first power conversion circuit unit 31 includes six power converters 1 of the first embodiment shown in FIGS. Power conversion device 1.
在将七个第2实施方式或第3实施方式的电力转换装置1用于图10所示的车辆10的情况下,第1电力转换电路部31包含三个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1。详细而言,一个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1构成第1电力转换电路部31的U相。另一个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1构成第1电力转换电路部31的V相。剩余一个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1构成第1电力转换电路部31的W相。When seven power conversion devices 1 according to the second embodiment or the third embodiment are used in the vehicle 10 shown in FIG. The power conversion device 1 of the second embodiment or the third embodiment. Specifically, one power conversion device 1 of the second embodiment or the third embodiment shown in FIGS. 5 to 9 constitutes the U-phase of the first power conversion circuit unit 31 . Another power conversion device 1 according to the second embodiment or the third embodiment shown in FIGS. 5 to 9 constitutes the V-phase of the first power conversion circuit unit 31 . The remaining one of the power conversion devices 1 of the second embodiment or the third embodiment shown in FIGS. 5 to 9 constitutes the W phase of the first power conversion circuit unit 31 .
第1电力转换电路部31的输出侧导电体(输出母线)51将U相、V相及W相这三相汇总地连接于第1三相连接器1b。即,第1电力转换电路部31的输出侧导电体51经由第1三相连接器1b而连接于第1马达12的三相的定子绕组。The output-side conductor (output bus bar) 51 of the first power conversion circuit unit 31 collectively connects the three phases of the U phase, the V phase, and the W phase to the first three-phase connector 1b. That is, the output-side conductor 51 of the first power conversion circuit unit 31 is connected to the three-phase stator windings of the first motor 12 via the first three-phase connector 1b.
第1电力转换电路部31的正极侧导电体(P母线)PI将U相、V相及W相这三相汇总而连接于电池11的正极端子PB。The positive electrode side conductor (P bus bar) PI of the first power conversion circuit unit 31 is connected to the positive electrode terminal PB of the battery 11 by collecting three phases of the U phase, the V phase, and the W phase.
第1电力转换电路部31的负极侧导电体(N母线)NI将U相、V相及W相这三相汇总而连接于电池11的负极端子NB。The negative electrode side conductor (N bus bar) NI of the first power conversion circuit unit 31 is connected to the negative electrode terminal NB of the battery 11 by collecting the three phases of the U phase, the V phase, and the W phase.
即,第1电力转换电路部31将从电池11经由第3电力转换电路部33而输入的直流电力转换为三相交流电力。That is, the first power conversion circuit unit 31 converts the DC power input from the battery 11 via the third power conversion circuit unit 33 into three-phase AC power.
在将十四个第1实施方式的电力转换装置1用于图10所示的车辆10的情况下,第2电力转换电路部32包含六个图1至图3所示的第1实施方式的电力转换装置1。When fourteen power conversion devices 1 of the first embodiment are used in the vehicle 10 shown in FIG. 10 , the second power conversion circuit unit 32 includes six power conversion devices 1 of the first embodiment shown in FIGS. Power conversion device 1.
在将七个第2实施方式或第3实施方式的电力转换装置1用于图10所示的车辆10的情况下,第2电力转换电路部32包含三个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1。详细而言,一个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1构成第2电力转换电路部32的U相。另一个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1构成第2电力转换电路部32的V相。剩余一个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1构成第2电力转换电路部32的W相。When seven power conversion devices 1 according to the second embodiment or the third embodiment are used in the vehicle 10 shown in FIG. The power conversion device 1 of the second embodiment or the third embodiment. Specifically, one power conversion device 1 of the second embodiment or the third embodiment shown in FIGS. 5 to 9 constitutes the U-phase of the second power conversion circuit unit 32 . Another power conversion device 1 of the second or third embodiment shown in FIGS. 5 to 9 constitutes the V-phase of the second power conversion circuit unit 32 . The remaining one of the power conversion devices 1 of the second embodiment or the third embodiment shown in FIGS. 5 to 9 constitutes the W phase of the second power conversion circuit unit 32 .
