CN207910227U - A kind of compound dual-cavity laser of all -fiber pulse - Google Patents
A kind of compound dual-cavity laser of all -fiber pulse Download PDFInfo
- Publication number
- CN207910227U CN207910227U CN201721732396.4U CN201721732396U CN207910227U CN 207910227 U CN207910227 U CN 207910227U CN 201721732396 U CN201721732396 U CN 201721732396U CN 207910227 U CN207910227 U CN 207910227U
- Authority
- CN
- China
- Prior art keywords
- fiber
- optical fiber
- bragg grating
- gain
- reflection type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 214
- 150000001875 compounds Chemical class 0.000 title description 12
- 239000013307 optical fiber Substances 0.000 claims abstract description 69
- 230000007704 transition Effects 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 22
- 238000005086 pumping Methods 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 6
- 238000002310 reflectometry Methods 0.000 claims description 10
- 239000011651 chromium Substances 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 4
- 230000010287 polarization Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 238000001069 Raman spectroscopy Methods 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 2
- 239000004038 photonic crystal Substances 0.000 claims description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 claims description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 2
- 239000006096 absorbing agent Substances 0.000 abstract description 3
- 230000006978 adaptation Effects 0.000 abstract description 2
- 239000007844 bleaching agent Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000004927 fusion Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007526 fusion splicing Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
Landscapes
- Lasers (AREA)
Abstract
本实用新型公开了一种全光纤脉冲复合双腔激光器,包括泵浦源、光纤合束器、第一增益光纤、第二增益光纤、过渡光纤、第一反射型光纤布拉格光栅、第二反射型光纤布拉格光栅、第三反射型光纤布拉格光栅、第四反射型光纤布拉格光栅、光隔离器、激光分束器。本实用新型利用掺杂稀土元素的光纤作为增益介质和可饱和吸收体,同时利用小芯径增益光纤作为脉冲产生的核心并且保证单模运转,大芯径增益光纤作为功率放大器,可以降低非线性效应的影响,小芯径和大芯径光纤通过过渡光纤实现模场适配熔接易于漂白内腔获得窄脉冲输出;本实用新型也是全光纤结构,具有高稳定性、高功率、高能量、高效率的特点。
The utility model discloses an all-fiber pulse composite double-cavity laser, which comprises a pumping source, a fiber combiner, a first gain fiber, a second gain fiber, a transition fiber, a first reflective fiber Bragg grating, and a second reflective fiber Bragg grating. Fiber Bragg grating, third reflective fiber Bragg grating, fourth reflective fiber Bragg grating, optical isolator, laser beam splitter. The utility model uses the optical fiber doped with rare earth elements as a gain medium and a saturable absorber, and at the same time uses a small-core-diameter gain fiber as the core of pulse generation to ensure single-mode operation, and a large-core-diameter gain fiber as a power amplifier, which can reduce nonlinearity effect, small core diameter and large core diameter optical fiber through the transition optical fiber to achieve mode field adaptation fusion is easy to bleach the inner cavity to obtain narrow pulse output; the utility model is also an all-fiber structure, with high stability, high power, high energy, high Features of efficiency.
Description
技术领域technical field
本实用新型属于激光技术与非线性光学领域,尤其涉及一种全光纤脉冲复合双腔激光器The utility model belongs to the field of laser technology and nonlinear optics, in particular to an all-fiber pulse composite double-cavity laser
背景技术Background technique
高功率、高能量的脉冲光纤激光器以其诸多优点被认为是未来脉冲激光器的发展趋势,目前在很多领域已经开始逐渐取代传统激光器。高能量纳秒脉冲光纤激光器广泛应用于激光加工、光时域反射计(OTDR)、二次谐波的产生、军事等领域。High-power, high-energy pulsed fiber lasers are considered to be the development trend of future pulsed lasers due to their many advantages, and have gradually replaced traditional lasers in many fields. High-energy nanosecond pulsed fiber lasers are widely used in laser processing, optical time domain reflectometer (OTDR), second harmonic generation, military and other fields.
