CN207672430U - Half parallel steel wire suspension cable double helix structure of diameter 120mm hot extruded polyethylenes - Google Patents
Half parallel steel wire suspension cable double helix structure of diameter 120mm hot extruded polyethylenes Download PDFInfo
- Publication number
- CN207672430U CN207672430U CN201621074995.7U CN201621074995U CN207672430U CN 207672430 U CN207672430 U CN 207672430U CN 201621074995 U CN201621074995 U CN 201621074995U CN 207672430 U CN207672430 U CN 207672430U
- Authority
- CN
- China
- Prior art keywords
- helix
- diameter
- suspension cable
- steel wire
- cable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 21
- 239000010959 steel Substances 0.000 title claims abstract description 21
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 13
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 6
- -1 polyethylenes Polymers 0.000 title claims abstract description 6
- 239000000725 suspension Substances 0.000 title claims 10
- 238000004804 winding Methods 0.000 claims abstract description 23
- 239000010410 layer Substances 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 4
- 239000004519 grease Substances 0.000 claims description 3
- 238000001192 hot extrusion Methods 0.000 claims 1
- 230000001629 suppression Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 230000003068 static effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012889 quartic function Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Bridges Or Land Bridges (AREA)
Abstract
本实用新型公开了一种直径120mm热挤聚乙烯半平行钢丝斜拉索双螺旋线结构,属于斜拉桥领域。在斜拉索的外表面上缠绕凸起的双螺旋线,螺旋线直径d=1.2mm时,同一螺旋线的最大缠绕间距为S=6D;螺旋线直径d=1.6mm时,同一螺旋线的最大缠绕间距为S=12D;螺旋线直径d=2.0mm时,同一螺旋线的最大缠绕间距为S=12D;D为斜拉索的直径。本实用新型既能抑制风雨振、同时又具有最佳气动阻力。
The utility model discloses a double-helix structure of a hot-extruded polyethylene semi-parallel steel wire cable-stayed cable with a diameter of 120 mm, which belongs to the field of cable-stayed bridges. A raised double helix is wound on the outer surface of the stay cable. When the helix diameter d=1.2mm, the maximum winding distance of the same helix is S=6D; when the helix diameter d=1.6mm, the same helix The maximum winding distance is S=12D; when the diameter of the helix is d=2.0mm, the maximum winding distance of the same helix is S=12D; D is the diameter of the stay cable. The utility model can not only suppress wind and rain vibration, but also have the best aerodynamic resistance.
Description
技术领域technical field
本实用新型属于斜拉桥工程技术领域,尤其涉及一种既能抑制风雨振、同时又具有最佳气动阻力效果的直径120mm热挤聚乙烯半平行钢丝斜拉索双螺旋线结构。The utility model belongs to the engineering technical field of cable-stayed bridges, in particular to a double-helix structure of hot-extruded polyethylene semi-parallel steel wire cable-stayed cables with a diameter of 120 mm, which can suppress wind and rain vibration and has the best aerodynamic resistance effect.
背景技术Background technique
斜拉索是斜拉桥的主要受力构件之一,目前热挤PE半平行钢丝斜拉索是最常用的斜拉索形式。大量研究表明:在特定的风雨环境下斜拉索经常发生大幅振动,被命名为风雨振或者风雨激振。当发生风雨振时,斜拉索的振动能引起索梁锚固区、索塔锚固区的破坏,引起索端部接头部分产生疲劳破坏,破坏索斜拉索的防腐系统,严重时会导致斜拉索失效。同时,振动会引起斜拉索内部钢丝之间的相互摩擦错动,损坏钢丝表面的防腐材料,使得腐蚀后的钢丝疲劳强度降低。另外,用于风雨振减振的阻尼装置也经常被斜拉索的大幅振动所破坏。Cable-stayed cables are one of the main stress-bearing components of cable-stayed bridges. Currently, hot-extruded PE semi-parallel steel wire cable-stayed cables are the most commonly used cable-stayed cables. A large number of studies have shown that: in a specific wind and rain environment, stay cables often vibrate greatly, which is named wind and rain vibration or wind and rain induced vibration. When wind and rain vibration occurs, the vibration of the stay cable can cause damage to the anchorage area of the cable beam and the anchorage area of the cable tower, cause fatigue damage to the joints at the end of the cable, and damage the anti-corrosion system of the stay cable. The cable fails. At the same time, the vibration will cause the friction and misalignment between the steel wires inside the cable stay, damage the anti-corrosion material on the surface of the steel wires, and reduce the fatigue strength of the corroded steel wires. In addition, the damping devices used for wind and rain vibration damping are often damaged by the large vibrations of the stay cables.