第2电力转换电路部32的输出侧导电体(输出母线)52将U相、V相及W相这三相汇总而连接于第2三相连接器1c。即,第2电力转换电路部32的输出侧导电体52经由第2三相连接器1c而连接于第2马达13的三相的定子绕组。The output-side conductor (output bus bar) 52 of the second power conversion circuit unit 32 is connected to the second three-phase connector 1c by collecting three phases of the U phase, the V phase, and the W phase. That is, the output-side conductor 52 of the second power conversion circuit unit 32 is connected to the three-phase stator windings of the second motor 13 via the second three-phase connector 1c.
第2电力转换电路部32的正极侧导电体(P母线)PI将U相、V相及W相这三相汇总而连接于电池11的正极端子PB与第1电力转换电路部31的正极侧导电体PI。The positive electrode side conductor (P bus bar) PI of the second power conversion circuit part 32 is connected to the positive electrode terminal PB of the battery 11 and the positive electrode side of the first power conversion circuit part 31 by collecting the three phases of the U phase, the V phase, and the W phase. Conductor PI.
第2电力转换电路部32的负极侧导电体(N母线)NI将U相、V相及W相这三相汇总而连接于电池11的负极端子NB与第2电力转换电路部32的负极侧导电体NI。The negative side conductor (N bus bar) N1 of the second power conversion circuit unit 32 is connected to the negative terminal NB of the battery 11 and the negative side of the second power conversion circuit unit 32 by combining the three phases of the U phase, the V phase, and the W phase. Conductor NI.
第2电力转换电路部32将从第2马达13输入的三相交流电力转换为直流电力。经第2电力转换电路部32转换的直流电力可供给至电池11及第1电力转换电路部31中的至少一者。The second power conversion circuit unit 32 converts the three-phase AC power input from the second motor 13 into DC power. The DC power converted by the second power conversion circuit unit 32 can be supplied to at least one of the battery 11 and the first power conversion circuit unit 31 .
在将十四个第1实施方式的电力转换装置1用于图10所示的车辆10的情况下,第1电力转换电路部31的开关元件UH、UL、VH、VL、WH、WL包含六个图1至图3所示的第1实施方式的电力转换装置1的开关元件UH。When fourteen power conversion devices 1 according to the first embodiment are used in the vehicle 10 shown in FIG. A switching element UH of the power conversion device 1 of the first embodiment shown in FIGS. 1 to 3 is provided.
在将七个第2实施方式或第3实施方式的电力转换装置1用于图10所示的车辆10的情况下,第1电力转换电路部31的开关元件UH、UL包含第1个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1的开关元件UH、UL,第1电力转换电路部31的开关元件VH、VL包含第2个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1的开关元件UH、UL,第1电力转换电路部31的开关元件WH、WL包含第3个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1的开关元件UH、UL。When seven power conversion devices 1 according to the second embodiment or the third embodiment are used in the vehicle 10 shown in FIG. As far as the switching elements UH and UL of the power conversion device 1 according to the second or third embodiment shown in FIG. The switching elements UH, UL of the power conversion device 1 shown in the second embodiment or the third embodiment, and the switching elements WH, WL of the first power conversion circuit part 31 include the third one shown in FIGS. 5 to 9. The switching elements UH, UL of the power conversion device 1 of the embodiment or the third embodiment.
图10所示的示例中,第1电力转换电路部31的U相开关元件UH、V相开关元件VH、W相开关元件WH以及第2电力转换电路部32的U相开关元件UH、V相开关元件VH、W相开关元件WH连接于正极侧导电体PI。正极侧导电体PI连接于电容器单元23的正极母线50p。In the example shown in FIG. 10 , the U-phase switching element UH, V-phase switching element VH, and W-phase switching element WH of the first power conversion circuit section 31 and the U-phase switching element UH, V-phase switching element of the second power conversion circuit section 32 Switching element VH and W-phase switching element WH are connected to positive electrode side conductor PI. The positive electrode side conductor PI is connected to the positive electrode bus bar 50 p of the capacitor unit 23 .