目前在光纤激光器中,获得脉冲输出的方法大体有两种:一种是锁模光纤激光器,其输出脉宽较窄,一般在皮秒甚至飞秒量级;第二种为调Q光纤激光器,可以实现纳秒或亚毫秒脉宽的激光(巨脉冲)输出。一般来说,传统的调Q方法是加入声光、电光调制器或固态可饱和吸收体实现,然而光纤与非光纤器件结合会增加系统复杂性,影响系统稳定性和抗环境干扰能力,不利于产业化和实用推广,因此全光纤化的高能量、高能量的纳秒脉冲光纤激光器的实现具有重要的意义。At present, in fiber lasers, there are generally two methods for obtaining pulse output: one is mode-locked fiber lasers, whose output pulse width is narrow, generally in the order of picoseconds or even femtoseconds; the second is Q-switched fiber lasers, Laser (giant pulse) output with nanosecond or submillisecond pulse width can be realized. Generally speaking, the traditional Q-switching method is realized by adding acousto-optic, electro-optic modulators or solid-state saturable absorbers. However, the combination of optical fibers and non-optical devices will increase the complexity of the system, affect system stability and anti-environmental interference, and is not conducive to Industrialization and practical promotion, so the realization of all-fiber high-energy and high-energy nanosecond pulsed fiber lasers is of great significance.
实用新型内容Utility model content
本实用新型要解决的问题是,为了获得高功率、高能量、高光束质量的纳秒脉冲输出,同时避免空间元件或额外调制器的使用,提供一种全光纤脉冲复合双腔激光器,利用小芯径增益光纤作为脉冲产生的核心并且保证单模运转,大芯径增益光纤作为功率放大器,可以降低非线性效应的影响,小芯径和大芯径光纤通过过渡光纤实现模场适配熔接易于漂白内腔获得窄脉冲输出。The problem to be solved by the utility model is to provide an all-fiber pulse compound dual-cavity laser in order to obtain nanosecond pulse output with high power, high energy and high beam quality, and avoid the use of space elements or additional modulators. The core diameter gain fiber is used as the core of pulse generation and ensures single-mode operation. The large core diameter gain fiber is used as a power amplifier, which can reduce the influence of nonlinear effects. The small core diameter and large core diameter fibers can achieve mode field adaptation and fusion splicing through transition fibers. Bleach lumen for narrow pulse output.
为实现上述目的,本实用新型采用如下技术方案:In order to achieve the above object, the utility model adopts the following technical solutions:
一种全光纤脉冲复合双腔激光器,包括:泵浦源、光纤合束器、第一增益光纤、第二增益光纤、过渡光纤、第一反射型光纤布拉格光栅、第二反射型光纤布拉格光栅、第三反射型光纤布拉格光栅、第四反射型光纤布拉格光栅、光隔离器;其中,所述泵浦源连接光纤合束器的泵浦输入端;光纤合束器的信号端连接过渡光纤的一端;过渡光纤的另一端连接第一反射型光纤光栅布拉格光栅的一端;第一反射型光纤布拉格光栅的另一端连接第一增益光纤的一端;第一增益光纤的另一端连接第二反射型光纤布拉格光栅的一端;第二反射型光纤布拉格光栅的另一端连接第三反射型光纤布拉格光栅的一端;光纤合束器的公共端连接第二增益光纤的一端;第二增益光纤的另一端连接第四反射型光纤布拉格光栅的一端;第三反射型光纤布拉格光栅与第四反射型光纤布拉格光栅构成第一谐振腔;第一反射型光纤布拉格光栅与第二反射型光纤布拉格光栅构成第二谐振腔;泵浦源产生的泵浦光通过光纤合束器的泵浦输入端进入到第一谐振腔内,对第二增益光纤进行泵浦,形成的激光经光纤合束器、第一反射型光纤布拉格光栅进入第二谐振腔内,对第一增益光纤进行泵浦产生另一个波长激光,第二谐振腔产生的另一个波长激光依次经光纤合束器、第二增益光纤、第四反射型光纤布拉格光栅、光隔离器输出。An all-fiber pulse compound dual-cavity laser, comprising: a pump source, a fiber combiner, a first gain fiber, a second gain fiber, a transition fiber, a first reflective fiber Bragg grating, a second reflective fiber Bragg grating, The third reflective fiber Bragg grating, the fourth reflective fiber Bragg grating, and the optical isolator; wherein, the pump source is connected to the pump input end of the fiber combiner; the signal end of the fiber combiner is connected to one end of the transition fiber ; The other end of the transition fiber is connected to one end of the first reflective fiber Bragg grating; the other end of the first reflective fiber Bragg grating is connected to one end of the first gain fiber; the other end of the first gain fiber is connected to the second reflective fiber Bragg One end of the grating; the other end of the second reflective fiber Bragg grating is connected to one end of the third reflective fiber Bragg grating; the common end of the fiber combiner is connected to one end of the second gain fiber; the other end of the second gain fiber is connected to the fourth One end of the reflective fiber Bragg grating; the third reflective fiber Bragg grating and the fourth reflective fiber Bragg grating form a first resonant cavity; the first reflective fiber Bragg grating and the second reflective fiber Bragg grating form a second resonant cavity; The pump light generated by the pump source enters the first resonant cavity through the pump input end of the fiber combiner, pumps the second gain fiber, and the formed laser passes through the fiber combiner, the first reflective fiber Bragg The grating enters the second resonant cavity, pumps the first gain fiber to generate another wavelength laser, and the other wavelength laser generated by the second resonant cavity passes through the fiber beam combiner, the second gain fiber, and the fourth reflective fiber Bragg in turn. Grating, optical isolator output.
作为优选,所述的第一反射型光纤布拉格光栅、第二反射型光纤布拉格光栅、第三反射型光纤布拉格光栅、第四反射型光纤布拉格光栅的反射率均为R,其中,0<R<1。Preferably, the reflectivity of the first reflective fiber Bragg grating, the second reflective fiber Bragg grating, the third reflective fiber Bragg grating, and the fourth reflective fiber Bragg grating are all R, wherein, 0<R< 1.
作为优选,所述的光纤合束器可以放在第四反射型光纤布拉格光栅和光隔离器之间。Preferably, the optical fiber combiner can be placed between the fourth reflective fiber Bragg grating and the optical isolator.
一种全光纤脉冲复合双腔激光器,其特征在于,包括:泵浦源、光纤合束器、第一增益光纤、第二增益光纤、过渡光纤、第一反射型光纤布拉格光栅、激光分束器、第四反射型光纤布拉格光栅、光隔离器;其中,所述泵浦源连接光纤合束器的泵浦输入端;光纤合束器的信号端连接过渡光纤的一端;过渡光纤的另一端连接第一增益光纤的一端;第一增益光纤的另一端连接激光分束器的一端;激光分束器的另一端两个输出端直接相连形成光环;光纤合束器的公共端连接第二增益光纤的一端;第二增益光纤的另一端连接第四反射型光纤布拉格光栅的一端;激光分束器与第四反射型光纤布拉格光栅构成第一谐振腔;第一反射型光纤布拉格光栅与激光分束器构成第二谐振腔;泵浦源产生的泵浦光通过光纤合束器的泵浦输入端进入到第一谐振腔内,对第二增益光纤进行泵浦,形成的激光经光纤合束器、第一反射型光纤布拉格光栅进入第二谐振腔内,对第一增益光纤进行泵浦产生另一个波长激光,第二谐振腔产生的另一个波长激光依次经光纤合束器、第二增益光纤、第四反射型光纤布拉格光栅、光隔离器输出。An all-fiber pulse compound dual-cavity laser, characterized in that it includes: a pump source, a fiber combiner, a first gain fiber, a second gain fiber, a transition fiber, a first reflective fiber Bragg grating, and a laser beam splitter , the fourth reflective fiber Bragg grating, an optical isolator; wherein, the pumping source is connected to the pumping input end of the fiber combiner; the signal end of the fiber combiner is connected to one end of the transition fiber; the other end of the transition fiber is connected to One end of the first gain fiber; the other end of the first gain fiber is connected to one end of the laser beam splitter; the other end of the laser beam splitter is directly connected to two output ports to form an optical ring; the common end of the fiber combiner is connected to the second gain fiber One end of the second gain fiber; the other end of the second gain fiber is connected to one end of the fourth reflective fiber Bragg grating; the laser beam splitter and the fourth reflective fiber Bragg grating form the first resonant cavity; the first reflective fiber Bragg grating and the laser beam splitter The pump constitutes the second resonant cavity; the pump light generated by the pump source enters the first resonant cavity through the pump input end of the fiber combiner, and pumps the second gain fiber, and the formed laser light passes through the fiber combiner , The first reflective fiber Bragg grating enters the second resonant cavity, pumps the first gain fiber to generate another wavelength laser, and the other wavelength laser generated by the second resonant cavity passes through the fiber combiner and the second gain fiber in turn , the fourth reflective fiber Bragg grating, optical isolator output.
作为优选,所述的第一反射型光纤布拉格光栅、第四反射型光纤布拉格光栅的反射率均为R,其中,0<R<1。Preferably, the reflectances of the first reflective fiber Bragg grating and the fourth reflective fiber Bragg grating are both R, wherein 0<R<1.
作为优选,所述的光纤合束器可以放在第四反射型光纤布拉格光栅和光隔离器之间。Preferably, the optical fiber combiner can be placed between the fourth reflective fiber Bragg grating and the optical isolator.
作为优选,所述的泵浦源为半导体激光器、固体激光器、气体激光器、光纤激光器、拉曼激光器其中的一种,输出泵浦光的中心波长的范围为:700nm≤λ≤2000nm,所述的泵浦方式为纤芯单端泵浦、纤芯双端泵浦、包层单端泵浦、包层双端泵浦其中的一种。Preferably, the pump source is one of semiconductor lasers, solid lasers, gas lasers, fiber lasers, and Raman lasers, and the central wavelength range of the output pump light is: 700nm≤λ≤2000nm, the described The pumping method is one of core single-end pumping, fiber core double-end pumping, cladding single-end pumping, and cladding double-end pumping.
作为优选,所述的光纤合束器为(2+1)×1光纤合束器或(6+1)×1光纤合束器。Preferably, the optical fiber combiner is a (2+1)×1 optical fiber combiner or a (6+1)×1 optical fiber combiner.
作为优选,所述的第一增益光纤、第二增益光纤为掺有稀土元素的保偏光纤或光子晶体保偏光纤,所述掺杂的稀土元素为镱(Yb)、铒(Er)、钬(Ho)、铥(Tm)、钕(Nd)、铬(Cr)、钐(Sm)、铋(Bi)其中的一种或几种。Preferably, the first gain fiber and the second gain fiber are polarization-maintaining fibers or photonic crystal polarization-maintaining fibers doped with rare earth elements, and the doped rare earth elements are ytterbium (Yb), erbium (Er), holmium One or more of (Ho), thulium (Tm), neodymium (Nd), chromium (Cr), samarium (Sm), and bismuth (Bi).
作为优选,第一增益光纤的纤芯直径<过渡光纤的纤芯直径<第二增益光纤的纤芯直径。Preferably, the core diameter of the first gain fiber<the core diameter of the transition fiber<the core diameter of the second gain fiber.
有益效果Beneficial effect
本实用新型谐振腔交叉调制的全光纤脉冲激光器具有以下优点:The utility model resonator cross-modulated all-fiber pulse laser has the following advantages:
1、本实用新型利用掺杂稀土元素的光纤作为增益介质和可饱和吸收体,不需要外界附加的调制源,全光纤结构,设计简单,成本低廉;1. The utility model uses the optical fiber doped with rare earth elements as a gain medium and a saturable absorber, and does not require an additional external modulation source. It has an all-fiber structure, simple design, and low cost;
2、本实用新型利用谐振腔的交叉调制作用,相对于传统的调Q激光器,具有更高的输出功率和系统稳定性;2. The utility model utilizes the cross-modulation function of the resonant cavity, and has higher output power and system stability than the traditional Q-switched laser;
3、本实用新型设计简单、结构紧凑,同时可以输出稳定性高、脉冲能量大的超短脉冲激光,易于实现产业化。3. The utility model is simple in design and compact in structure, and can output ultrashort pulse laser with high stability and large pulse energy, and is easy to realize industrialization.
4、本实用新型利用不同芯径的掺杂光纤以及过渡光纤匹配,具有更大能量和更高功率输出。4. The utility model uses doped optical fibers with different core diameters and transition optical fibers to match, and has greater energy and higher power output.
附图说明:Description of drawings:
图1为实施例1全光纤脉冲复合双腔激光器基本原理图;Fig. 1 is the basic schematic diagram of the all-fiber pulse compound dual-cavity laser of embodiment 1;
图2为实施例2全光纤脉冲复合双腔激光器基本原理图;Fig. 2 is the basic schematic diagram of the all-fiber pulse compound dual-cavity laser of embodiment 2;
图3为实施例3全光纤脉冲复合双腔激光器基本原理图;Fig. 3 is the basic schematic diagram of the all-fiber pulse compound dual-cavity laser of embodiment 3;
图4为实施例4全光纤脉冲复合双腔激光器基本原理图;Fig. 4 is the basic schematic diagram of the all-fiber pulse compound dual-cavity laser of embodiment 4;
图中:1、泵浦源;2、光纤合束器;3第一增益光纤;4、第二增益光纤;5、过渡光纤;6、第一反射型光纤布拉格光栅;7、第二反射型光纤布拉格光栅;8、第三反射型光纤布拉格光栅;9、第四反射型光纤布拉格光栅;10、光隔离器;0、激光分束器;In the figure: 1. Pump source; 2. Fiber combiner; 3. First gain fiber; 4. Second gain fiber; 5. Transition fiber; 6. First reflective fiber Bragg grating; 7. Second reflective fiber Fiber Bragg grating; 8. The third reflective fiber Bragg grating; 9. The fourth reflective fiber Bragg grating; 10. Optical isolator; 0. Laser beam splitter;
具体实施方式Detailed ways
下面结合图示1、2、3、4对本实用新型作进一步说明,但不仅限于以下几种实施例。Below in conjunction with illustration 1, 2, 3, 4, the utility model will be further described, but not limited to the following several embodiments.
实施例1Example 1
一种全光纤脉冲复合双腔激光器结构如图1所示。图中1为泵浦源,可选用中心波长为976nm的半导体激光二极管;2为光纤合束器,可以选用(2+1)×1泵浦信号合束器,如20/125型;3是掺稀土光纤,可选用美国Nufern公司生产的纤芯直径为10微米的掺镱光纤;4是掺稀土光纤,可选用美国Nufern公司生产的纤芯直径为20微米的掺镱光纤;5是过渡光纤,可选用加拿大CoActive公司生产的纤芯直径为15微米的传输光纤;6、7、8、9是反射型光纤布拉格光栅,可选高反型和部分反射型光栅,反射率为R,其中0<R<1;10是光隔离器,可选偏振无关光隔离器。The structure of an all-fiber pulse compound dual-cavity laser is shown in Figure 1. In the figure, 1 is the pump source, and a semiconductor laser diode with a center wavelength of 976nm can be selected; 2 is an optical fiber combiner, and a (2+1)×1 pump signal combiner can be selected, such as 20/125; 3 is Rare-earth-doped optical fiber can be ytterbium-doped optical fiber with a core diameter of 10 microns produced by Nufern in the United States; 4 is a rare-earth-doped optical fiber with a core diameter of 20 microns produced by Nufern in the United States; 5 is a transition fiber , the transmission fiber with a core diameter of 15 microns produced by Canada’s CoActive company can be selected; 6, 7, 8, and 9 are reflective fiber Bragg gratings, and high-inversion and partial reflection gratings are optional. The reflectivity is R, where 0 <R<1; 10 is an optical isolator, an optional polarization-independent optical isolator.
泵浦光通过光纤合束器2的泵浦端进入到第二增益光纤4,然后到达第四反射型光纤布拉格光栅9,该光纤布拉格光栅为高反型光栅,即反射率R,R≥99%,该中心波长处几乎所有的光会被反射回去,通过第二增益光纤4、光纤合束器2、过渡光纤5、第一反射型光纤布拉格光纤6、第一增益光纤3和第二反射型光纤布拉格光栅7,到达第三反射型光纤布拉格光栅8,该光纤布拉格光栅为全反型光栅,即反射率R,R≥99%,该中心波长处几乎所有的光会被反射回去。第三反射型光纤布拉格光栅8、第四反射型光纤布拉格光栅9组成第一谐振腔。第一谐振腔产生的激光通过第二反射型光纤布拉格光栅7进入到第一增益光纤3,然后到达第一反射型光纤布拉格光栅6,第一反射型光纤布拉格光栅7和第二反射型光纤布拉格光栅6组成第二谐振腔。而在泵浦源1的激励下第一谐振腔先形成激光振荡,然后对第二谐振腔进行泵浦,输出另一波长的激光,依次通过过渡光纤(5)、光纤合束器(2)、第二增益光纤(4)、第四反射型光纤布拉格光栅(9)、光隔离器(10)输出。The pump light enters the second gain fiber 4 through the pump end of the fiber combiner 2, and then reaches the fourth reflective fiber Bragg grating 9, which is a high inversion grating, that is, the reflectivity R, R≥99 %, almost all the light at the central wavelength will be reflected back, through the second gain fiber 4, fiber combiner 2, transition fiber 5, first reflective fiber Bragg fiber 6, first gain fiber 3 and the second reflection Type fiber Bragg grating 7 reaches the third reflective fiber Bragg grating 8, the fiber Bragg grating is a total reflection type grating, that is, the reflectivity R, R≥99%, almost all the light at the central wavelength will be reflected back. The third reflective fiber Bragg grating 8 and the fourth reflective fiber Bragg grating 9 form the first resonant cavity. The laser light produced by the first resonator enters the first gain fiber 3 through the second reflective fiber Bragg grating 7, and then reaches the first reflective fiber Bragg grating 6, the first reflective fiber Bragg grating 7 and the second reflective fiber Bragg The grating 6 constitutes the second resonant cavity. Under the excitation of the pump source 1, the first resonant cavity first forms laser oscillation, and then pumps the second resonant cavity to output laser light of another wavelength, which passes through the transition fiber (5) and the fiber combiner (2) in turn. , the output of the second gain fiber (4), the fourth reflective fiber Bragg grating (9), and the optical isolator (10).
实施例2Example 2
一种全光纤脉冲复合双腔激光器结构如图2所示,基本结构与图1相近,将泵浦源(1)和光纤合束器(2)放在第四反射型光纤布拉格光栅(9)和光隔离器(10)之间。An all-fiber pulse compound dual-cavity laser structure is shown in Figure 2, the basic structure is similar to Figure 1, and the pump source (1) and fiber combiner (2) are placed on the fourth reflective fiber Bragg grating (9) and the optical isolator (10).
实施例3Example 3
一种全光纤脉冲复合双腔激光器结构如图3所示。图中3为泵浦源,可选用中心波长为976nm的半导体激光二极管;2为光纤合束器,可以选用(2+1)×1泵浦信号合束器,如20/125型;3是掺稀土光纤,可选用美国Nufern公司生产的纤芯直径为10微米的掺镱光纤;4是掺稀土光纤,可选用美国Nufern公司生产的纤芯直径为20微米的掺镱光纤;5是过渡光纤,可选用加拿大CoActive公司生产的纤芯直径为15微米的传输光纤;0是激光分束器,可选用2×1的50:50分束比的分束器,将一端两个输出端相连,可以达到全反镜的作用;6、9是反射型光纤布拉格光栅,可选高反型和部分反射型光栅,反射率为R,其中0<R<1;10是光隔离器,可选偏振无关光隔离器。The structure of an all-fiber pulse compound dual-cavity laser is shown in Fig. 3 . 3 in the figure is the pump source, which can be a semiconductor laser diode with a center wavelength of 976nm; 2 is an optical fiber combiner, and a (2+1)×1 pump signal combiner can be used, such as 20/125 type; 3 is Rare-earth-doped optical fiber can be ytterbium-doped optical fiber with a core diameter of 10 microns produced by Nufern in the United States; 4 is a rare-earth-doped optical fiber with a core diameter of 20 microns produced by Nufern in the United States; 5 is a transition fiber , you can choose a transmission fiber with a core diameter of 15 microns produced by Canada's CoActive company; It can achieve the function of total reflection mirror; 6 and 9 are reflective fiber Bragg gratings, high reflection and partial reflection gratings are optional, and the reflectivity is R, where 0<R<1; 10 is an optical isolator, optional polarization Nothing to do with optoisolators.
泵浦光通过光纤合束器2的泵浦端进入到第二增益光纤4,然后到达第四反射型光纤布拉格光栅9,该光纤布拉格光栅为高反型光栅,即反射率R,R≥99%,该中心波长处几乎所有的光会被反射回去,通过第二增益光纤4、光纤合束器2、过渡光纤5、第一反射型光纤布拉格光纤6、到达激光分束器0,该光纤布拉格光栅为全反型光栅,即反射率R,R≥99%,该中心波长处几乎所有的光会被反射回去。激光分束器0、第四反射型光纤布拉格光栅9组成第一谐振腔。第一谐振腔产生的激光进入到第一增益光纤3,然后到达第一反射型光纤布拉格光栅6,激光分束器和第二反射型光纤布拉格光栅6组成第二谐振腔。而在泵浦源1的激励下第一谐振腔先形成激光振荡,然后对第二谐振腔进行泵浦,输出另一波长的激光,依次通过过渡光纤(5)、光纤合束器(2)、第二增益光纤(4)、第四反射型光纤布拉格光栅(9)、光隔离器(10)输出。The pump light enters the second gain fiber 4 through the pump end of the fiber combiner 2, and then reaches the fourth reflective fiber Bragg grating 9, which is a high inversion grating, that is, the reflectivity R, R≥99 %, almost all the light at the central wavelength will be reflected back, through the second gain fiber 4, the fiber combiner 2, the transition fiber 5, the first reflective fiber Bragg fiber 6, and reach the laser beam splitter 0, the fiber The Bragg grating is a full-reflection grating, that is, the reflectivity R, R≥99%, and almost all the light at the central wavelength will be reflected back. The laser beam splitter 0 and the fourth reflective fiber Bragg grating 9 form the first resonant cavity. The laser light generated by the first resonant cavity enters the first gain fiber 3 and then reaches the first reflective fiber Bragg grating 6. The laser beam splitter and the second reflective fiber Bragg grating 6 form the second resonant cavity. Under the excitation of the pump source 1, the first resonant cavity first forms laser oscillation, and then pumps the second resonant cavity to output laser light of another wavelength, which passes through the transition fiber (5) and the fiber combiner (2) in turn. , the output of the second gain fiber (4), the fourth reflective fiber Bragg grating (9), and the optical isolator (10).
实施例4Example 4
一种全光纤脉冲复合双腔激光器结构如图4所示,基本结构与图3相近,将泵浦源(1)和光纤合束器(2)放在第四反射型光纤布拉格光栅(9)和光隔离器(10)之间。An all-fiber pulse compound dual-cavity laser structure is shown in Figure 4, the basic structure is similar to Figure 3, the pump source (1) and fiber combiner (2) are placed on the fourth reflective fiber Bragg grating (9) and the optical isolator (10).
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721732396.4U CN207910227U (en) | 2017-12-13 | 2017-12-13 | A kind of compound dual-cavity laser of all -fiber pulse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721732396.4U CN207910227U (en) | 2017-12-13 | 2017-12-13 | A kind of compound dual-cavity laser of all -fiber pulse |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207910227U true CN207910227U (en) | 2018-09-25 |
Family
ID=63568102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201721732396.4U Active CN207910227U (en) | 2017-12-13 | 2017-12-13 | A kind of compound dual-cavity laser of all -fiber pulse |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207910227U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107968306A (en) * | 2017-12-13 | 2018-04-27 | 北京工业大学 | A kind of compound dual-cavity laser of all -fiber pulse |
CN109412009A (en) * | 2018-11-12 | 2019-03-01 | 北京工业大学 | The all-fiber Q-switch and mode-locking pulse laser of dual resonant cavity coupling |
-
2017
- 2017-12-13 CN CN201721732396.4U patent/CN207910227U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107968306A (en) * | 2017-12-13 | 2018-04-27 | 北京工业大学 | A kind of compound dual-cavity laser of all -fiber pulse |
CN109412009A (en) * | 2018-11-12 | 2019-03-01 | 北京工业大学 | The all-fiber Q-switch and mode-locking pulse laser of dual resonant cavity coupling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103701021B (en) | A kind of all-fiber pulse laser of resonator cavity crossmodulation | |
CN103414093B (en) | An all-fiber pulsed laser | |
CN107968306A (en) | A kind of compound dual-cavity laser of all -fiber pulse | |
US6275512B1 (en) | Mode-locked multimode fiber laser pulse source | |
CN102368584A (en) | Passive mode-locking ultrashort pulse all-fiber laser with waveband of 2.0 microns | |
CN106410576A (en) | Linear polarization output all-fiber pulse dual-cavity lasers | |
CN103701022B (en) | A kind of dual resonant cavity all -fiber Mode-locked laser device | |
CN106207723A (en) | A kind of all-fiber pulse laser of multi-resonant chamber coupling | |
CN206850211U (en) | One kind is based on 1 micron of all -fiber ultrashort pulse laser caused by dispersive wave | |
CN102208739A (en) | High impulse energy cladding pumped ultrafast fiber laser | |
CN103825164A (en) | High average power full optical fiber intermediate infrared supercontinuum light source | |
CN101083381A (en) | Semiconductor laser seed pulse main oscillation amplification all-fiber laser | |
CN107863673A (en) | A kind of full polarization fibre pulse laser based on nonlinear optical loop mirror | |
CN107845946A (en) | A kind of all -fiber linear polarization mode-locked laser based on nonlinear optical loop mirror of cascaded pump | |
CN206379615U (en) | A kind of all -fiber pulse dual-cavity laser of linear polarization output | |
CN103794981A (en) | High energy hybrid thulium-doped pulse laser single-frequency amplifier | |
CN103138146A (en) | All-fiber laser with ultralow threshold value self-starting mode locking | |
CN207910227U (en) | A kind of compound dual-cavity laser of all -fiber pulse | |
CN113690725B (en) | Holmium-doped polarization maintaining fiber femtosecond laser of bidirectional cascade pump | |
CN102227043A (en) | Linearly polarized light fiber laser based on polarization maintaining fiber annular lens | |
CN109149328B (en) | Environmentally stable low-repetition-frequency linear cavity picosecond ytterbium-doped fiber laser | |
CN115173198A (en) | All-fiber amplifier for inhibiting nonlinear effect | |
CN103746279A (en) | Double-resonant-cavity all-fiber single-frequency laser device | |
CN102157888A (en) | Passive Q-switched all-fiber laser | |
CN209298558U (en) | A hundred-watt high-power fully polarization-maintaining optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |