CN207363711U - Cooling circuit and corresponding turbine device and turbomachinery for multi wall blade - Google Patents
Cooling circuit and corresponding turbine device and turbomachinery for multi wall blade Download PDFInfo
- Publication number
- CN207363711U CN207363711U CN201721044587.1U CN201721044587U CN207363711U CN 207363711 U CN207363711 U CN 207363711U CN 201721044587 U CN201721044587 U CN 201721044587U CN 207363711 U CN207363711 U CN 207363711U
- Authority
- CN
- China
- Prior art keywords
- leading edge
- cavity
- blade
- edge cavity
- suction side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 144
- 239000012528 membrane Substances 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 15
- 239000000567 combustion gas Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/04—Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/121—Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/125—Fluid guiding means, e.g. vanes related to the tip of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/307—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/18—Two-dimensional patterned
- F05D2250/185—Two-dimensional patterned serpentine-like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Architecture (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
根据实施例,本实用新型涉及一种用于多壁叶片的冷却回路及对应的涡轮设备及涡轮机械。所述冷却回路包括:具有与多壁叶片的压力侧相邻的表面的压力侧空腔;具有与多壁叶片的吸力侧相邻的表面的吸力侧空腔;具有与多壁叶片的压力侧和吸力侧相邻的表面的第一前缘空腔,第一前缘空腔定位在压力侧空腔和吸力侧空腔的前方;以及具有与多壁叶片的压力侧和吸力侧相邻的表面的第二前缘空腔,第二前缘空腔定位在第一前缘空腔的前方。
According to an embodiment, the invention relates to a cooling circuit for a multi-wall blade and a corresponding turbo device and turbo machine. The cooling circuit includes: a pressure side cavity having a surface adjacent to the pressure side of the multiwall blade; a suction side cavity having a surface adjacent to the suction side of the multiwall blade; a first leading edge cavity of a surface adjacent to the suction side, the first leading edge cavity being positioned forward of the pressure side cavity and the suction side cavity; and having a A second leading edge cavity of the surface, the second leading edge cavity being positioned forward of the first leading edge cavity.
Description
技术领域technical field
本实用新型大致涉及涡轮系统,更加具体地涉及用于多壁叶片的冷却回路及对应的涡轮设备及涡轮机械。The present invention relates generally to turbine systems, and more particularly to cooling circuits for multi-wall blades and corresponding turbo equipment and turbo machines.
背景技术Background technique
燃气涡轮机(gas turbine)系统是广泛用于比如为发电领域的涡轮机械(turbomachines)的一个示例。常规燃气涡轮机系统包括压缩机区段、燃烧器区段和涡轮区段。在燃气涡轮机系统操作期间,系统中的各个部件,比如涡轮叶片(turbine blades),承受高温流,这可能导致部件失效。由于高温流通常导致燃气涡轮机系统的性能、效率和功率输出的增大,因此冷却承受高温流的部件以允许燃气涡轮机系统在升高的温度下操作是有利的。Gas turbine systems are one example of turbomachines that are widely used, such as in the field of power generation. A conventional gas turbine system includes a compressor section, a combustor section, and a turbine section. During operation of a gas turbine system, various components in the system, such as turbine blades, are subjected to high temperature flows, which can lead to component failure. Since high temperature flows generally result in increased performance, efficiency, and power output of gas turbine systems, it is advantageous to cool components subjected to high temperature flows to allow gas turbine systems to operate at elevated temperatures.
涡轮叶片一般包含复杂迷宫式内部冷却通道(internal cooling channels)。例如由燃气涡轮机系统的压缩机提供的冷却空气可以穿过内部冷却通道以冷却涡轮叶片。Turbine blades typically contain a complex labyrinth of internal cooling channels. Cooling air, such as provided by a compressor of a gas turbine system, may pass through the internal cooling passages to cool the turbine blades.
多壁涡轮叶片(multi-wall turbine blade)冷却系统可以包括内部近壁冷却回路(cooling circuits)。这种近壁冷却回路可以包括例如与多壁叶片的外部壁相邻的近壁冷却通道。近壁冷却通道一般较小,需要更小的冷却流,同时仍然保持存在用于有效冷却的足够的速度。多壁叶片的其他一般较大的低冷却效率中心通道可被用作冷却空气源,并且可以用于一个或多个再利用回路以收集和重引导“用尽的”冷却流,用于再分配至多壁叶片的较低热负荷区域。A multi-wall turbine blade cooling system may include internal near-wall cooling circuits. Such a near-wall cooling circuit may comprise, for example, near-wall cooling channels adjacent to the outer wall of the multi-wall blade. Near wall cooling channels are generally smaller, requiring less cooling flow while still maintaining sufficient velocity for effective cooling. The other generally larger inefficient central channel of a multi-walled blade can be used as a cooling air source and can be used in one or more reuse circuits to collect and redirect "spent" cooling flow for redistribution to lower thermal load areas of multi-walled blades.
实用新型内容Utility model content
本实用新型的第一方面提供用于多壁叶片的冷却回路,该冷却回路包括具有与多壁叶片的压力侧相邻的表面的压力侧空腔;具有与多壁叶片的吸力侧相邻的表面的吸力侧空腔;具有与多壁叶片的压力侧和吸力侧相邻的表面的第一前缘空腔,第一前缘空腔定位在压力侧空腔和吸力侧空腔的前方;以及具有与多壁叶片的压力侧和吸力侧相邻的表面的第二前缘空腔,第二前缘空腔定位在第一前缘空腔的前方。A first aspect of the invention provides a cooling circuit for a multi-wall blade, the cooling circuit comprising a pressure side cavity having a surface adjacent to the pressure side of the multi-wall blade; having a surface adjacent to the suction side of the multi-wall blade a suction side cavity of the surface; a first leading edge cavity having a surface adjacent to the pressure side and the suction side of the multiwall blade, the first leading edge cavity being positioned forward of the pressure side cavity and the suction side cavity; And a second leading edge cavity having surfaces adjacent the pressure side and the suction side of the multi-walled blade, the second leading edge cavity being positioned forward of the first leading edge cavity.
所述的冷却回路还包括用于将所述第一前缘空腔流体地联接至所述多壁叶片的尖端的至少一个通道。The cooling circuit also includes at least one passage for fluidly coupling the first leading edge cavity to the tip of the multi-walled blade.
所述的冷却回路还包括用于将所述第一前缘空腔流体地联接至所述多壁叶片的所述压力侧和所述吸力侧中的至少一个的至少一个薄膜孔。The cooling circuit further includes at least one membrane hole for fluidly coupling the first leading edge cavity to at least one of the pressure side and the suction side of the multi-wall blade.
所述的冷却回路还包括:导入所述第二前缘空腔内的冷却空气流;用于将所述冷却空气流的第一部分从所述第二前缘空腔导入所述压力侧空腔内的转向部;用于将所述冷却空气流的第二部分从所述第二前缘空腔导入所述吸力侧空腔内的转向部;用于将所述冷却空气流的所述第一部分从所述压力侧空腔导入所述第一前缘空腔内的转向部;以及用于将所述冷却空气流的所述第二部分从所述吸力侧空腔导入所述第一前缘空腔内的转向部,所述冷却空气流的所述第一部分和所述第二部分在所述第一前缘空腔中重新组合成重组空气流。The cooling circuit further includes: a flow of cooling air directed into the second leading edge cavity; for directing a first portion of the flow of cooling air from the second leading edge cavity into the pressure side cavity A turning portion inside; a turning portion for directing a second portion of the cooling air flow from the second leading edge cavity into the suction side cavity; a turning portion for directing the first portion of the cooling air flow a diverter for directing a portion of the flow from the pressure side cavity into the first leading edge cavity; and for directing the second portion of the flow of cooling air from the suction side cavity into the first leading edge cavity; A turning portion in the leading edge cavity, the first portion and the second portion of the cooling air flow are recombined into a recombined air flow in the first leading edge cavity.
所述的冷却回路还包括至少一个通道,其中,所述重组空气流的一部分从所述第一前缘空腔通过所述至少一个通道排出至所述多壁叶片的尖端,以提供所述多壁叶片的所述尖端的薄膜冷却。The cooling circuit further comprises at least one channel, wherein a portion of the recombined air flow is exhausted from the first leading edge cavity through the at least one channel to the tip of the multi-wall blade to provide the multi-wall Film cooling of the tips of the wall blades.
所述的冷却回路还包括至少一个薄膜孔,其中,所述重组空气流的一部分从所述第一前缘空腔通过所述至少一个薄膜孔排出至所述多壁叶片的所述压力侧和所述吸力侧中的至少一个。The cooling circuit further comprises at least one membrane hole, wherein a portion of the recombined air flow is exhausted from the first leading edge cavity through the at least one membrane hole to the pressure side and At least one of the suction sides.
其中,所述第二前缘空腔中的所述冷却空气流和所述第一前缘空腔中的所述重组冷却空气流沿第一方向流动通过所述多壁叶片,以及其中,所述冷却空气流的所述第一部分和所述第二部分沿第二方向流动通过所述多壁叶片。wherein the flow of cooling air in the second leading edge cavity and the flow of recombined cooling air in the first leading edge cavity flow through the multiwall blade in a first direction, and wherein the The first portion and the second portion of the flow of cooling air flow through the multi-wall blade in a second direction.
其中,所述第一方向为通过所述多壁叶片径向向外,以及其中,所述第二方向为通过所述多壁叶片径向向内。Wherein said first direction is radially outward through said multi-wall blade, and wherein said second direction is radially inward through said multi-wall blade.
其中,所述第一方向为通过所述多壁叶片径向向内,以及其中,所述第二方向为通过所述多壁叶片径向向外。Wherein said first direction is radially inward through said multi-wall blade, and wherein said second direction is radially outward through said multi-wall blade.
其中,所述多壁叶片还包括中央空腔,所述中央空腔将所述压力侧空腔与所述吸力侧空腔分离。Wherein, the multi-walled blade further comprises a central cavity separating the pressure side cavity from the suction side cavity.
本实用新型的第二方面提供一种涡轮设备(turbine apparatus),该涡轮设备包括:多壁涡轮叶片;和布置在多壁涡轮叶片内的冷却回路,冷却回路包括:具有与多壁叶片的压力侧相邻的表面的压力侧空腔;具有与多壁叶片的吸力侧相邻的表面的吸力侧空腔;具有与多壁叶片的压力侧和吸力侧相邻的表面的第一前缘空腔,第一前缘空腔定位在压力侧空腔和吸力侧空腔的前方;以及具有与多壁叶片的压力侧和吸力侧相邻的表面的第二前缘空腔,第二前缘空腔定位在第一前缘空腔的前方。A second aspect of the utility model provides a turbine apparatus (turbine apparatus), which includes: a multi-wall turbine blade; and a cooling circuit arranged in the multi-wall turbine blade, the cooling circuit includes: having a pressure a pressure side cavity having a surface adjacent to the suction side of the multi-wall blade; a suction side cavity having a surface adjacent to the suction side of the multi-wall blade; a first leading edge cavity having surfaces adjacent to the pressure side and the suction side of the multi-wall blade cavities, a first leading edge cavity positioned forward of the pressure side cavity and the suction side cavity; and a second leading edge cavity having surfaces adjacent to the pressure side and the suction side of the multiwall blade, the second leading edge cavity The cavity is positioned forward of the first leading edge cavity.
其中,所述冷却回路还包括用于将所述第一前缘空腔流体地联接至所述多壁叶片的尖端的至少一个通道。Wherein, the cooling circuit further comprises at least one channel for fluidly coupling the first leading edge cavity to the tip of the multi-walled blade.
其中,所述冷却回路还包括用于将所述第一前缘空腔流体地联接至所述多壁叶片的所述压力侧和所述吸力侧中的至少一个的至少一个薄膜孔。Wherein the cooling circuit further comprises at least one membrane hole for fluidly coupling the first leading edge cavity to at least one of the pressure side and the suction side of the multi-wall blade.
其中,所述冷却回路还包括:导入所述第二前缘空腔内的冷却空气流;用于将所述冷却空气流的第一部分从所述第二前缘空腔导入所述压力侧空腔内的转向部;用于将所述冷却空气流的第二部分从所述第二前缘空腔导入所述吸力侧空腔内的转向部;用于将所述冷却空气流的所述第一部分从所述压力侧空腔导入所述第一前缘空腔内的转向部;以及用于将所述冷却空气流的所述第二部分从所述吸力侧空腔导入所述第一前缘空腔内的转向部,所述冷却空气流的所述第一部分和所述第二部分在所述第一前缘空腔中重新组合成重组空气流。Wherein, the cooling circuit further comprises: a cooling air flow introduced into the second leading edge cavity; a diverter in the cavity; a diverter for directing a second portion of the cooling airflow from the second leading edge cavity into the suction side cavity; a diverter for diverting the cooling airflow into the suction side cavity; a first portion directed from the pressure side cavity into the first lip cavity; and a diverter for directing the second portion of the cooling air flow from the suction side cavity into the first leading edge cavity; A turn in the leading edge cavity, the first portion and the second portion of the cooling air flow are recombined into a recombined air flow in the first leading edge cavity.
其中,所述冷却回路还包括至少一个通道,其中,所述重组空气流的一部分从所述第一前缘空腔通过所述至少一个通道排出至所述多壁叶片的尖端,以提供所述多壁叶片的所述尖端的薄膜冷却。Wherein, the cooling circuit further comprises at least one channel, wherein a part of the recombined air flow is discharged from the first leading edge cavity through the at least one channel to the tip of the multi-walled blade to provide the Film cooling of the tip of the multi-walled blade.
其中,所述冷却回路还包括至少一个薄膜孔,其中,所述重组空气流的一部分从所述第一前缘空腔通过所述至少一个薄膜孔排出至所述多壁叶片的所述压力侧和所述吸力侧中的至少一个。wherein said cooling circuit further comprises at least one membrane hole, wherein a portion of said recombined air flow is discharged from said first leading edge cavity through said at least one membrane hole to said pressure side of said multi-walled blade and at least one of said suction sides.
其中,所述第二前缘空腔中的所述冷却空气流和所述第一前缘空腔中的所述重组冷却空气流沿第一方向流动通过所述多壁叶片,以及其中,所述冷却空气流的所述第一部分和所述第二部分沿第二方向流动通过所述多壁叶片。wherein the flow of cooling air in the second leading edge cavity and the flow of recombined cooling air in the first leading edge cavity flow through the multiwall blade in a first direction, and wherein the The first portion and the second portion of the flow of cooling air flow through the multi-wall blade in a second direction.
其中,所述第一方向为通过所述多壁叶片径向向外,以及其中,所述第二方向为通过所述多壁叶片径向向内。Wherein said first direction is radially outward through said multi-wall blade, and wherein said second direction is radially inward through said multi-wall blade.
其中,所述第一方向为通过所述多壁叶片径向向内,以及其中,所述第二方向为通过所述多壁叶片径向向外。Wherein said first direction is radially inward through said multi-wall blade, and wherein said second direction is radially outward through said multi-wall blade.
本实用新型的第三方面提供一种涡轮机械,包括:包括压缩机部件、燃烧器部件和涡轮部件的燃气涡轮机系统,该涡轮部件包括多个涡轮机叶片,以及其中,涡轮机叶片中的至少一个包括多壁叶片;以及布置在多壁叶片内的冷却回路,冷却回路包括:具有与多壁叶片的压力侧相邻的表面的压力侧空腔;具有与多壁叶片的吸力侧相邻的表面的吸力侧空腔;具有与多壁叶片的压力侧和吸力侧相邻的表面的第一前缘空腔,第一前缘空腔定位在压力侧空腔和吸力侧空腔的前方;以及具有与多壁叶片的压力侧和吸力侧相邻的表面的第二前缘空腔,第二前缘空腔定位在第一前缘空腔的前方。A third aspect of the present invention provides a turbomachinery comprising: a gas turbine system comprising a compressor component, a combustor component and a turbine component comprising a plurality of turbine blades, and wherein at least one of the turbine blades comprises a multi-wall blade; and a cooling circuit disposed within the multi-wall blade, the cooling circuit comprising: a pressure side cavity having a surface adjacent to the pressure side of the multi-wall blade; having a surface adjacent to the suction side of the multi-wall blade a suction side cavity; a first leading edge cavity having surfaces adjacent to the pressure side and the suction side of the multiwall blade, the first leading edge cavity being positioned forward of the pressure side cavity and the suction side cavity; and having A second leading edge cavity of the surface adjacent the pressure side and the suction side of the multi-walled blade, the second leading edge cavity being positioned forward of the first leading edge cavity.
本实用新型的示例性方面解决了本实用新型中说明的问题和/或未讨论的其他问题。Exemplary aspects of the present invention solve the problems described in this disclosure and/or other problems not discussed.
附图说明Description of drawings
从结合描绘本实用新型的各个实施例的附图的对本实用新型的各个方面的以下详细说明中,将会更容易地理解本实用新型的这些以及其他特征。These and other features of the invention will be more readily understood from the following detailed description of various aspects of the invention taken in conjunction with the accompanying drawings depicting various embodiments of the invention.
图1示出根据实施例的多壁叶片的透视图。Fig. 1 shows a perspective view of a multi-wall blade according to an embodiment.
图2是沿着图1中的线X--X截取的根据各个实施例的图1的多壁叶片的横截面图。2 is a cross-sectional view of the multi-wall blade of FIG. 1 , according to various embodiments, taken along line XX in FIG. 1 .
图3描绘了图2的横截面图的一部分,示出根据各个实施例的前缘冷却回路。FIG. 3 depicts a portion of the cross-sectional view of FIG. 2 showing a leading edge cooling circuit according to various embodiments.
图4是根据各个实施例的前缘冷却回路的透视图。4 is a perspective view of a leading edge cooling circuit according to various embodiments.
图5描绘了图2的横截面图的一部分,示出根据各个实施例的前缘冷却回路。FIG. 5 depicts a portion of the cross-sectional view of FIG. 2 showing a leading edge cooling circuit according to various embodiments.
图6是根据各个实施例的燃气涡轮机系统的示意图。6 is a schematic diagram of a gas turbine system according to various embodiments.
注意到本实用新型的附图不一定按比例绘制。附图旨在仅描绘本实用新型的典型方面,因此不应该被视为限制本实用新型的范围。在附图中,相同的附图标记在附图之间表示相同元件。Note that the drawings of the present invention are not necessarily drawn to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the figures, the same reference numerals denote the same elements between the figures.
具体实施方式Detailed ways
如上所述,本实用新型大致涉及涡轮系统,更加具体地涉及用于冷却多壁叶片的冷却回路。As noted above, the present invention relates generally to turbine systems, and more particularly to cooling circuits for cooling multi-walled blades.
在附图中(例如见图6),“A”轴表示轴向取向。如本实用新型所使用的,术语“轴向”和/或“轴向地”指的是对象沿着轴A的相对位置/方向,轴A基本平行于涡轮机械(具体地为转子区段)的旋转轴线。如本实用新型中进一步使用的,术语“径向”和/或“径向地”指的是对象沿着轴“r”(例如见图1)的相对位置/方向,轴“r”基本垂直于轴A并且在仅一个位置处与轴A相交。另外,术语“圆周”和/或“圆周地”指的是对象沿着圆周(c)的相对位置/方向,圆周(c)包围轴A,但不与轴A在任何位置处相交。In the drawings (see, eg, FIG. 6), the "A" axis represents the axial orientation. As used herein, the terms "axial" and/or "axially" refer to the relative position/orientation of objects along an axis A, which is substantially parallel to the turbomachinery (specifically the rotor section) axis of rotation. As further used herein, the terms "radial" and/or "radially" refer to the relative position/orientation of an object along axis "r" (see, for example, Figure 1), which is substantially vertical is on axis A and intersects axis A at only one location. Additionally, the terms "circumferentially" and/or "circumferentially" refer to the relative position/orientation of objects along a circumference (c) that encloses axis A but does not intersect axis A at any location.
转向图1,示出涡轮机械叶片2的透视图。涡轮机械叶片2包括柄(shank)4和联接至柄4并且从柄4径向向外延伸的多壁叶片6。多壁叶片6包括压力侧(pressure side)8、相对的吸力侧(suction side)10和尖端(tip)区域38。多壁叶片6还包括位于压力侧8与吸力侧10之间的前缘14以及在压力侧8与吸力侧10之间位于与前缘(leading edge)14相对的侧面上的后缘(trailing edge)16。多壁叶片6远离平台3径向地延伸,平台3包括压力侧平台5和吸力侧平台7。Turning to FIG. 1 , a perspective view of a turbomachine blade 2 is shown. Turbomachine blade 2 includes a shank 4 and a multi-wall blade 6 coupled to and extending radially outward from shank 4 . The multi-wall blade 6 includes a pressure side 8 , an opposite suction side 10 and a tip region 38 . The multiwall blade 6 also comprises a leading edge 14 between the pressure side 8 and the suction side 10 and a trailing edge between the pressure side 8 and the suction side 10 on the side opposite the leading edge 14 )16. The multi-wall blade 6 extends radially away from the platform 3 comprising a pressure side platform 5 and a suction side platform 7 .
柄4和多壁叶片6可以各自由一种或多种金属(例如镍、镍合金等等)形成,并且可以根据常规方法形成(例如浇铸、锻造或者机械加工)。柄4和多壁叶片6可以一体地形成(例如浇铸、锻造、三维打印等等),或者可以形成为单独的部件,它们随后联结(例如经由焊接、钎焊、粘合或其他联接机构)。多壁叶片6可以是固定叶片(喷嘴)或可旋转叶片。Shank 4 and multi-wall blade 6 may each be formed from one or more metals (eg, nickel, nickel alloys, etc.), and may be formed according to conventional methods (eg, casting, forging, or machining). The shank 4 and multi-wall blade 6 may be integrally formed (eg, cast, forged, three-dimensionally printed, etc.), or may be formed as separate components that are subsequently joined (eg, via welding, brazing, bonding, or other coupling mechanism). The multi-walled blades 6 may be fixed blades (nozzles) or rotatable blades.
图2描绘了沿着图1的线X--X截取的多壁叶片6的横截面图。如图所示,多壁叶片6可以包括多个内部空腔。在实施例中,多壁叶片6包括多个前缘空腔18A、18B、多个压力侧(外部)空腔20A20D、多个吸力侧(外部)空腔22A-22E、多个后缘空腔24A-24C以及多个中央空腔26A、26B。前缘空腔18B在前缘空腔18A的尾部(更靠近后缘16)。当然,多壁叶片6内的空腔18、20、22、24、26的数量可以根据例如多壁叶片6的特定结构、尺寸、预定应用等等而改变。在这种程度上,本实用新型中公开的实施例所示的空腔18、20、22、24、26的数目非旨在限制。根据实施例,各个冷却回路可以利用空腔18、20、22、24、26的不同组合提供。FIG. 2 depicts a cross-sectional view of the multi-wall blade 6 taken along the line X--X of FIG. 1 . As shown, the multi-wall blade 6 may include a plurality of internal cavities. In an embodiment, the multi-wall blade 6 comprises a plurality of leading edge cavities 18A, 18B, a plurality of pressure side (outer) cavities 20A20D, a plurality of suction side (outer) cavities 22A-22E, a plurality of trailing edge cavities 24A-24C and a plurality of central cavities 26A, 26B. Leading edge cavity 18B is aft of leading edge cavity 18A (closer to trailing edge 16 ). Of course, the number of cavities 18 , 20 , 22 , 24 , 26 within the multiwall blade 6 may vary depending on, for example, the particular configuration, size, intended application, etc. of the multiwall blade 6 . To this extent, the number of cavities 18, 20, 22, 24, 26 shown in the disclosed embodiments of the present invention is not intended to be limiting. Depending on the embodiment, individual cooling circuits may be provided with different combinations of cavities 18 , 20 , 22 , 24 , 26 .
根据实施例的曲折的(serpentine)前缘冷却回路30在图3和图4中进行了描绘。如名称所表示的,前缘冷却回路30在多壁叶片6的压力侧8与吸力侧10之间与多壁叶片6的前缘14相邻地定位。A serpentine leading edge cooling circuit 30 according to an embodiment is depicted in FIGS. 3 and 4 . As the name suggests, the leading edge cooling circuit 30 is positioned adjacent the leading edge 14 of the multiwall blade 6 between the pressure side 8 and the suction side 10 of the multiwall blade 6 .
同时参考图3和图4,例如由燃气涡轮机系统102的压缩机104(图6)产生的冷却空气流32通过柄4(图1)送进至前缘冷却回路30(例如,经由至少一个冷却空气供给器(feed))。冷却空气流32供应给前缘空腔18A的基部34。冷却空气流32朝向多壁叶片6的尖端区域38径向向外流动通过前缘空腔18A,提供对流冷却(convection cooling)。Referring to FIGS. 3 and 4 concurrently, a cooling air flow 32 generated, for example, by compressor 104 ( FIG. 6 ) of gas turbine system 102 is fed through shank 4 ( FIG. 1 ) to leading edge cooling circuit 30 (e.g., via at least one cooling air supply (feed)). Cooling air flow 32 is supplied to base 34 of leading edge cavity 18A. Cooling air flow 32 flows radially outward through leading edge cavity 18A towards tip region 38 of multi-wall blade 6 , providing convection cooling.
转向部(turn)36将冷却空气流32的第一部分40从前缘空腔18A导入压力侧空腔20A内。冷却空气流32的第一部分40通过压力侧空腔20A径向向内流动,提供对流冷却。转向部42将冷却空气流32的第二部分44从前缘空腔18A导入吸力侧空腔22A内。冷却空气流32的第二部分44通过吸力侧空腔22A径向向内流动,提供对流冷却。如图3所示,压力侧空腔20A包括与多壁叶片6的压力侧8相邻的表面46和与中央空腔26A相邻的表面48。此外,吸力侧空腔22A包括与多壁叶片6的吸力侧10相邻的表面50和与中央空腔26A相邻的表面52。根据实施例,中央空腔26A是有效地绝热的(adiabatic),没有或几乎没有流体速度,并且不具有与多壁叶片6的压力侧8或吸力侧10相邻的任何表面。根据实施例,转向部36、42(以及如下所述的其他转向部)可以包括管道(conduit)、管(tube)、导管(pipe)、通道(channel)和/或使空气或任何其他气体从多壁叶片6内的一个位置穿行至另一个位置的任何其他适当的机构。A turn 36 directs a first portion 40 of the cooling airflow 32 from the leading edge cavity 18A into the pressure side cavity 20A. A first portion 40 of the cooling air flow 32 flows radially inwardly through the pressure side cavity 20A, providing convective cooling. Diverter 42 directs a second portion 44 of cooling airflow 32 from leading edge cavity 18A into suction side cavity 22A. A second portion 44 of the cooling airflow 32 flows radially inwardly through the suction side cavity 22A, providing convective cooling. As shown in FIG. 3 , the pressure side cavity 20A includes a surface 46 adjacent the pressure side 8 of the multi-walled blade 6 and a surface 48 adjacent the central cavity 26A. Furthermore, the suction side cavity 22A comprises a surface 50 adjacent to the suction side 10 of the multi-walled blade 6 and a surface 52 adjacent to the central cavity 26A. According to an embodiment, the central cavity 26A is effectively adiabatic, has little or no fluid velocity, and does not have any surfaces adjacent to the pressure side 8 or the suction side 10 of the multiwall blade 6 . Depending on the embodiment, diversions 36, 42 (and other diversions as described below) may include conduits, tubes, pipes, channels and/or allow air or any other gas to flow from Any other suitable mechanism for traveling from one location to another within the multi-walled blade 6 .
转向部54将冷却空气流32的第一部分40重新导入前缘空腔18B的基部58内。类似地,转向部(未示出)将冷却空气流32的第二部分44重新导入前缘空腔18B的基部58内。冷却空气流32的第一部分40和第二部分44在前缘空腔18B中重新组合以重整冷却流32,冷却流32通过前缘空腔18B朝向多壁叶片6的尖端区域38径向向外流动,提供对流冷却。如图3所示,前缘空腔18B具有与多壁叶片6的压力侧8相邻的表面60和与多壁叶片6的吸力侧10相邻的表面62。The diversion 54 redirects the first portion 40 of the cooling airflow 32 into the base 58 of the leading edge cavity 18B. Similarly, a diverter (not shown) redirects the second portion 44 of the cooling airflow 32 into the base 58 of the leading edge cavity 18B. The first portion 40 and the second portion 44 of the cooling air flow 32 are recombined in the leading edge cavity 18B to reform the cooling flow 32 which passes through the leading edge cavity 18B radially toward the tip region 38 of the multiwall blade 6 . External flow provides convective cooling. As shown in FIG. 3 , the leading edge cavity 18B has a surface 60 adjacent to the pressure side 8 of the multi-wall blade 6 and a surface 62 adjacent to the suction side 10 of the multi-wall blade 6 .
当冷却空气流径向向外穿过前缘空腔18B时,冷却空气流32的一部分64可以通过至少一个通道66从前缘空腔18B导向多壁叶片6的尖端68(图1)。冷却空气流32的所述部分64可以通过至少一个通道66从多壁叶片的尖端68排出作为尖端薄膜70,以提供尖端薄膜冷却。冷却空气流32的另一部分72可以通过多壁叶片的压力侧8和/或吸力侧10中的一个或多个孔(apertures)74排出,以在多壁叶片6的外部上提供冷却薄膜流。在其他实施例中,冷却空气流32的所述部分64、72或冷却空气流32的其他部分可被引导至尖端68或平台3(或内部/外部侧壁)中的冷却回路,和/或可被再用于曲折的前缘冷却回路30后部的其他冷却回路中。A portion 64 of the cooling air flow 32 may be directed from the leading edge cavity 18B through at least one passage 66 to a tip 68 of the multiwall blade 6 ( FIG. 1 ) as the cooling air flow passes radially outward through the leading edge cavity 18B. The portion 64 of the cooling air flow 32 may exit the tip 68 of the multi-wall blade through at least one channel 66 as a tip film 70 to provide tip film cooling. A further portion 72 of the cooling air flow 32 may exit through one or more apertures 74 in the pressure side 8 and/or suction side 10 of the multiwall blade to provide a cooling film flow on the exterior of the multiwall blade 6 . In other embodiments, said portions 64, 72 of the cooling air flow 32 or other portions of the cooling air flow 32 may be directed to the tip 68 or a cooling circuit in the platform 3 (or inner/outer sidewall), and/or It can be reused in other cooling circuits aft of the meandering leading edge cooling circuit 30 .
如图5中所描绘的,在其他实施例中,流动方向可以反向。例如,在图5中,冷却空气流132可被供给至前缘空腔18A内并且通过前缘空腔18A径向向内流动。冷却空气流132被分成部分140、144,部分140、144分别被导入压力侧空腔20A和吸力侧空腔22A内。冷却空气流132的所述部分140、144分别径向向外流过压力侧空腔20A和吸力侧空腔22A,并且在前缘空腔18B中重组合成空气流132。空气流132然后被径向向内引导通过前缘空腔18B。当冷却空气流32的一部分164穿过前缘空腔18B时,冷却空气流32的所述部分164可以通过至少一个通道166从前缘空腔18B导向至多壁叶片6的尖端68(图1)。冷却空气流132的所述部分164可以通过至少一个通道66从多壁叶片6的尖端68排出作为尖端薄膜70(图1)以提供尖端薄膜冷却。冷却空气流132的一部分172可被用于在多壁叶片6的外部上提供冷却薄膜流。在其他实施例中,冷却空气流132的所述部分164、172或冷却空气流132的其他部分可被传递至平台3(或内部/外部侧壁),和/或可被用于曲折的前缘冷却回路130后部的其他冷却回路中。As depicted in Figure 5, in other embodiments, the flow direction may be reversed. For example, in FIG. 5 , cooling air flow 132 may be fed into leading edge cavity 18A and flow radially inward through leading edge cavity 18A. Cooling air flow 132 is divided into portions 140 , 144 which are directed into pressure side cavity 20A and suction side cavity 22A, respectively. The portions 140 , 144 of the cooling airflow 132 flow radially outward through the pressure side cavity 20A and the suction side cavity 22A, respectively, and recombine into the resulting airflow 132 in the leading edge cavity 18B. Airflow 132 is then directed radially inward through leading edge cavity 18B. As a portion 164 of cooling air flow 32 passes through leading edge cavity 18B, the portion 164 of cooling air flow 32 may be directed from leading edge cavity 18B to tip 68 of multiwall blade 6 ( FIG. 1 ) through at least one passage 166 . The portion 164 of the cooling air flow 132 may exit the tip 68 of the multi-wall blade 6 through at least one channel 66 as a tip film 70 ( FIG. 1 ) to provide tip film cooling. A portion 172 of the cooling air flow 132 may be used to provide a cooling film flow on the exterior of the multi-wall blade 6 . In other embodiments, said portions 164, 172 of the cooling air flow 132, or other portions of the cooling air flow 132, may be passed to the platform 3 (or inner/outer sidewalls), and/or may be used for a meandering front In other cooling circuits at the rear of edge cooling circuit 130.
冷却回路30、130已被说明用于在燃气涡轮机的操作期间旋转的涡轮机叶械片2的多壁叶片6中。然而,冷却回路30、130还可以用于在燃气涡轮机的固定涡轮机喷嘴内冷却。此外,冷却回路30、130可被用于冷却在操作期间需要内部冷却空气流的其他结构。The cooling circuit 30, 130 has been illustrated for use in a multi-walled blade 6 of a turbine blade 2 that rotates during operation of the gas turbine. However, the cooling circuit 30, 130 may also be used for cooling within a stationary turbine nozzle of a gas turbine. Additionally, the cooling circuit 30, 130 may be used to cool other structures that require internal cooling air flow during operation.
图6示出如可以在本实用新型中使用的燃气涡轮机102的示意性视图。燃气涡轮机102可以包括压缩机104。压缩机104压缩进入空气流106。压缩机104将压缩空气流108输送至燃烧器110。燃烧器110使压缩空气流108与加压燃料流112混合并且点燃混合物以形成燃烧气体流114。尽管仅示出单个燃烧器110,但是燃气涡轮机系统102可以包括任何数量的燃烧器110。燃烧气体流114接着被输送至涡轮116,涡轮116一般包括多个涡轮机械叶片2(图1)。燃烧气体流114驱动涡轮116以产生机械功。在涡轮116中产生的机械功经由轴118驱动压缩机104,并且可被用于驱动外部载荷120,比如发电机和/或类似设备。FIG. 6 shows a schematic view of a gas turbine 102 as may be used in the present invention. Gas turbine 102 may include a compressor 104 . Compressor 104 compresses incoming air stream 106 . Compressor 104 delivers compressed air stream 108 to combustor 110 . Combustor 110 mixes compressed air stream 108 with pressurized fuel stream 112 and ignites the mixture to form combustion gas stream 114 . Although only a single combustor 110 is shown, the gas turbine system 102 may include any number of combustors 110 . Combustion gas stream 114 is then channeled to turbine 116 , which generally includes a plurality of turbomachine blades 2 ( FIG. 1 ). The flow of combustion gases 114 drives a turbine 116 to produce mechanical work. Mechanical work generated in turbine 116 drives compressor 104 via shaft 118 and may be used to drive an external load 120 , such as a generator and/or the like.
在各个实施例中,描述为彼此“联接”的所述部件可以沿着一个或多个接口联结。在一些实施例中,这些接口可以包括不同部件之间的接头,并且在其他情况下,这些接口可以包括牢固地和/或一体地形成的互连。即,在一些情况下,彼此“联接”的部件可以同时形成以限定单个连续构件。然而,在其他实施例中,这些联接部件可以形成为单独的构件,并且随后通过已知的处理(例如紧固、超声焊接、粘合)联结。In various embodiments, described components described as "coupled" to each other may be coupled along one or more interfaces. In some embodiments, these interfaces may include joints between different components, and in other cases, these interfaces may include rigidly and/or integrally formed interconnections. That is, in some cases, components that are "coupled" to each other may be formed concurrently to define a single continuous member. In other embodiments, however, these coupling components may be formed as separate components and subsequently joined by known processes (eg fastening, ultrasonic welding, gluing).
当元件或层被称为“在另一个元件上”、“接合至”、“连接至”或“联接至”另一个元件时,其可以直接位于另一个元件上、接合、连接或联接至另一个元件,或者可以存在中间元件。相比之下,当元件被称为“直接位于另一个元件上”、“直接接合至”、“直接连接至”或“直接联接至”另一个元件,可能不存在中间元件或中间层。用于描述元件之间的关系的其他词汇应该以相同的方式解释(例如,“在…之间”对比“直接在…之间”、“与…相邻”对比“直接与…相邻”等等)。如本实用新型中所使用的,术语“和/或”包括一个或多个相关所列项目的任何和全部组合。When an element or layer is referred to as being "on," "joined to," "connected to," or "coupled to" another element, it can be directly on, bonded, connected, or coupled to the other element. One element, or there may be intermediate elements. In contrast, when an element is referred to as being "directly on," "directly engaged to," "directly connected to" or "directly coupled to" another element, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in the same manner (e.g., "between" vs. "directly between", "adjacent to" vs. "directly adjacent to", etc. Wait). As used in this application, the term "and/or" includes any and all combinations of one or more of the associated listed items.
本实用新型中使用的术语为了仅描述特定实施例的目的,而非旨在限制本实用新型。如本实用新型所使用的,单数形式“一个”、“一种”和“该”旨在也包括复数形式,除非上下文中清晰地否定表示。将进一步理解的是,术语“包括”和/或“包含”在用于本说明书中时指定存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除一个或多个其他的特征、整体、步骤、操作、元件、部件和/或其组的存在或增加。The terms used in the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprising" and/or "comprising" when used in this specification specify the presence of stated features, integers, steps, operations, elements and/or parts, but do not exclude one or more other The presence or addition of features, integers, steps, operations, elements, parts and/or groups thereof.
该书面说明书利用例子公开本实用新型,包括最佳方式,并且还使本领域技术人员能够实施本实用新型,包括制造和使用任何装置或系统以及执行任何包含的方法。本实用新型的可获得专利的范围由权利要求限定,并且可能包括本领域技术人员想到的其他例子。如果这些其他例子具有与权利要求的文字措辞没有不同之处的结构元件,或者这些其他例子包括与权利要求的文字措辞无实质区别的等同结构元件,则这些其他例子旨在落入权利要求的范围内。This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims. Inside.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/239985 | 2016-08-18 | ||
US15/239,985 US10227877B2 (en) | 2016-08-18 | 2016-08-18 | Cooling circuit for a multi-wall blade |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207363711U true CN207363711U (en) | 2018-05-15 |
Family
ID=60409586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201721044587.1U Active CN207363711U (en) | 2016-08-18 | 2017-08-18 | Cooling circuit and corresponding turbine device and turbomachinery for multi wall blade |
Country Status (4)
Country | Link |
---|---|
US (1) | US10227877B2 (en) |
JP (1) | JP3213637U (en) |
CN (1) | CN207363711U (en) |
DE (1) | DE202017104872U1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10060269B2 (en) | 2015-12-21 | 2018-08-28 | General Electric Company | Cooling circuits for a multi-wall blade |
US10190422B2 (en) * | 2016-04-12 | 2019-01-29 | Solar Turbines Incorporated | Rotation enhanced turbine blade cooling |
US10267162B2 (en) * | 2016-08-18 | 2019-04-23 | General Electric Company | Platform core feed for a multi-wall blade |
US10221696B2 (en) | 2016-08-18 | 2019-03-05 | General Electric Company | Cooling circuit for a multi-wall blade |
US10370976B2 (en) * | 2017-08-17 | 2019-08-06 | United Technologies Corporation | Directional cooling arrangement for airfoils |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474532A (en) | 1981-12-28 | 1984-10-02 | United Technologies Corporation | Coolable airfoil for a rotary machine |
GB2121483B (en) | 1982-06-08 | 1985-02-13 | Rolls Royce | Cooled turbine blade for a gas turbine engine |
US4650399A (en) | 1982-06-14 | 1987-03-17 | United Technologies Corporation | Rotor blade for a rotary machine |
US4753575A (en) | 1987-08-06 | 1988-06-28 | United Technologies Corporation | Airfoil with nested cooling channels |
US5813835A (en) * | 1991-08-19 | 1998-09-29 | The United States Of America As Represented By The Secretary Of The Air Force | Air-cooled turbine blade |
US5296308A (en) | 1992-08-10 | 1994-03-22 | Howmet Corporation | Investment casting using core with integral wall thickness control means |
US5356265A (en) | 1992-08-25 | 1994-10-18 | General Electric Company | Chordally bifurcated turbine blade |
US5382135A (en) | 1992-11-24 | 1995-01-17 | United Technologies Corporation | Rotor blade with cooled integral platform |
US5403159A (en) | 1992-11-30 | 1995-04-04 | United Technoligies Corporation | Coolable airfoil structure |
US5702232A (en) | 1994-12-13 | 1997-12-30 | United Technologies Corporation | Cooled airfoils for a gas turbine engine |
US5853044A (en) | 1996-04-24 | 1998-12-29 | Pcc Airfoils, Inc. | Method of casting an article |
JP3411775B2 (en) | 1997-03-10 | 2003-06-03 | 三菱重工業株式会社 | Gas turbine blade |
US6220817B1 (en) | 1997-11-17 | 2001-04-24 | General Electric Company | AFT flowing multi-tier airfoil cooling circuit |
FR2780061B1 (en) | 1998-06-22 | 2001-09-07 | Rhone Poulenc Rorer Sa | NOVEL PROCESS FOR THE PREPARATION OF CYCLOSPORIN DERIVATIVES |
GB9901218D0 (en) | 1999-01-21 | 1999-03-10 | Rolls Royce Plc | Cooled aerofoil for a gas turbine engine |
US6196792B1 (en) | 1999-01-29 | 2001-03-06 | General Electric Company | Preferentially cooled turbine shroud |
US6416284B1 (en) | 2000-11-03 | 2002-07-09 | General Electric Company | Turbine blade for gas turbine engine and method of cooling same |
JP2002242607A (en) | 2001-02-20 | 2002-08-28 | Mitsubishi Heavy Ind Ltd | Gas turbine cooling vane |
US6491496B2 (en) | 2001-02-23 | 2002-12-10 | General Electric Company | Turbine airfoil with metering plates for refresher holes |
US6478535B1 (en) | 2001-05-04 | 2002-11-12 | Honeywell International, Inc. | Thin wall cooling system |
FR2829175B1 (en) | 2001-08-28 | 2003-11-07 | Snecma Moteurs | COOLING CIRCUITS FOR GAS TURBINE BLADES |
FR2829174B1 (en) | 2001-08-28 | 2006-01-20 | Snecma Moteurs | IMPROVEMENTS IN COOLING CIRCUITS FOR GAS TURBINE BLADE |
US6974308B2 (en) | 2001-11-14 | 2005-12-13 | Honeywell International, Inc. | High effectiveness cooled turbine vane or blade |
US6746209B2 (en) | 2002-05-31 | 2004-06-08 | General Electric Company | Methods and apparatus for cooling gas turbine engine nozzle assemblies |
US6832889B1 (en) | 2003-07-09 | 2004-12-21 | General Electric Company | Integrated bridge turbine blade |
US7104757B2 (en) | 2003-07-29 | 2006-09-12 | Siemens Aktiengesellschaft | Cooled turbine blade |
US6955525B2 (en) | 2003-08-08 | 2005-10-18 | Siemens Westinghouse Power Corporation | Cooling system for an outer wall of a turbine blade |
US6887033B1 (en) | 2003-11-10 | 2005-05-03 | General Electric Company | Cooling system for nozzle segment platform edges |
US7097426B2 (en) | 2004-04-08 | 2006-08-29 | General Electric Company | Cascade impingement cooled airfoil |
US7217097B2 (en) | 2005-01-07 | 2007-05-15 | Siemens Power Generation, Inc. | Cooling system with internal flow guide within a turbine blade of a turbine engine |
US7413407B2 (en) | 2005-03-29 | 2008-08-19 | Siemens Power Generation, Inc. | Turbine blade cooling system with bifurcated mid-chord cooling chamber |
US7303376B2 (en) | 2005-12-02 | 2007-12-04 | Siemens Power Generation, Inc. | Turbine airfoil with outer wall cooling system and inner mid-chord hot gas receiving cavity |
US7296973B2 (en) | 2005-12-05 | 2007-11-20 | General Electric Company | Parallel serpentine cooled blade |
US7513738B2 (en) | 2006-02-15 | 2009-04-07 | General Electric Company | Methods and apparatus for cooling gas turbine rotor blades |
US7416391B2 (en) | 2006-02-24 | 2008-08-26 | General Electric Company | Bucket platform cooling circuit and method |
US7686581B2 (en) | 2006-06-07 | 2010-03-30 | General Electric Company | Serpentine cooling circuit and method for cooling tip shroud |
US7458778B1 (en) * | 2006-06-14 | 2008-12-02 | Florida Turbine Technologies, Inc. | Turbine airfoil with a bifurcated counter flow serpentine path |
US7534089B2 (en) | 2006-07-18 | 2009-05-19 | Siemens Energy, Inc. | Turbine airfoil with near wall multi-serpentine cooling channels |
US7780413B2 (en) | 2006-08-01 | 2010-08-24 | Siemens Energy, Inc. | Turbine airfoil with near wall inflow chambers |
US7527475B1 (en) | 2006-08-11 | 2009-05-05 | Florida Turbine Technologies, Inc. | Turbine blade with a near-wall cooling circuit |
US7481623B1 (en) | 2006-08-11 | 2009-01-27 | Florida Turbine Technologies, Inc. | Compartment cooled turbine blade |
US7527474B1 (en) | 2006-08-11 | 2009-05-05 | Florida Turbine Technologies, Inc. | Turbine airfoil with mini-serpentine cooling passages |
US7625178B2 (en) | 2006-08-30 | 2009-12-01 | Honeywell International Inc. | High effectiveness cooled turbine blade |
US7722324B2 (en) | 2006-09-05 | 2010-05-25 | United Technologies Corporation | Multi-peripheral serpentine microcircuits for high aspect ratio blades |
US7607891B2 (en) | 2006-10-23 | 2009-10-27 | United Technologies Corporation | Turbine component with tip flagged pedestal cooling |
US8591189B2 (en) | 2006-11-20 | 2013-11-26 | General Electric Company | Bifeed serpentine cooled blade |
US7914257B1 (en) | 2007-01-17 | 2011-03-29 | Florida Turbine Technologies, Inc. | Turbine rotor blade with spiral and serpentine flow cooling circuit |
US8047790B1 (en) | 2007-01-17 | 2011-11-01 | Florida Turbine Technologies, Inc. | Near wall compartment cooled turbine blade |
US7845906B2 (en) | 2007-01-24 | 2010-12-07 | United Technologies Corporation | Dual cut-back trailing edge for airfoils |
US7819629B2 (en) | 2007-02-15 | 2010-10-26 | Siemens Energy, Inc. | Blade for a gas turbine |
US7780415B2 (en) | 2007-02-15 | 2010-08-24 | Siemens Energy, Inc. | Turbine blade having a convergent cavity cooling system for a trailing edge |
JP5281245B2 (en) | 2007-02-21 | 2013-09-04 | 三菱重工業株式会社 | Gas turbine rotor platform cooling structure |
US7862299B1 (en) | 2007-03-21 | 2011-01-04 | Florida Turbine Technologies, Inc. | Two piece hollow turbine blade with serpentine cooling circuits |
KR100900231B1 (en) | 2007-06-21 | 2009-06-02 | 주식회사 하이닉스반도체 | Manufacturing method of semiconductor device |
US7785072B1 (en) | 2007-09-07 | 2010-08-31 | Florida Turbine Technologies, Inc. | Large chord turbine vane with serpentine flow cooling circuit |
US7857589B1 (en) | 2007-09-21 | 2010-12-28 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall cooling |
US8292581B2 (en) | 2008-01-09 | 2012-10-23 | Honeywell International Inc. | Air cooled turbine blades and methods of manufacturing |
US7901183B1 (en) | 2008-01-22 | 2011-03-08 | Florida Turbine Technologies, Inc. | Turbine blade with dual aft flowing triple pass serpentines |
US8087891B1 (en) | 2008-01-23 | 2012-01-03 | Florida Turbine Technologies, Inc. | Turbine blade with tip region cooling |
US8057183B1 (en) * | 2008-12-16 | 2011-11-15 | Florida Turbine Technologies, Inc. | Light weight and highly cooled turbine blade |
US8011888B1 (en) | 2009-04-18 | 2011-09-06 | Florida Turbine Technologies, Inc. | Turbine blade with serpentine cooling |
US8157505B2 (en) | 2009-05-12 | 2012-04-17 | Siemens Energy, Inc. | Turbine blade with single tip rail with a mid-positioned deflector portion |
US8292582B1 (en) | 2009-07-09 | 2012-10-23 | Florida Turbine Technologies, Inc. | Turbine blade with serpentine flow cooling |
US8356978B2 (en) | 2009-11-23 | 2013-01-22 | United Technologies Corporation | Turbine airfoil platform cooling core |
US8444386B1 (en) | 2010-01-19 | 2013-05-21 | Florida Turbine Technologies, Inc. | Turbine blade with multiple near wall serpentine flow cooling |
US8535004B2 (en) | 2010-03-26 | 2013-09-17 | Siemens Energy, Inc. | Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue |
US8616845B1 (en) | 2010-06-23 | 2013-12-31 | Florida Turbine Technologies, Inc. | Turbine blade with tip cooling circuit |
US8794921B2 (en) | 2010-09-30 | 2014-08-05 | General Electric Company | Apparatus and methods for cooling platform regions of turbine rotor blades |
US9022736B2 (en) * | 2011-02-15 | 2015-05-05 | Siemens Energy, Inc. | Integrated axial and tangential serpentine cooling circuit in a turbine airfoil |
US8734108B1 (en) | 2011-11-22 | 2014-05-27 | Florida Turbine Technologies, Inc. | Turbine blade with impingement cooling cavities and platform cooling channels connected in series |
US9249673B2 (en) | 2011-12-30 | 2016-02-02 | General Electric Company | Turbine rotor blade platform cooling |
US20140096538A1 (en) | 2012-10-05 | 2014-04-10 | General Electric Company | Platform cooling of a turbine blade assembly |
CA2890886C (en) | 2012-12-12 | 2020-10-27 | Actelion Pharmaceuticals Ltd | Indole carboxamide derivatives as p2x7 receptor antagonists |
US9366194B2 (en) | 2013-09-05 | 2016-06-14 | General Electric Company | Method and system for controlling gas turbine performance with a variable backflow margin |
US9670784B2 (en) | 2013-10-23 | 2017-06-06 | General Electric Company | Turbine bucket base having serpentine cooling passage with leading edge cooling |
US9995149B2 (en) | 2013-12-30 | 2018-06-12 | General Electric Company | Structural configurations and cooling circuits in turbine blades |
US20150184538A1 (en) | 2013-12-30 | 2015-07-02 | General Electric Company | Interior cooling circuits in turbine blades |
GB2522917A (en) | 2014-02-11 | 2015-08-12 | Sss Steel Profiles Ltd | Ladder brace |
DE112015003047B4 (en) | 2014-06-30 | 2021-08-26 | Mitsubishi Power, Ltd. | TURBINE VANE, TURBINE AND METHOD OF MODIFYING A TURBINE VANE |
US10294799B2 (en) | 2014-11-12 | 2019-05-21 | United Technologies Corporation | Partial tip flag |
US9845694B2 (en) | 2015-04-22 | 2017-12-19 | United Technologies Corporation | Flow directing cover for engine component |
US9863538B2 (en) | 2015-04-27 | 2018-01-09 | United Technologies Corporation | Gas turbine engine brush seal with supported tip |
US10054055B2 (en) | 2015-11-19 | 2018-08-21 | United Technology Corporation | Serpentine platform cooling structures |
US20170175544A1 (en) | 2015-12-21 | 2017-06-22 | General Electric Company | Cooling circuits for a multi-wall blade |
US9926788B2 (en) | 2015-12-21 | 2018-03-27 | General Electric Company | Cooling circuit for a multi-wall blade |
US10119405B2 (en) | 2015-12-21 | 2018-11-06 | General Electric Company | Cooling circuit for a multi-wall blade |
US10053989B2 (en) | 2015-12-21 | 2018-08-21 | General Electric Company | Cooling circuit for a multi-wall blade |
US9976425B2 (en) | 2015-12-21 | 2018-05-22 | General Electric Company | Cooling circuit for a multi-wall blade |
US10052683B2 (en) | 2015-12-21 | 2018-08-21 | General Electric Company | Center plenum support for a multiwall turbine airfoil casting |
US9909427B2 (en) | 2015-12-22 | 2018-03-06 | General Electric Company | Turbine airfoil with trailing edge cooling circuit |
-
2016
- 2016-08-18 US US15/239,985 patent/US10227877B2/en active Active
-
2017
- 2017-08-14 DE DE202017104872.1U patent/DE202017104872U1/en active Active
- 2017-08-16 JP JP2017003762U patent/JP3213637U/en active Active
- 2017-08-18 CN CN201721044587.1U patent/CN207363711U/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20180051576A1 (en) | 2018-02-22 |
DE202017104872U1 (en) | 2017-11-27 |
US10227877B2 (en) | 2019-03-12 |
JP3213637U (en) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207568658U (en) | For the cooling circuit of multi wall blade and corresponding turbine device and turbomachinery | |
CN207363709U (en) | Cooling circuit and corresponding turbine device and turbomachinery for multi wall blade | |
CN207363711U (en) | Cooling circuit and corresponding turbine device and turbomachinery for multi wall blade | |
US10781698B2 (en) | Cooling circuits for a multi-wall blade | |
CN207363710U (en) | Cooling circuit and corresponding turbine device and turbomachinery for multi wall blade | |
CN107989655B (en) | Cooling circuit for multiwall vane | |
JP2017115875A (en) | Cooling circuits for multi-wall blade | |
JP6997556B2 (en) | Platform core supply for multi-wall blades | |
CN106894844A (en) | For the cooling circuit of many wall blades | |
CN107989657B (en) | Turbine blade with trailing edge cooling circuit | |
CN106894845A (en) | Cooling circuit for multiwall vane | |
JP6924021B2 (en) | Platform core supply for multi-wall blades | |
CN107035417A (en) | Cooling circuit for many wall blades | |
CN107989660A (en) | Partially clad trailing edge cooling circuit with pressure side impingement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240109 Address after: Swiss Baden Patentee after: GENERAL ELECTRIC CO. LTD. Address before: New York, United States Patentee before: General Electric Co. |