第1电力转换电路部31的U相开关元件UL、V相开关元件VL、W相开关元件WL以及第2电力转换电路部32的U相开关元件UL、V相开关元件VL、W相开关元件WL连接于负极侧导电体NI。负极侧导电体NI连接于电容器单元23的负极母线50n。The U-phase switching element UL, V-phase switching element VL, and W-phase switching element WL of the first power conversion circuit unit 31 and the U-phase switching element UL, V-phase switching element VL, and W-phase switching element of the second power conversion circuit unit 32 WL is connected to negative electrode side conductor NI. The negative electrode side conductor N1 is connected to the negative electrode bus bar 50n of the capacitor unit 23 .
图10所示的示例中,第1电力转换电路部31的U相开关元件UH与U相开关元件UL的连接点TI、V相开关元件VH与V相开关元件VL的连接点TI、W相开关元件WH与W相开关元件WL的连接点TI连接于输出侧导电体51。In the example shown in FIG. 10 , the connection point TI between the U-phase switching element UH and the U-phase switching element UL, the connection point TI between the V-phase switching element VH and the V-phase switching element VL, and the W-phase A connection point TI between the switching element WH and the W-phase switching element WL is connected to the output-side conductor 51 .
第2电力转换电路部32的U相开关元件UH与U相开关元件UL的连接点TI、V相开关元件VH与V相开关元件VL的连接点TI、W相开关元件WH与W相开关元件WL的连接点TI连接于输出侧导电体52。The connection point TI between the U-phase switching element UH and the U-phase switching element UL, the connection point TI between the V-phase switching element VH and the V-phase switching element VL, and the W-phase switching element WH and the W-phase switching element of the second power conversion circuit unit 32 The connection point TI of WL is connected to the output-side conductor 52 .
图10所示的示例中,第1电力转换电路部31的输出侧导电体51连接于第1输入/输出端子Q1。第1输入/输出端子Q1连接于第1三相连接器1b。第1电力转换电路部31的各相的连接点TI经由输出侧导电体51、第1输入/输出端子Q1及第1三相连接器1b而连接于第1马达12的各相的定子绕组。In the example shown in FIG. 10 , the output-side conductor 51 of the first power conversion circuit unit 31 is connected to the first input/output terminal Q1 . The first input/output terminal Q1 is connected to the first three-phase connector 1b. The connection point TI of each phase of the first power conversion circuit unit 31 is connected to the stator winding of each phase of the first motor 12 via the output side conductor 51 , the first input/output terminal Q1 , and the first three-phase connector 1 b.
第2电力转换电路部32的输出侧导电体52连接于第2输入/输出端子Q2。第2输入/输出端子Q2连接于第2三相连接器1c。第2电力转换电路部32的各相的连接点TI经由输出侧导电体52、第2输入/输出端子Q2及第2三相连接器1c而连接于第2马达13的各相的定子绕组。The output-side conductor 52 of the second power conversion circuit unit 32 is connected to the second input/output terminal Q2. The second input/output terminal Q2 is connected to the second three-phase connector 1c. The connection point TI of each phase of the second power conversion circuit unit 32 is connected to the stator winding of each phase of the second motor 13 via the output side conductor 52 , the second input/output terminal Q2 and the second three-phase connector 1c.
图10所示的示例中,第1电力转换电路部31的开关元件UH、UL、VH、VL、WH、WL各自具备续流二极管(flywheel diode)。In the example shown in FIG. 10 , each of the switching elements UH, UL, VH, VL, WH, and WL of the first power conversion circuit unit 31 includes a flywheel diode.
同样地,第2电力转换电路部32的开关元件UH、UL、VH、VL、WH、WL各自具备续流二极管。Similarly, the switching elements UH, UL, VH, VL, WH, and WL of the second power conversion circuit unit 32 each include a freewheel diode.
图10所示的示例中,栅极驱动单元29对第1电力转换电路部31的开关元件UH、UL、VH、VL、WH、WL的各个输入栅极信号。In the example shown in FIG. 10 , the gate drive unit 29 inputs a gate signal to each of the switching elements UH, UL, VH, VL, WH, and WL of the first power conversion circuit unit 31 .
同样地,栅极驱动单元29对第2电力转换电路部32的开关元件UH、UL、VH、VL、WH、WL的各个输入栅极信号。Similarly, the gate drive unit 29 inputs a gate signal to each of the switching elements UH, UL, VH, VL, WH, and WL of the second power conversion circuit unit 32 .
第1电力转换电路部31将从电池11经由第3电力转换电路部33而输入的直流电力转换为三相交流电力,并对第1马达12的三相的定子绕组供给交流的U相电流、V相电流及W相电流。第2电力转换电路部32通过跟第2马达13的旋转同步的第2电力转换电路部32的开关元件UH、UL、VH、VL、WH、WL各自的接通(导通)/断开(阻断)驱动,将从第2马达13的三相的定子绕组输出的三相交流电力转换为直流电力。The first power conversion circuit unit 31 converts the DC power input from the battery 11 via the third power conversion circuit unit 33 into three-phase AC power, and supplies AC U-phase current to the three-phase stator windings of the first motor 12 . V-phase current and W-phase current. The second power conversion circuit unit 32 is turned on/off by switching elements UH, UL, VH, VL, WH, and WL of the second power conversion circuit unit 32 synchronized with the rotation of the second motor 13 ( (blocking) drive to convert the three-phase AC power output from the three-phase stator windings of the second motor 13 into DC power.
在将十四个第1实施方式的电力转换装置1用于图10所示的车辆10的情况下,第3电力转换电路部33的开关元件S1、S2包含两个图1至图3所示的第1实施方式的电力转换装置1的开关元件UH。When fourteen power conversion devices 1 according to the first embodiment are used in the vehicle 10 shown in FIG. 10 , the switching elements S1 and S2 of the third power conversion circuit unit 33 include two The switching element UH of the power conversion device 1 of the first embodiment.
在将七个第2实施方式或第3实施方式的电力转换装置1用于图10所示的车辆10的情况下,第3电力转换电路部33的开关元件S1、S2包含一个图5至图9所示的第2实施方式或第3实施方式的电力转换装置1的开关元件UH、UL。When seven power conversion devices 1 according to the second embodiment or the third embodiment are used in the vehicle 10 shown in FIG. 10 , the switching elements S1 and S2 of the third power conversion circuit part 33 include one The switching elements UH, UL of the power conversion device 1 of the second embodiment or the third embodiment shown in 9 .
第3电力转换电路部33为电压控制单元(VCU)。第3电力转换电路部33包括1相的高侧的开关元件S1与低侧的开关元件S2。The third power conversion circuit unit 33 is a voltage control unit (VCU). The third power conversion circuit unit 33 includes a high-side switching element S1 and a low-side switching element S2 of one phase.
开关元件S1的正极侧的电极连接于正极母线PV。正极母线PV连接于电容器单元23的正极母线50p。开关元件S2的负极侧的电极连接于负极母线NV。负极母线NV连接于电容器单元23的负极母线50n。电容器单元23的负极母线50n连接于电池11的负极端子NB。开关元件S1的负极侧的电极连接于开关元件S2的正极侧的电极。开关元件S1与开关元件S2具备续流二极管。The electrode on the positive electrode side of the switching element S1 is connected to the positive electrode bus PV. The positive bus PV is connected to the positive bus 50 p of the capacitor unit 23 . The negative electrode of switching element S2 is connected to negative bus NV. The negative bus NV is connected to the negative bus 50 n of the capacitor unit 23 . The negative bus bar 50 n of the capacitor unit 23 is connected to the negative terminal NB of the battery 11 . The electrode on the negative side of the switching element S1 is connected to the electrode on the positive side of the switching element S2. The switching element S1 and the switching element S2 include freewheeling diodes.
构成第3电力转换电路部33的开关元件S1与开关元件S2的连接点的母线53连接于电抗器22的一端。电抗器22的另一端连接于电池11的正极端子PB。电抗器22包括线圈、及对线圈的温度进行检测的温度传感器。温度传感器通过信号线而连接于电子控制单元28。A bus bar 53 constituting a connection point between switching element S1 and switching element S2 of third power conversion circuit unit 33 is connected to one end of reactor 22 . The other end of the reactor 22 is connected to the positive terminal PB of the battery 11 . Reactor 22 includes a coil and a temperature sensor that detects the temperature of the coil. The temperature sensor is connected to the electronic control unit 28 through a signal line.
第3电力转换电路部33基于从栅极驱动单元29输入至开关元件S1的栅极与开关元件S2的栅极的栅极信号,来切换开关元件S1与开关元件S2的接通(导通)/断开(阻断)。The third power conversion circuit unit 33 switches on (conduction) of the switching element S1 and the switching element S2 based on the gate signal input from the gate driving unit 29 to the gate of the switching element S1 and the gate of the switching element S2 /disconnect (block).
第3电力转换电路部33在升压时,在开关元件S2被设定为接通(导通)及开关元件S1被设定为断开(阻断)的第1状态、与开关元件S2被设定为断开(阻断)及开关元件S1被设定为接通(导通)的第2状态之间交替地切换。在第1状态下,电流依序流向电池11的正极端子PB、电抗器22、开关元件S2、电池11的负极端子NB,电抗器22受到直流励磁而蓄积磁能。在第2状态下,以妨碍因流至电抗器22的电流被阻断引起的磁通变化的方式而在电抗器22的两端间产生电动势(感应电压)。因蓄积在电抗器22中的磁能引起的感应电压重叠于电池电压,从而比电池11的端子间电压高的升压电压施加至第3电力转换电路部33的正极母线PV与负极母线NV之间。When boosting the voltage, the third power conversion circuit unit 33 is in the first state where the switching element S2 is turned on (conducting) and the switching element S1 is turned off (blocking), and the switching element S2 is turned off. The switching element S1 is switched alternately between the second state in which it is set to off (blocking) and the switching element S1 is set to on (conduction). In the first state, current flows sequentially through the positive terminal PB of the battery 11, the reactor 22, the switching element S2, and the negative terminal NB of the battery 11, and the reactor 22 receives DC excitation to store magnetic energy. In the second state, an electromotive force (induced voltage) is generated between both ends of the reactor 22 so as to prevent a change in magnetic flux caused by blocking the current flowing to the reactor 22 . The induced voltage due to the magnetic energy accumulated in the reactor 22 is superimposed on the battery voltage, and a boosted voltage higher than the voltage between the terminals of the battery 11 is applied between the positive busbar PV and the negative busbar NV of the third power conversion circuit part 33 .
第3电力转换电路部33在再生时,在第2状态与第1状态之间交替地切换。在第2状态下,电流依序流向第3电力转换电路部33的正极母线PV、开关元件S1、电抗器22、电池11的正极端子PB,电抗器22受到直流励磁而蓄积磁能。在第1状态下,以妨碍因流至电抗器22的电流被阻断引起的磁通变化的方式而在电抗器22的两端间产生电动势(感应电压)。因蓄积在电抗器22中的磁能引起的感应电压受到降压,比第3电力转换电路部33的正极母线PV及负极母线NV间的电压低的降压电压施加至电池11的正极端子PB与负极端子NB之间。The third power conversion circuit unit 33 alternately switches between the second state and the first state during regeneration. In the second state, current flows sequentially through the positive bus PV of the third power conversion circuit unit 33 , the switching element S1 , the reactor 22 , and the positive terminal PB of the battery 11 , and the reactor 22 receives DC excitation to store magnetic energy. In the first state, an electromotive force (induced voltage) is generated between both ends of the reactor 22 so as to prevent a change in magnetic flux caused by blocking the current flowing to the reactor 22 . The induced voltage due to the magnetic energy accumulated in the reactor 22 is stepped down, and the step-down voltage lower than the voltage between the positive busbar PV and the negative busbar NV of the third power conversion circuit part 33 is applied to the positive terminal PB and the positive terminal PB of the battery 11. between negative terminals NB.
电容器单元23包括第1平滑电容器41、第2平滑电容器42及噪声滤波器(noisefilter)43。The capacitor unit 23 includes a first smoothing capacitor 41 , a second smoothing capacitor 42 , and a noise filter (noise filter) 43 .
第1平滑电容器41连接于电池11的正极端子PB与负极端子NB之间。第1平滑电容器41对伴随第3电力转换电路部33的再生时的开关元件S1及开关元件S2的接通/断开的切换动作而产生的电压变动进行平滑化。The first smoothing capacitor 41 is connected between the positive terminal PB and the negative terminal NB of the battery 11 . The first smoothing capacitor 41 smoothes voltage fluctuations that occur during the on/off switching operation of the switching element S1 and the switching element S2 during regeneration of the third power conversion circuit unit 33 .
第2平滑电容器42连接于第1电力转换电路部31及第2电力转换电路部32各自的正极侧导电体PI及负极侧导电体NI间、和第3电力转换电路部33的正极母线PV及负极母线NV间。第2平滑电容器42经由正极母线50p及负极母线50n而连接于多个正极侧导电体PI及负极侧导电体NI和正极母线PV及负极母线NV。第2平滑电容器42对伴随第1电力转换电路部31及第2电力转换电路部32的开关元件UH、UL、VH、VL、WH、WL各自的接通/断开的切换动作而产生的电压变动进行平滑化。第2平滑电容器42对伴随第3电力转换电路部33的升压时的开关元件S1及开关元件S2的接通/断开的切换动作而产生的电压变动进行平滑化。The second smoothing capacitor 42 is connected between the positive electrode side conductor PI and the negative electrode side conductor N1 of the first power conversion circuit part 31 and the second power conversion circuit part 32, respectively, and the positive electrode bus PV and the third power conversion circuit part 33. Negative busbar NV. The second smoothing capacitor 42 is connected to a plurality of positive-side conductors PI and negative-side conductors NI, the positive bus PV and the negative bus NV via the positive bus 50p and the negative bus 50n. The second smoothing capacitor 42 responds to the voltage generated when the switching elements UH, UL, VH, VL, WH, and WL of the first power conversion circuit unit 31 and the second power conversion circuit unit 32 are switched on/off. The changes are smoothed. The second smoothing capacitor 42 smoothes a voltage fluctuation that occurs during the on/off switching operation of the switching element S1 and the switching element S2 when the third power conversion circuit unit 33 boosts the voltage.
噪声滤波器43连接于第1电力转换电路部31及第2电力转换电路部32各自的正极侧导电体PI及负极侧导电体NI间、和第3电力转换电路部33的正极母线PV及负极母线NV间。噪声滤波器43具备串联连接的两个电容器。两个电容器的连接点连接于车辆10的车身接地(body ground)等。The noise filter 43 is connected between the positive electrode side conductor PI and the negative electrode side conductor N1 of the first power conversion circuit part 31 and the second power conversion circuit part 32, respectively, and the positive busbar PV and the negative electrode of the third power conversion circuit part 33. Bus NV room. The noise filter 43 includes two capacitors connected in series. The connection point of the two capacitors is connected to a body ground of the vehicle 10 or the like.
电阻器24连接于第1电力转换电路部31及第2电力转换电路部32各自的正极侧导电体PI及负极侧导电体NI间、和第3电力转换电路部33的正极母线PV及负极母线NV间。The resistor 24 is connected between the positive-side conductor PI and the negative-side conductor NI of the first power conversion circuit part 31 and the second power conversion circuit part 32, respectively, and the positive busbar PV and the negative busbar of the third power conversion circuit part 33. Between NV.
第1电流传感器25配置于输出侧导电体51,对U相、V相及W相的各相的电流进行检测,所述输出侧导电体51构成第1电力转换电路部31的各相的连接点TI,且与第1输入/输出端子Q1连接。第2电流传感器26配置于输出侧导电体52,对U相、V相及W相的各相的电流进行检测,所述输出侧导电体52构成第2电力转换电路部32的各相的连接点TI,并且与第2输入/输出端子Q2连接。第3电流传感器27配置于母线53,对流至电抗器22的电流进行检测,所述母线53构成开关元件S1及开关元件S2的连接点,并且与电抗器22连接。The first current sensor 25 is disposed on the output-side conductor 51 that constitutes the connection of the phases of the first power conversion circuit unit 31 to detect the currents of the U-phase, V-phase, and W-phase. Point TI, and connected to the first input/output terminal Q1. The second current sensor 26 is disposed on the output-side conductor 52 that constitutes the connection of the phases of the second power conversion circuit unit 32 to detect the currents of the U-phase, V-phase, and W-phase. Point TI, and connect to the second input/output terminal Q2. The third current sensor 27 is arranged on the bus bar 53 which constitutes the connection point of the switching element S1 and the switching element S2 and is connected to the reactor 22 , and detects the current flowing to the reactor 22 .
第1电流传感器25、第2电流传感器26及第3电流传感器27各自通过信号线而连接于电子控制单元28。Each of the first current sensor 25 , the second current sensor 26 and the third current sensor 27 is connected to the electronic control unit 28 through a signal line.
电子控制单元28对第1马达12及第2马达13各自的动作进行控制。例如,电子控制单元28是通过中央处理器(Central Processing Unit,CPU)等处理器执行规定程序而发挥功能的软件(software)功能部。软件功能部是包括CPU等处理器、保存程序的只读存储器(Read Only Memory,ROM)、暂时存储数据的随机存取存储器(Random Access Memory,RAM)、及计时器(timer)等电子电路的电控单元(Electronic Control Unit,ECU)。另外,电子控制单元28的至少一部分也可为大规模集成电路(Large Scale Integration,LSI)等集成电路。例如,电子控制单元28执行使用第1电流传感器25的电流检测值和与针对第1马达12的扭矩(torque)指令值相应的电流目标值的电流反馈(feedback)控制等,生成输入至栅极驱动单元29的控制信号。例如,电子控制单元28执行使用第2电流传感器26的电流检测值和与针对第2马达13的再生指令值相应的电流目标值的电流反馈控制等,生成输入至栅极驱动单元29的控制信号。控制信是表示对第1电力转换电路部31及第2电力转换电路部32的开关元件UH、UL、VH、VL、WH、WL的各个进行接通(导通)/断开(阻断)驱动的时机(timing)的信号。例如,控制信号是经脉宽调制的信号等。The electronic control unit 28 controls the respective operations of the first motor 12 and the second motor 13 . For example, the electronic control unit 28 is a software (software) function unit that functions when a processor such as a central processing unit (Central Processing Unit, CPU) executes a predetermined program. The software function part is composed of processors such as CPU, read-only memory (Read Only Memory, ROM) for storing programs, random access memory (Random Access Memory, RAM) for temporarily storing data, and electronic circuits such as timers. Electronic Control Unit (ECU). In addition, at least a part of the electronic control unit 28 may also be an integrated circuit such as a large scale integrated circuit (Large Scale Integration, LSI). For example, the electronic control unit 28 performs current feedback control using the current detection value of the first current sensor 25 and the current target value corresponding to the torque (torque) command value for the first motor 12, etc., and generates a current input to the gate. The control signal of the drive unit 29. For example, the electronic control unit 28 executes current feedback control using the current detection value of the second current sensor 26 and the current target value corresponding to the regeneration command value for the second motor 13, etc., and generates a control signal input to the gate driving unit 29. . The control signal indicates turning on (conducting)/off (blocking) each of the switching elements UH, UL, VH, VL, WH, and WL of the first power conversion circuit unit 31 and the second power conversion circuit unit 32 Timing signal for the drive. For example, the control signal is a pulse width modulated signal or the like.
栅极驱动单元29基于从电子控制单元28接收的控制信号,生成用于对第1电力转换电路部31及第2电力转换电路部32的开关元件UH、UL、VH、VL、WH、WL的各个实际进行接通(导通)/断开(阻断)驱动的栅极信号。例如,栅极驱动单元29执行控制信号的放大及电平转换(level shift)等而生成栅极信号。The gate drive unit 29 generates switching elements UH, UL, VH, VL, WH, and WL for switching elements UH, UL, VH, VL, WH, and WL of the first power conversion circuit unit 31 and the second power conversion circuit unit 32 based on the control signal received from the electronic control unit 28 . Each gate signal actually performs on (conduction)/off (blocking) driving. For example, the gate driving unit 29 executes amplification, level shift, and the like of a control signal to generate a gate signal.
栅极驱动单元29生成用于对第3电力转换电路部33的开关元件S1及开关元件S2的各个进行接通(导通)/断开(阻断)驱动的栅极信号。例如,栅极驱动单元29生成与第3电力转换电路部33的升压时的升压电压指令或第3电力转换电路部33的再生时的降压电压指令相应的占空比的栅极信号。占空比是开关元件S1及开关元件S2的比率。The gate drive unit 29 generates a gate signal for on (conducting)/off (blocking) driving each of the switching element S1 and the switching element S2 of the third power conversion circuit section 33 . For example, the gate drive unit 29 generates a gate signal having a duty ratio corresponding to a boost voltage command for boosting by the third power conversion circuit unit 33 or a step-down voltage command for regeneration of the third power conversion circuit unit 33 . . The duty ratio is the ratio of the switching element S1 to the switching element S2.
图10所示的示例中,是将第1实施方式至第3实施方式的电力转换装置1适用于车辆10,但在其他例中,也可将第1实施方式至第3实施方式的电力转换装置1适用于例如电梯(elevator)、泵(pump)、风扇(fan)、铁路车辆、空调机、冰箱、洗衣机等之类的车辆10以外的设备。In the example shown in FIG. 10 , the power conversion device 1 of the first to third embodiments is applied to a vehicle 10 , but in other examples, the power conversion device 1 of the first to third embodiments may be applied to The device 1 is applicable to equipment other than the vehicle 10 such as elevators, pumps, fans, railway vehicles, air conditioners, refrigerators, and washing machines.
本实用新型的实施方式仅为例示,并不意图限定实用新型的范围。这些实施方式能够以其他的各种方式来实施,在不脱离实用新型的主旨的范围内,能够进行各种省略、置换、变更。这些实施方式或所述变形包含在实用新型的范围或主旨内,同样包含在权利要求所记载的实用新型及其均等的范围内。The embodiments of the present invention are merely examples, and are not intended to limit the scope of the present invention. These embodiments can be implemented in other various forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. These embodiments and modifications are included in the scope or gist of the invention, and are also included in the invention described in the claims and their equivalents.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018044451A JP2019160968A (en) | 2018-03-12 | 2018-03-12 | Power conversion device |
JP2018-044451 | 2018-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209435132U true CN209435132U (en) | 2019-09-24 |
Family
ID=67978405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920291884.9U Expired - Fee Related CN209435132U (en) | 2018-03-12 | 2019-03-08 | power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019160968A (en) |
CN (1) | CN209435132U (en) |
-
2018
- 2018-03-12 JP JP2018044451A patent/JP2019160968A/en active Pending
-
2019
- 2019-03-08 CN CN201920291884.9U patent/CN209435132U/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2019160968A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5622043B2 (en) | Inverter device | |
JP4305537B2 (en) | Power converter | |
CN101681898B (en) | Structure for cooling semiconductor element | |
JP7079625B2 (en) | Power converter | |
JP6677346B2 (en) | Inverter unit | |
US10658942B2 (en) | Element unit | |
JP6515836B2 (en) | Inverter device | |
US10790730B2 (en) | Power conversion device | |
JP2015033222A (en) | Drive unit of semiconductor device and power conversion device using the same | |
CN105164913B (en) | Electric rotating machine drive device | |
CN110323952B (en) | Power conversion device | |
US20210006177A1 (en) | Power conversion apparatus | |
CN209435132U (en) | power conversion device | |
JP2013140889A (en) | Power module | |
JP2006165409A (en) | Power converter | |
JP2018022731A (en) | Power module and power control unit | |
JP2005192328A (en) | Semiconductor device | |
CN110336481B (en) | Power conversion device and capacitor for power conversion device | |
CN110798076B (en) | Component module | |
CN209434173U (en) | power conversion device | |
JP6786463B2 (en) | Power converter | |
CN110277359B (en) | Power conversion device | |
CN209435130U (en) | power conversion device | |
JP2019160969A (en) | Power conversion device | |
JP2021061650A (en) | Element module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190924 |