为了抑制这种振动的发生,目前常用的方法有机械措施(设置阻尼器等)、结构措施(设置辅助索等)和气动措施。随着斜拉桥跨径的增大,斜拉索的长度也随之增大,在索端部设置阻尼器的效果有限;采用辅助索将斜拉索连在一起会破坏整体的美观,因此这种措施采用较少;气动措施被认为是切实可行的办法。In order to suppress the occurrence of this vibration, the commonly used methods are mechanical measures (setting dampers, etc.), structural measures (setting auxiliary cables, etc.) and pneumatic measures. With the increase of the span of the cable-stayed bridge, the length of the cable-stayed cables also increases, and the effect of installing dampers at the ends of the cables is limited; using auxiliary cables to connect the cable-stayed cables will destroy the overall appearance, so This measure is used less frequently; pneumatic measures are considered to be the practicable method.
由于大跨径斜拉桥斜拉索上的风荷载占全桥风荷载的主要部分,因此采用气动措施后斜拉索上气动阻力的改变也是桥梁设计中需要重点考虑的问题。减小斜拉索上气动阻力,可以在节约成本的情况下最大限度保证桥梁的受力安全,然而现有的气动措施仅仅考虑了抑振效果,没有考虑采取措施后气动阻力的变化。Since the wind load on the cables of long-span cable-stayed bridges accounts for the main part of the wind load on the whole bridge, the change of the aerodynamic resistance on the cables after adopting aerodynamic measures is also an important consideration in bridge design. Reducing the aerodynamic resistance on the stay cables can maximize the stress safety of the bridge while saving costs. However, the existing aerodynamic measures only consider the vibration suppression effect, and do not consider the change of aerodynamic resistance after the measures are taken.
实用新型内容Utility model content
本实用新型所要解决的技术问题是提供一种双螺旋线抗风雨振直径120mm热挤聚乙烯半平行钢丝斜拉索,既能抑制风雨振、同时又具有最佳气动阻力。The technical problem to be solved by the utility model is to provide a double-helix anti-wind and rain vibration-resistant cable with a diameter of 120mm hot-extruded polyethylene semi-parallel steel wire cable, which can not only suppress the wind and rain vibration, but also have the best aerodynamic resistance.
为解决上述技术问题,本实用新型所采取的技术方案是:一种直径120mm热挤聚乙烯半平行钢丝斜拉索双螺旋线结构,在斜拉索的外表面上缠绕凸起的双螺旋线,螺旋线直径d=1.2mm时,同一螺旋线的最大缠绕间距为S=6D;螺旋线直径d=1.6mm时,同一螺旋线的最大缠绕间距为S=12D;螺旋线直径d=2.0mm时,同一螺旋线的最大缠绕间距为S=12D;D为斜拉索的直径。In order to solve the above-mentioned technical problems, the technical solution adopted by the utility model is: a double-helix structure of a hot-extruded polyethylene semi-parallel steel wire stay cable with a diameter of 120mm, and a raised double helix is wound on the outer surface of the stay cable , when the diameter of the helix is d=1.2mm, the maximum winding distance of the same helix is S=6D; when the diameter of the helix is d=1.6mm, the maximum winding distance of the same helix is S=12D; the diameter of the helix is d=2.0mm , the maximum winding pitch of the same helix is S=12D; D is the diameter of the stay cable.
进一步可以采取的技术方案,d=1.6mm时,S=6D。Further technical solutions that can be adopted, when d=1.6mm, S=6D.
进一步的技术方案,所述双螺旋线同向螺旋缠绕。In a further technical solution, the double helix is helically wound in the same direction.
采用上述技术方案所产生的有益效果在于:本实用新型是针对直径120mm的热挤PE半平行钢丝斜拉索具有良好的抑振效果和气动阻力特性而采取的一种气动措施,通过试验研究直径为120mm斜拉索上缠绕的螺旋线间距S、直径d对气动阻力的影响,使直径为120mm斜拉索在具有良好的抑振效果的前提下,达到气动阻力最小的参数组合。The beneficial effects produced by adopting the above technical scheme are: the utility model is an aerodynamic measure for the hot-extruded PE semi-parallel steel wire cable with a diameter of 120mm, which has a good vibration suppression effect and aerodynamic resistance characteristics. is the effect of the helix spacing S and diameter d on the aerodynamic resistance of the 120mm cable, so that the cable with a diameter of 120mm can achieve the minimum aerodynamic resistance on the premise of a good vibration suppression effect.
附图说明Description of drawings
图1是本实用新型实施例的结构示意图;Fig. 1 is the structural representation of the utility model embodiment;
图2是本实用新型横断面的结构示意图;Fig. 2 is the structural representation of the cross-section of the utility model;
图中:1、斜拉索;2、螺旋线;3、PE包裹护套;4、钢丝防腐保护层;5、钢丝油脂保护层。In the figure: 1. Stay cable; 2. Spiral wire; 3. PE wrapped sheath; 4. Steel wire anti-corrosion protection layer; 5. Steel wire grease protection layer.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本实用新型作进一步详细的说明。Below in conjunction with accompanying drawing and specific embodiment, the utility model is described in further detail.
参见本实用新型附图1,在斜拉索1的外表面上缠绕凸起的双螺旋线,螺旋线2直径d=0.8mm时,同一螺旋线2的最大缠绕间距为S=12D;螺旋线2直径d=1.2mm时,同一螺旋线2的最大缠绕间距为S=14D,D为斜拉索1的直径。Referring to the accompanying drawing 1 of the utility model, a raised double helix is wound on the outer surface of the stay cable 1. When the diameter of the helix 2 is d=0.8mm, the maximum winding distance of the same helix 2 is S=12D; the helix 2 When the diameter d=1.2mm, the maximum winding distance of the same helix 2 is S=14D, and D is the diameter of the stay cable 1.
另外,当d=0.8mm时,S=10D能抑制风雨振;当d=1.2mm时,S=12D也能抑制风雨振。In addition, when d=0.8mm, S=10D can suppress wind and rain vibration; when d=1.2mm, S=12D can also suppress wind and rain vibration.
进一步的技术方案,所述双螺旋线同向螺旋缠绕,如图1所示。图2是本实用新型的横断面图,斜拉索1为多股钢丝,每股钢丝外包裹钢丝油脂保护层5,芯外包裹钢丝防腐保护层4,最外层为热挤PE包裹护套3,螺旋线缠绕在PE包裹护套外。In a further technical solution, the double helix is helically wound in the same direction, as shown in FIG. 1 . Fig. 2 is a cross-sectional view of the utility model, the stay cable 1 is a multi-strand steel wire, each steel wire is wrapped with a steel wire grease protective layer 5, the core is wrapped with a steel wire anti-corrosion protective layer 4, and the outermost layer is a hot-extruded PE wrapped sheath 3. The helical wire is wrapped outside the PE wrapping sheath.
为了研究直径为120mm斜拉索上缠绕的螺旋线间距S、直径d对气动阻力的影响,进行了模拟真实场景的风洞试验。风洞试验是在风实验室的大气边界层风洞中进行的。该风洞为一串联双试验段回/直流边界层风洞。其低速试验段宽4.4米、高3米、长24米,最大风速超过30米/秒;高速试验段宽2.2米、高2米、长5米,最大风速超过80米/秒,流场性能良好。降雨设备采用专门定制的降雨模拟系统完成,该系统由控制系统(可实现开环或闭环控制)、供水系统、喷淋系统组成,其中喷淋系统由处于不同空间位置的4组12个不同口径的喷头组成,通过控制系统调整压力,可以准确模拟从10mm/h到240mm/h的各级降雨强度的降雨,同时在雨滴谱等特性方面与自然降雨保持一致。降雨强度的精度为2%,降雨范围为宽4m,顺风向长度4m。In order to study the influence of the helix spacing S and diameter d on the aerodynamic drag on the cable with a diameter of 120 mm, a wind tunnel test simulating a real scene was carried out. The wind tunnel tests are carried out in the wind laboratory's atmospheric boundary layer wind tunnel. The wind tunnel is a back/direct boundary layer wind tunnel with double test sections in series. The low-speed test section is 4.4 meters wide, 3 meters high, and 24 meters long, with a maximum wind speed of over 30 m/s; the high-speed test section is 2.2 meters wide, 2 meters high, and 5 meters long, with a maximum wind speed of over 80 m/s. good. The rainfall equipment is completed by a specially customized rainfall simulation system, which consists of a control system (open-loop or closed-loop control can be realized), a water supply system, and a sprinkler system. The sprinkler system consists of 4 groups of 12 different calibers in different spatial positions The sprinkler head composition, through the control system to adjust the pressure, can accurately simulate the rainfall of all levels of rainfall intensity from 10mm/h to 240mm/h, and at the same time keep consistent with the natural rainfall in terms of raindrop spectrum and other characteristics. The accuracy of rainfall intensity is 2%, and the rainfall range is 4m wide and 4m long downwind.
为了对比螺旋线的抑振结果,首先研究了试验风速、降雨量、倾角、风向角等因素的影响,找到了无螺旋线斜拉索振幅最大时的参数设置。以这些试验参数为基础,在斜拉索上先后缠绕不同直径、不同间距的螺旋线,考察了螺旋线间距S、直径d对抑振效果的影响,找到了具有良好抑振效果的参数组合。进而通过测力试验研究了螺旋线间距S、直径d对气动阻力的影响,在满足抑振效果的前提下,找到了气动阻力最小的参数组合。In order to compare the vibration suppression results of the helix, the influence of wind speed, rainfall, inclination angle, wind direction angle and other factors in the test was firstly studied, and the parameter setting when the amplitude of the cable without helix was the largest was found. Based on these test parameters, helixes with different diameters and different spacings were wound on the stay cables successively, and the influence of helix spacing S and diameter d on the vibration suppression effect was investigated, and a parameter combination with good vibration suppression effect was found. Furthermore, the effects of the helix spacing S and diameter d on the aerodynamic drag were studied through dynamometric tests, and the parameter combination with the smallest aerodynamic drag was found on the premise of satisfying the vibration suppression effect.
本实用新型考虑了两个关键因素:第一,能够抑制风雨振;第二,在能够达到抑振效果的所有参数中,选择气动阻力最小的参数,作为本实用新型的气动措施。The utility model considers two key factors: first, the wind and rain vibration can be suppressed; second, among all the parameters that can achieve the vibration suppression effect, the parameter with the smallest aerodynamic resistance is selected as the aerodynamic measure of the utility model.
本实用新型原理:在特定的风雨环境下,斜拉索的表面会形成一条水线,水线的形成改变了斜拉索的圆形断面,使得带水线的斜拉索断面成为气动不稳定断面,从而导致振动的发生。缠绕螺旋线的目的就是为了防止形成连续的水线。The principle of the utility model: in a specific wind and rain environment, a waterline will be formed on the surface of the stay cable, and the formation of the waterline changes the circular section of the stay cable, making the section of the stay cable with the waterline become aerodynamically unstable section, resulting in vibration. The purpose of the winding helix is to prevent the formation of a continuous waterline.
具体参数:对于直径120mm的斜拉索,在斜拉索外表面缠绕双螺旋线,螺旋线直径为1.2mm,能够抑制风雨振的最大缠绕间距为6倍斜拉索直径;螺旋线直径为1.6mm,能够抑制风雨振的最大缠绕间距为12倍斜拉索直径;螺旋线直径为2.0mm的情况下能够抑制风雨振的最大缠绕间距为12倍斜拉索直径。Specific parameters: For a stay cable with a diameter of 120mm, a double helix is wound on the outer surface of the stay cable. The diameter of the helix is 1.2mm. mm, the maximum winding spacing that can suppress wind and rain vibration is 12 times the diameter of the stay cable; when the diameter of the helix is 2.0 mm, the maximum winding spacing that can suppress wind and rain vibration is 12 times the diameter of the stay cable.
表1是能抑制斜拉索(直径120mm)振动的不同螺旋线参数组合表Table 1 is a list of different helix parameter combinations that can suppress the vibration of the stay cable (diameter 120mm)
需要强调的是只有在适当的参数组合下才能抑制风雨振的发生,不适当的参数组合不但不能抑制振动的发生,反而激发振动的发生。大量研究表明以螺旋线间距S、螺旋线直径d为参数,能够满足抑振效果的组合有很多种。在实际工程中选用哪种螺旋线参数作为抑振措施,必须考虑螺旋线参数对斜拉索气动阻力的影响,尽量使得斜拉索上的气动阻力达到最小。What needs to be emphasized is that the occurrence of wind and rain vibration can only be suppressed under the appropriate parameter combination, and the inappropriate parameter combination not only cannot suppress the occurrence of vibration, but stimulates the occurrence of vibration. A large number of studies have shown that with the helix spacing S and the helix diameter d as parameters, there are many combinations that can satisfy the vibration suppression effect. Which helix parameter is selected as a vibration suppression measure in actual engineering must consider the influence of the helix parameter on the aerodynamic resistance of the stay cable, and try to minimize the aerodynamic resistance on the stay cable.
研究表明,在同样的参数下,单独增大螺旋线的直径,同样具有抑振效果;单独减小缠绕间距,也同样具有抑振效果。例如表1,d=1.6mm,S=12D能抑振;d=2.0mm,S=12D也能抑振;d=1.6mm,S=6D也能抑振。Research shows that under the same parameters, increasing the diameter of the helix alone can also have the effect of suppressing vibration; reducing the winding distance alone can also have the effect of suppressing vibration. For example, in Table 1, d=1.6mm, S=12D can suppress vibration; d=2.0mm, S=12D can also suppress vibration; d=1.6mm, S=6D can also suppress vibration.
根据《公路桥梁抗风设计规范》规定,除主梁以外的桥梁构件上的风荷载一般仅考虑风作用方向上的阻力作用。按照规范规定方法计算缠绕不同参数螺旋线斜拉索上的气动阻力,选择使得气动阻力最小的螺旋线参数进行缠绕。According to the "Code for Wind Resistance Design of Highway Bridges", the wind load on bridge components other than the main girder generally only considers the resistance in the direction of wind action. Calculate the aerodynamic resistance on the helical cables wound with different parameters according to the method specified in the code, and select the helical parameters that minimize the aerodynamic resistance for winding.
在气动阻力计算时,对于具有圆形断面的斜拉索,雷诺数效应是需要考虑的问题。在亚临界雷诺数区域,阻力系数基本不随着雷诺数的改变而改变;在临界雷诺数区,阻力系数随着雷诺数的增大而减小。对于同一个斜拉索和相同的空气条件,雷诺数与风速成正比,因此在临界雷诺数区域,阻力系数随着风速的增大而减小,由于气动阻力与风速的平方和阻力系数成正比,风速增大的同时阻力系数减小,使得最大风速对应的气动阻力,不一定是整个风速范围内的最大气动阻力。下面说明最大气动阻力的计算方法。In the calculation of aerodynamic drag, the Reynolds number effect needs to be considered for stay cables with circular cross-sections. In the region of subcritical Reynolds number, the drag coefficient basically does not change with the change of Reynolds number; in the region of critical Reynolds number, the drag coefficient decreases with the increase of Reynolds number. For the same stay cable and the same air conditions, the Reynolds number is proportional to the wind speed, so in the critical Reynolds number region, the drag coefficient decreases with the increase of the wind speed, because the aerodynamic drag is proportional to the square of the wind speed and the drag coefficient , the drag coefficient decreases as the wind speed increases, so that the aerodynamic drag corresponding to the maximum wind speed is not necessarily the maximum aerodynamic drag in the entire wind speed range. The calculation method of the maximum aerodynamic drag is described below.
第一,根据基本风速V10或者桥址处的设计风速Vs10,以及斜拉桥斜拉索的基准高度,确定基准高度Z处的风速Vz和静阵风风速Vg。First, according to the basic wind speed V 10 or the design wind speed V s10 at the bridge site, and the reference height of the stay cables of the cable-stayed bridge, determine the wind speed V z and the static gust speed V g at the reference height Z.
第二,根据静阵风风速Vg和年均温度、湿度、气压计算斜拉索的雷诺数,,其中U为来流风速,单位m/s,D为斜拉索模型直径,单位m,为空气运动粘性系数;,其中为空气的密度,单位kg/m3,为空气动阻力粘性系数。Second, calculate the Reynolds number of the stay cable according to the static gust wind speed V g and the annual average temperature, humidity and air pressure, , where U is the incoming wind speed, in m/s, D is the diameter of the stay cable model, in m, is the air kinematic viscosity coefficient; ,in is the density of air, unit kg/m 3 , is the aerodynamic drag viscosity coefficient.
第三,根据斜拉索直径和具有抑振效果的螺旋线的参数,以及计算得到的雷诺数数值,通过表2,确定雷诺数所在的区域。Third, according to the diameter of the stay cable and the parameters of the helix with vibration suppression effect, as well as the value of the calculated Reynolds number, through Table 2, determine the area where the Reynolds number is located.
表2 缠绕不同参数螺旋线斜拉索(直径为120mm)的雷诺数分区(雷诺数单位:104)Table 2 Reynolds number partitions of helical stay cables (with a diameter of 120mm) wound with different parameters (Reynolds number unit: 10 4 )
注:“/”为不具有抑振效果的参数组合Note: "/" is a combination of parameters without vibration suppression effect
第四,如果静阵风风速Vg对应的雷诺数处于亚临界区,查表3获得斜拉索对应的阻力系数,并根据公式(1)计算静阵风风速Vg对应的气动阻力,将算得的气动阻力作为风速从低到Vg整个风速范围内的最大气动阻力。Fourth, if the Reynolds number corresponding to the static gust wind speed V g is in the subcritical region, look up Table 3 to obtain the drag coefficient corresponding to the stay cable, and calculate the aerodynamic resistance corresponding to the static gust wind speed V g according to formula (1), and calculate the Aerodynamic drag is taken as the maximum aerodynamic drag over the entire range of wind speeds from low to Vg .
表3 缠绕不同参数螺旋线斜拉索(直径为120mm)阻力系数统计表Table 3 Statistical table of resistance coefficients of helical stay cables (diameter 120 mm) wound with different parameters
注:“/”为不具有抑振效果的参数组合Note: "/" is a combination of parameters without vibration suppression effect
(1) (1)
式中:—空气密度(kg/m3)In the formula: —Air density (kg/m 3 )
Vg—静阵风风速V g — static gust wind speed
CD—斜拉桥斜拉索的阻力系数C D —the resistance coefficient of the cable-stayed bridge
An—桥梁斜拉索顺风向投影面积(m2);其直径乘以其投影高度A n —the downwind projected area of the bridge stay cable (m 2 ); its diameter multiplied by its projected height
或者超临界区,查表3获得斜拉索对应的阻力系数。Or in the supercritical region, look up Table 3 to obtain the resistance coefficient corresponding to the stay cable.
第五,如果静阵风风速Vg对应的雷诺数处于临界区,则阻力系数通过四次函数拟合公式(2)计算,公式中的参数a、b、c、d、e可以通过查询表4得到。Fifth, if the Reynolds number corresponding to the static gust wind speed V g is in the critical region, the drag coefficient is calculated by fitting the quartic function formula (2), and the parameters a, b, c, d, and e in the formula can be obtained through the lookup table 4 get.
(2) (2)
表4 缠绕不同参数螺旋线斜拉索(直径为120mm)阻力系数计算参数表Table 4 Calculation parameter table of resistance coefficient of helical cable with different parameters (diameter 120mm)
根据表2、表3和公式(2),分别确定亚临界、临界各雷诺数对应的CD,绘制CD随雷诺数的变化曲线,根据此曲线和公式(1),计算并绘制出气动阻力随风速从低到Vg的变化曲线,找到此曲线中的最大气动阻力,作为风速从低到Vg整个风速范围内的最大气动阻力。According to Table 2, Table 3 and formula (2), respectively determine the C D corresponding to the subcritical and critical Reynolds numbers, draw the change curve of CD with Reynolds number, and calculate and draw the aerodynamic Drag curve with wind speed from low to V g , find the maximum aerodynamic drag in this curve, as the maximum aerodynamic drag in the whole range of wind speed from low to V g .
第六,如果静阵风风速Vg对应的雷诺数处于超临界区,通过表3和上述第五步分别确定亚临界、临界、超临界各雷诺数对应的CD,绘制CD随雷诺数的变化曲线,根据此曲线和公式(1),计算并绘制出气动阻力随风速从低到Vg的变化曲线,找到此曲线中的最大气动阻力,作为风速从低到Vg整个风速范围内的最大气动阻力。Sixth, if the Reynolds number corresponding to the static gust wind speed V g is in the supercritical region, determine the C D corresponding to the subcritical, critical and supercritical Reynolds numbers respectively through Table 3 and the fifth step above, and draw the relationship between C D and Reynolds number Change curve, according to this curve and formula (1), calculate and draw the change curve of aerodynamic resistance with wind speed from low to V g , find the maximum aerodynamic resistance in this curve, as the whole wind speed range from low to V g the maximum aerodynamic drag.
重新选择能够抑制振动的其它螺旋线参数组合,重复上述第三至第五步,得到各组螺旋线参数下斜拉索的最大气动阻力,选择最大气动阻力数值最小的一组螺旋线参数,也即气动阻力最小时的螺旋线参数组合,作为最优化的螺旋线参数。Re-select other helical parameter combinations that can suppress vibration, repeat the third to fifth steps above, and obtain the maximum aerodynamic resistance of the stay cable for each set of helical parameters, and select a set of helical parameters with the smallest maximum aerodynamic resistance value, and That is, the combination of helix parameters when the aerodynamic resistance is the smallest is used as the optimized helix parameters.
本实用新型与现有技术相比较,具有如下显著有点:Compared with the prior art, the utility model has the following remarkable points:
在斜拉索表面缠绕螺旋线后,能够通过防止连续水线的形成,达到抑振风雨振的效果。缠绕选择的最优螺旋线后,同缠绕其它螺旋线的情况相比,斜拉索的气动阻力最小。After winding the helical wire on the surface of the stay cable, it can prevent the formation of continuous water line and achieve the effect of damping wind and rain vibration. After winding the selected optimal helix, compared with the case of winding other helixes, the aerodynamic resistance of the stay cable is the smallest.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621074995.7U CN207672430U (en) | 2016-09-23 | 2016-09-23 | Half parallel steel wire suspension cable double helix structure of diameter 120mm hot extruded polyethylenes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621074995.7U CN207672430U (en) | 2016-09-23 | 2016-09-23 | Half parallel steel wire suspension cable double helix structure of diameter 120mm hot extruded polyethylenes |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207672430U true CN207672430U (en) | 2018-07-31 |
Family
ID=62952429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621074995.7U Active CN207672430U (en) | 2016-09-23 | 2016-09-23 | Half parallel steel wire suspension cable double helix structure of diameter 120mm hot extruded polyethylenes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207672430U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109241688A (en) * | 2018-11-09 | 2019-01-18 | 石家庄铁道大学 | A kind of determination method, system and the terminal device of suspension cable aerodynamic drag |
CN109446703A (en) * | 2018-11-09 | 2019-03-08 | 石家庄铁道大学 | A kind of suspension cable aerodynamic drag determines method, apparatus and terminal device |
CN110004752A (en) * | 2019-04-22 | 2019-07-12 | 柳州欧维姆机械股份有限公司 | A kind of sheet clamping type group anchor cable and its processing unit (plant) with polyurea protection coating |
-
2016
- 2016-09-23 CN CN201621074995.7U patent/CN207672430U/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109241688A (en) * | 2018-11-09 | 2019-01-18 | 石家庄铁道大学 | A kind of determination method, system and the terminal device of suspension cable aerodynamic drag |
CN109446703A (en) * | 2018-11-09 | 2019-03-08 | 石家庄铁道大学 | A kind of suspension cable aerodynamic drag determines method, apparatus and terminal device |
CN109446703B (en) * | 2018-11-09 | 2021-07-27 | 石家庄铁道大学 | A method, device and terminal equipment for determining aerodynamic resistance of stay cables |
CN109241688B (en) * | 2018-11-09 | 2021-08-03 | 石家庄铁道大学 | A method, system and terminal equipment for determining aerodynamic resistance of stay cables |
CN110004752A (en) * | 2019-04-22 | 2019-07-12 | 柳州欧维姆机械股份有限公司 | A kind of sheet clamping type group anchor cable and its processing unit (plant) with polyurea protection coating |
CN110004752B (en) * | 2019-04-22 | 2023-11-14 | 柳州欧维姆机械股份有限公司 | Clamping piece type group anchor inhaul cable with polyurea protective coating and processing device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106284075A (en) | Bifilar helix hot extruded polyethylene half parallel steel wire suspension cable and parameter determination method thereof | |
CN207672430U (en) | Half parallel steel wire suspension cable double helix structure of diameter 120mm hot extruded polyethylenes | |
CN102692309B (en) | Power transmission line wind tunnel test system and method applied to typhoon wind field | |
CN102286919A (en) | Cable-stayed bridge cable capable of inhibiting dry-cable galloping and rain-wind induced vibration | |
CN109902351A (en) | A simplified calculation method for dynamic wind deflection of ice-coated conductors | |
CN107907311B (en) | Method and system for testing unbalanced tension of ice-covered conductors of transmission lines | |
CN101672125A (en) | Device for inhibiting power transmission line steel tube pole tower vortex-induced wind vibration and method thereof | |
CN105335569A (en) | Ultrahigh voltage transmission line multi-connected V-shaped insulator string mechanical property analogue simulation method | |
Xin-min et al. | Wind Tunnel Tests on Aerodynamic Characteristics of Ice‐Coated 4‐Bundled Conductors | |
CN107143463B (en) | A kind of space cable systems and optimization method that control pneumatic equipment bladess are waved | |
CN207960099U (en) | The vibration damping of cylindrical structure protects active air blowing controller | |
CN101613994A (en) | Compound type wind, rain and vibration resistance stay cable | |
CN2555278Y (en) | Windproof and rainproof and shockproof standing rope | |
CN101230559A (en) | Method for enwinding spiral reinforcement on outer surface of stay cable after being winded with PVF fluoride membrane adhesive tape | |
Kleissl et al. | Comparison of several innovative bridge cable surface modifications | |
CN104233956A (en) | Wavy stay cable with surface pneumatic measures for cable-stayed bridge | |
CN206956523U (en) | New Cable-stayed Bridge structure | |
CN102507132B (en) | Icing simulation device applied to extra-high voltage (EHV) power transmission lines | |
CN115248359A (en) | A traveling wave ranging method and system considering line length variation | |
CN202382924U (en) | Icing simulator applied to extra-high voltage transmission line | |
Smith | A review of dynamic aspects of transmission line design | |
CN206584772U (en) | A kind of strand type carbon-fibre wire | |
CN201151871Y (en) | Oblique pulling cable body with external surface enwound with PVC fluoride film adhesive tape and then spiral hooping | |
CN214674244U (en) | Wind-force damping prevents waving device | |
Burlina et al. | Optimization of bridge cables with concave fillets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |