CN207340018U - Camera module - Google Patents
Camera module Download PDFInfo
- Publication number
- CN207340018U CN207340018U CN201721157443.7U CN201721157443U CN207340018U CN 207340018 U CN207340018 U CN 207340018U CN 201721157443 U CN201721157443 U CN 201721157443U CN 207340018 U CN207340018 U CN 207340018U
- Authority
- CN
- China
- Prior art keywords
- lens
- sub
- camera module
- central axis
- photosensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 78
- 238000003384 imaging method Methods 0.000 claims abstract description 44
- 238000003466 welding Methods 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 39
- 230000008569 process Effects 0.000 abstract description 20
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000012634 optical imaging Methods 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 41
- 230000002093 peripheral effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 235000014676 Phragmites communis Nutrition 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000004304 visual acuity Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/021—Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/025—Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
- Cameras In General (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
- Eyeglasses (AREA)
Abstract
本实用新型提供了一种摄像模组,包括第一子镜头和第二子组件,其中第二子组件包括固定在一起的第二子镜头和感光组件;第一子镜头布置于所述第二子镜头的光轴,构成可成像的光学系;所述第一子镜头和所述第二子镜头通过连接介质固定在一起,并且所述连接介质适于使所述第一子镜头的中轴线相对于所述第二子镜头的中轴线具有倾角。本实用新型能够提升摄像模组的解像力;能够使大批量生产的摄像模组的过程能力指数提升;能够降低光学成像镜头以及模组的整体成本;能够降低不良率,降低生产成本,提升成像品质。
The utility model provides a camera module, which includes a first sub-lens and a second sub-assembly, wherein the second sub-assembly includes a second sub-lens and a photosensitive assembly fixed together; the first sub-lens is arranged on the second The optical axis of the sub-lens constitutes an imageable optical system; the first sub-lens and the second sub-lens are fixed together by a connection medium, and the connection medium is suitable for making the central axis of the first sub-lens It has an inclination angle relative to the central axis of the second sub-lens. The utility model can improve the resolution of the camera module; can improve the process capability index of the mass-produced camera module; can reduce the overall cost of the optical imaging lens and the module; can reduce the defect rate, reduce the production cost, and improve the imaging quality .
Description
技术领域technical field
本实用新型涉及光学技术领域,具体地说,本实用新型涉及摄像模组的解决方案。The utility model relates to the field of optical technology, in particular, the utility model relates to a solution for a camera module.
背景技术Background technique
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。With the popularization of mobile electronic devices, related technologies of camera modules used in mobile electronic devices to help users acquire images (such as video or images) have developed rapidly and improved rapidly, and in recent years, camera modules Groups have been widely used in many fields such as medical treatment, security, industrial production and so on.
为了满足越来越广泛的市场需求,高像素,小尺寸,大光圈是现有摄像模组不可逆转的发展趋势。市场对摄像模组的成像质量提出了越来越高的需求。影响既定光学设计的摄像模组解像力的因素包括光学成像镜头的品质和模组封装过程中的制造误差。In order to meet more and more extensive market demands, high pixel, small size, and large aperture are irreversible development trends of existing camera modules. The market has put forward higher and higher demands on the imaging quality of camera modules. Factors affecting the resolution of a camera module with a given optical design include the quality of the optical imaging lens and manufacturing errors in the module packaging process.
具体来说,在光学成像镜头的制造过程中,影响镜头解像力因素来自于各元件及其装配的误差、镜片间隔元件厚度的误差、各镜片的装配配合的误差以及镜片材料折射率的变化等。其中,各元件及其装配的误差包含各镜片单体的光学面厚度、镜片光学面矢高、光学面面型、曲率半径、镜片单面及面间偏心,镜片光学面倾斜等误差,这些误差的大小取决于模具精度与成型精度控制能力。镜片间隔元件厚度的误差取决于元件的加工精度。各镜片的装配配合的误差取决于被装配元件的尺寸公差以及镜头的装配精度。镜片材料折射率的变化所引入的误差则取决于材料的稳定性以及批次一致性。Specifically, in the manufacturing process of optical imaging lenses, the factors that affect the resolution of the lens come from the error of each component and its assembly, the error of the thickness of the lens spacing element, the error of the assembly of each lens, and the change of the refractive index of the lens material. Among them, the errors of each component and its assembly include errors such as the thickness of the optical surface of each lens monomer, the sagittal height of the optical surface of the lens, the shape of the optical surface, the radius of curvature, the eccentricity of the single surface of the lens and between surfaces, and the inclination of the optical surface of the lens. The size depends on the mold precision and molding precision control ability. The error of the thickness of the lens spacing element depends on the processing accuracy of the element. The error of the assembly fit of each lens depends on the dimensional tolerance of the assembled components and the assembly accuracy of the lens. The error introduced by the variation of the refractive index of the lens material depends on the stability of the material and the batch consistency.
上述各个元件影响解像力的误差存在累积恶化的现象,这个累计误差会随着透镜数量的增多而不断增大。现有解像力解决方案为对于对各相对敏感度高的元件的尺寸进行公差控制、镜片回转进行补偿提高解像力,但是由于高像素大光圈的镜头较敏感,要求公差严苛,如:部分敏感镜头1um镜片偏心会带来9′像面倾斜,导致镜片加工及组装难度越来越大,同时由于在组装过程中反馈周期长,造成镜头组装的过程能力指数(CPK)低、波动大,导致不良率高。且如上所述,因为影响镜头解像力的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的精度,提升能力有限,提升成本高昂,而且不能满足市场日益提高的成像品质需求。The errors of the above-mentioned components affecting the resolution are accumulated and deteriorated, and this accumulated error will continue to increase with the increase in the number of lenses. The existing resolution solution is to control the tolerance of the size of each relatively sensitive component and compensate the rotation of the lens to improve the resolution, but because the lens with high pixel and large aperture is more sensitive, the tolerance is strict, such as: some sensitive lenses 1um Lens eccentricity will cause 9′ image plane inclination, which makes lens processing and assembly more and more difficult. At the same time, due to the long feedback cycle in the assembly process, the process capability index (CPK) of lens assembly is low and fluctuates greatly, resulting in defective rate. high. And as mentioned above, because there are many factors that affect the resolution of the lens, they exist in multiple components, and the control of each factor has the limit of manufacturing accuracy. If the precision of each component is simply improved, the improvement capability is limited and the cost of improvement is high. Moreover, it cannot meet the increasing demands of the market for imaging quality.
另一方面,在摄像模组的加工过程中,各个结构件的组装过程(例如感光芯片贴装、马达镜头锁附过程等)都可能导致感光芯片倾斜,多项倾斜叠加,可能导致成像模组的解析力不能达到既定规格,进而造成模组厂良品率低下。近些年来,模组厂通过在将成像镜头和感光模组组装时,通过主动校准(Active Alignment)工艺对感光芯片的倾斜进行补偿。然而这种工艺补偿能力有限。由于多种影响解像力的像差来源于光学系统本身的能力,当光学成像镜头本身的解像力不足时,现有的感光模组主动校准工艺是难以补偿的。On the other hand, during the processing of the camera module, the assembly process of various structural parts (such as photosensitive chip mounting, motor lens locking process, etc.) may cause the photosensitive chip to tilt, and the superposition of multiple tilts may cause the imaging module to The resolution cannot meet the established specifications, resulting in a low yield rate for module factories. In recent years, module factories have compensated for the inclination of the photosensitive chip through the Active Alignment process when assembling the imaging lens and the photosensitive module. However, the compensation capability of this process is limited. Since a variety of aberrations that affect the resolution come from the capabilities of the optical system itself, when the resolution of the optical imaging lens itself is insufficient, the existing active calibration process of the photosensitive module is difficult to compensate.
实用新型内容Utility model content
本实用新型旨在提供一种能够克服现有技术的上述至少一个缺陷的解决方案。The present invention aims to provide a solution capable of overcoming at least one of the above-mentioned drawbacks of the prior art.
根据本实用新型的一个方面,提供了一种摄像模组,该摄像模组通过下述方法组装而成:According to one aspect of the present invention, a camera module is provided, which is assembled by the following method:
准备第一子镜头和第二子组件;其中所述第一子镜头包括第一镜筒和至少一个第一镜片,所述第二子组件包括固定在一起的第二子镜头和感光组件,所述第二子镜头包括第二镜筒和至少一个第二镜片;所述感光组件包括感光元件;Prepare a first sub-lens and a second sub-assembly; wherein the first sub-lens includes a first lens barrel and at least one first lens, and the second sub-assembly includes a second sub-lens and a photosensitive assembly fixed together, so The second sub-lens includes a second lens barrel and at least one second lens; the photosensitive component includes a photosensitive element;
将所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;arranging the first sub-lens on the optical axis of the second sub-lens to form an imageable optical system including the at least one first lens and the at least one second lens;
通过调整所述第一子镜头相对于所述第二子镜头的相对位置,使得通过所述感光元件获得的所述光学系成像的实测解像力提升达到第一阈值,并且使通过所述感光元件获得的实测像面倾斜减小达到第二阈值;以及By adjusting the relative position of the first sub-lens relative to the second sub-lens, the measured resolution of the imaging of the optical system obtained by the photosensitive element is improved to a first threshold, and the photosensitive element is obtained The measured image plane tilt decreases up to a second threshold; and
连接所述第一子镜头和所述第二子镜头,使得所述第一子镜头和所述第二子镜头的相对位置保持不变。The first sub-lens and the second sub-lens are connected so that the relative positions of the first sub-lens and the second sub-lens remain unchanged.
其中,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,调整所述的相对位置包括:Wherein, in the step of adjusting the relative position of the first sub-lens relative to the second sub-lens, adjusting the relative position includes:
通过使所述第一子镜头相对于所述第二子镜头沿着调整平面移动,使所述光学系成像的实测解像力提升。By moving the first sub-lens along the adjustment plane relative to the second sub-lens, the measured resolution of the imaging of the optical system is improved.
其中,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,所述沿着调整平面移动包括在所述调整平面上平移和/或转动。Wherein, in the step of adjusting the relative position of the first sub-lens relative to the second sub-lens, the moving along the adjustment plane includes translation and/or rotation on the adjustment plane.
其中,在所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤中,调整所述的相对位置包括:调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角。Wherein, in the step of adjusting the relative position of the first sub-lens relative to the second sub-lens, adjusting the relative position includes: adjusting the axis of the first sub-lens relative to the second sub-lens The angle between the axes of the two sub-lenses.
其中,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤包括下列子步骤:Wherein, the step of adjusting the relative position of the first sub-lens relative to the second sub-lens includes the following sub-steps:
通过使所述第一子镜头相对于所述第二子镜头沿着调整平面移动,使得通过所述感光元件获得的所述光学系成像的在参考视场的实测解像力提升达到对应的阈值;以及By moving the first sub-lens along the adjustment plane relative to the second sub-lens, the measured resolution of the optical system imaging obtained by the photosensitive element in the reference field of view is improved to a corresponding threshold; and
调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角,使得通过所述感光元件获得的所述光学系成像的在测试视场的实测解像力提升达到对应的阈值,并且使通过所述感光元件获得的在测试视场的实测像面倾斜减小达到所述第二阈值。Adjusting the angle between the axis of the first sub-lens and the axis of the second sub-lens, so that the measured resolution of the optical system imaging obtained by the photosensitive element in the test field of view increases to a corresponding threshold, And the measured image plane inclination reduction obtained by the photosensitive element in the test field of view reaches the second threshold.
其中,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤还包括:Wherein, the step of adjusting the relative position of the first sub-lens relative to the second sub-lens further includes:
通过使所述第一子镜头相对于所述第二子镜头在z方向上移动,使通过所述感光元件获得的所述光学系成像的实测像面与目标面匹配,其中z方向是沿着所述光轴的方向。By moving the first sub-lens relative to the second sub-lens in the z direction, the measured image plane obtained by the optical system through the photosensitive element is matched with the target plane, wherein the z direction is along the The direction of the optical axis.
其中,所述调整平面垂直于所述z方向。Wherein, the adjustment plane is perpendicular to the z direction.
其中,获取实测像面倾斜的方法包括:Among them, the methods for obtaining the measured image plane tilt include:
对于测试视场,设置对应于该测试视场的不同测试位置的多个标靶;以及For the test field of view, a plurality of targets corresponding to different test positions of the test field of view are provided; and
基于所述感光组件输出的图像获取对应于每一个测试位置的解像力离焦曲线。A resolution defocus curve corresponding to each test position is obtained based on the image output by the photosensitive assembly.
其中,所述达到第二阈值是使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低达到所述第二阈值。Wherein, the reaching the second threshold is to reduce the positional deviation of the peak value of the resolution defocus curve in the direction of the optical axis corresponding to different test positions of the test field of view to reach the second threshold.
其中,所述达到第二阈值是使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低至+/-5μm的范围内。Wherein, reaching the second threshold is to reduce the position deviation of the peak value of the resolution defocus curve corresponding to different test positions of the test field of view in the direction of the optical axis to within +/-5 μm.
其中,获得所述光学系成像的实测解像力的方法包括:Wherein, the method for obtaining the measured resolution of the imaging of the optical system includes:
设置对应于参考视场和测试视场的多个不同测试位置的标靶;以及providing targets at a plurality of different test locations corresponding to the reference field of view and the test field of view; and
基于所述感光组件输出的图像获取对应于每一个测试位置的解像力离焦曲线。A resolution defocus curve corresponding to each test position is obtained based on the image output by the photosensitive assembly.
其中,在使所述第一子镜头相对于所述第二子镜头沿着调整平面移动的子步骤中,所述的达到对应的阈值是:使对应于参考视场的不同测试位置的解像力离焦曲线的峰值提升达到对应的阈值。Wherein, in the sub-step of moving the first sub-lens relative to the second sub-lens along the adjustment plane, the reaching the corresponding threshold is: making the resolution of different test positions corresponding to the reference field of view be separated from The peak elevation of the focal curve reaches the corresponding threshold.
其中,在调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角的子步骤中,所述的达到对应的阈值包括:使对应于测试视场的不同测试位置的多个解像力离焦曲线的峰值中的最小一个提升达到对应的阈值。Wherein, in the sub-step of adjusting the angle between the axis of the first sub-lens and the axis of the second sub-lens, the reaching the corresponding threshold includes: making the The least one of the peaks of the plurality of resolution defocus curves increases to reach the corresponding threshold.
其中,所述的调整所述第一子镜头相对于所述第二子镜头的相对位置的步骤包括下列子步骤:Wherein, the step of adjusting the relative position of the first sub-lens relative to the second sub-lens includes the following sub-steps:
通过使所述第一子镜头相对于所述第二子镜头沿着调整平面在第一范围内移动,使得通过所述感光元件获得的所述光学系成像的在参考视场的实测解像力提升达到对应的阈值;By moving the first sub-lens relative to the second sub-lens within the first range along the adjustment plane, the measured resolution of the optical system imaging obtained through the photosensitive element in the reference field of view is improved by up to the corresponding threshold;
然后调节所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角,使得通过所述感光元件获得的所述光学系成像的在测试视场的实测解像力提升达到对应的阈值,并且使通过所述感光元件获得的在测试视场的实测像面倾斜减小,如果实测像面倾斜无法达到所述第二阈值,则进一步执行复调步骤,直至实测像面倾斜减小达到所述第二阈值;Then adjust the angle between the axis of the first sub-lens relative to the axis of the second sub-lens, so that the measured resolution of the optical system imaging obtained by the photosensitive element in the test field of view increases to a corresponding threshold , and the measured image plane inclination obtained by the photosensitive element in the test field of view is reduced, if the measured image plane inclination cannot reach the second threshold value, the readjustment step is further performed until the measured image plane inclination is reduced to reach said second threshold;
其中,所述复调步骤包括:Wherein, the retuning step includes:
通过使所述第一子镜头相对于所述第二子镜头沿着所述调整平面在第二范围内移动,其中所述第二范围小于第一范围;以及by moving the first sub-lens relative to the second sub-lens along the adjustment plane within a second range, wherein the second range is smaller than the first range; and
通过调整所述第一子镜头的中轴线相对于所述第二子镜头的中轴线的夹角,使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小。By adjusting the included angle between the central axis of the first sub-lens and the central axis of the second sub-lens, the inclination of the measured image plane obtained by the optical system through the photosensitive element is reduced.
其中,在所述连接步骤中,通过粘结或焊接工艺连接所述第一子镜头和所述第二子镜头。Wherein, in the connecting step, the first sub-lens and the second sub-lens are connected by bonding or welding process.
其中,所述焊接工艺包括激光焊或超声焊。Wherein, the welding process includes laser welding or ultrasonic welding.
其中,所述准备第一子镜头和第二子组件的步骤中,通过非主动校准方式固定所述第二子镜头和所述感光组件,形成所述第二子组件。非主动校准方式指主动校准以外的方式,例如机械对准等不需要点亮模组芯片的对准方式。主动校准英文名为ActiveAlignment,可缩写为 AA。Wherein, in the step of preparing the first sub-lens and the second sub-assembly, the second sub-lens and the photosensitive assembly are fixed by non-active calibration to form the second sub-assembly. Non-active calibration methods refer to methods other than active calibration, such as mechanical alignment and other alignment methods that do not need to light up the module chip. The English name of active alignment is ActiveAlignment, which can be abbreviated as AA.
根据本实用新型的另一方面,还提供了一种摄像模组,包括:According to another aspect of the present utility model, a camera module is also provided, including:
第一子镜头,其包括第一镜筒和至少一个第一镜片;以及a first sub-lens including a first lens barrel and at least one first lens; and
第二子组件,其包括固定在一起的第二子镜头和感光组件,所述第二子镜头包括第二镜筒和至少一个第二镜片;所述感光组件包括感光元件;The second subassembly includes a second sublens and a photosensitive assembly fixed together, the second sublens includes a second lens barrel and at least one second lens; the photosensitive assembly includes a photosensitive element;
其中,所述第一子镜头布置于所述第二子镜头的光轴,构成包含所述至少一个第一镜片和所述至少一个第二镜片的可成像的光学系;Wherein, the first sub-lens is arranged on the optical axis of the second sub-lens to form an imageable optical system including the at least one first lens and the at least one second lens;
所述第一子镜头和所述第二子镜头通过连接介质固定在一起,并且所述连接介质适于使所述第一子镜头的中轴线相对于所述第二子镜头的中轴线具有倾角。The first sub-lens and the second sub-lens are fixed together by a connection medium, and the connection medium is adapted to make the central axis of the first sub-lens have an inclination angle relative to the central axis of the second sub-lens .
其中,所述连接介质还适于使所述第一子镜头的中轴线与所述第二子镜头的中轴线错开。Wherein, the connection medium is further adapted to make the central axis of the first sub-lens deviate from the central axis of the second sub-lens.
其中,所述连接介质还适于使所述第一子镜头与第二子镜头之间具有结构间隙。Wherein, the connecting medium is further adapted to provide a structural gap between the first sub-lens and the second sub-lens.
其中,所述连接介质为粘结介质或焊接介质。Wherein, the connection medium is a bonding medium or a welding medium.
其中,所述第一子镜头的中轴线与所述第二子镜头的中轴线错开 0~15μm。Wherein, the central axis of the first sub-lens is offset from the central axis of the second sub-lens by 0-15 μm.
其中,所述第一子镜头的中轴线相对于所述第二子镜头的中轴线具有小于0.5度的倾角。Wherein, the central axis of the first sub-lens has an inclination angle of less than 0.5 degrees relative to the central axis of the second sub-lens.
其中,所述连接介质还适于使所述第一子镜头与所述第二子镜头的相对位置保持不变,并且所述相对位置使得通过所述感光元件获得的所述光学系成像的实测解像力提升达到第一阈值,以及使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小达到第二阈值。Wherein, the connection medium is also adapted to keep the relative position of the first sub-lens and the second sub-lens unchanged, and the relative position makes the actual measurement of the imaging of the optical system obtained by the photosensitive element The resolution is improved to reach a first threshold, and the measured image plane inclination of the optical system imaging obtained by the photosensitive element is reduced to a second threshold.
其中,所述第二子镜头还包括马达,所述实测解像力为马达开启状态下的实测解像力,所述实测像面倾斜为马达开启状态下的实测像面倾斜。Wherein, the second sub-lens further includes a motor, the measured resolution is the measured resolution when the motor is turned on, and the measured image plane inclination is the measured image plane inclination when the motor is turned on.
其中,所述第一子镜头和所述第二子镜头的外侧面均具有便于摄取的接触面。Wherein, both the outer surfaces of the first sub-lens and the second sub-lens have contact surfaces that are convenient for ingestion.
所述第二子镜头和所述感光组件之间具有10-50μm的间隙。There is a gap of 10-50 μm between the second sub-lens and the photosensitive component.
与现有技术相比,本实用新型具有下列至少一个技术效果:Compared with the prior art, the utility model has at least one of the following technical effects:
1、本实用新型能够提升摄像模组的解像力。1. The utility model can improve the resolution of the camera module.
2、本实用新型能够使大批量生产的摄像模组的过程能力指数 (CPK)提升。2. The utility model can improve the process capability index (CPK) of the mass-produced camera module.
3、本实用新型通过使得对光学成像镜头以及模组的各个元件精度及其装配精度的要求变宽松,降低了光学成像镜头以及模组的整体成本。3. The utility model reduces the overall cost of the optical imaging lens and the module by loosening the requirements on the precision and assembly precision of each component of the optical imaging lens and the module.
4、本实用新型能够在组装过程中对摄像模组的各种像差进行实时调整,降低不良率,降低生产成本,提升成像品质。4. The utility model can adjust various aberrations of the camera module in real time during the assembly process, reduce the defect rate, reduce the production cost, and improve the imaging quality.
5、本实用新型通过第一子镜头和第二子组件的多自由度的相对位置调整,实现模组整体的一次性像差调整,进而实现模组整体的成像质量的提升。5. The utility model realizes one-time aberration adjustment of the whole module through the multi-degree-of-freedom relative position adjustment of the first sub-lens and the second sub-assembly, and further improves the imaging quality of the whole module.
6、本实用新型可以通过非主动校准方式将感光组件与第二子镜头固定,从而降低成本,提升生产效率。6. The utility model can fix the photosensitive component and the second sub-lens through a non-active calibration method, thereby reducing costs and improving production efficiency.
附图说明Description of drawings
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。Exemplary embodiments are shown in the referenced drawings. The embodiments and drawings disclosed herein are to be regarded as illustrative rather than restrictive.
图1示出了本实用新型一个实施例的摄像模组组装方法的流程图;Fig. 1 shows the flowchart of the camera module assembly method of one embodiment of the present invention;
图2示出了本实用新型一个实施例中第一子镜头、第二子组件及其初始布置位置的示意图;Fig. 2 shows a schematic diagram of the first sub-lens, the second sub-assembly and their initial arrangement positions in one embodiment of the present invention;
图3示出了本实用新型一个实施例中的相对位置调节方式;Fig. 3 has shown the relative position adjustment mode in one embodiment of the utility model;
图4示出了本实用新型另一个实施例中的旋转调节;Fig. 4 shows the rotation adjustment in another embodiment of the utility model;
图5示出了本实用新型又一个实施例中的增加了v、w方向调节的相对位置调节方式;Fig. 5 shows the relative position adjustment mode in which v and w direction adjustments are added in another embodiment of the present invention;
图6示出了本实用新型一个实施例中原始状态下的MTF离焦曲线;Fig. 6 shows the MTF defocus curve under the original state in one embodiment of the utility model;
图7示出了经步骤310调整后的MTF离焦曲线的示例;FIG. 7 shows an example of the MTF defocus curve adjusted in step 310;
图8示出了本实用新型一个实施例中经步骤310调整后的第一子镜头和第二子组件及其位置关系;Fig. 8 shows the first sub-lens and the second sub-assembly adjusted in step 310 and their positional relationship in one embodiment of the present invention;
图9示出了像面倾斜的示意图;Fig. 9 shows the schematic diagram of image plane tilt;
图10示出了中心位置和周边1和周边1’位置的像的对比示意图;Fig. 10 shows a comparative schematic diagram of images of the central position and the peripheral 1 and peripheral 1' positions;
图11示出了本实用新型一个实施例中经步骤400调整后的MTF 离焦曲线;Fig. 11 shows the MTF defocus curve adjusted by step 400 in one embodiment of the present invention;
图12示出了本实用新型一个实施例中经步骤320调整后的第一子镜头和第二子镜头的相对位置关系;FIG. 12 shows the relative positional relationship between the first sub-lens and the second sub-lens adjusted in step 320 in one embodiment of the present invention;
图13示出了本实用新型一个实施例中完成连接后所形成的摄像模组;Fig. 13 shows the camera module formed after the connection is completed in one embodiment of the present invention;
图14示出了一个实施例中的标靶设置方式的示例;Figure 14 shows an example of how targets are set up in one embodiment;
图15示出了本实用新型一个实施例中的摄像模组;Fig. 15 shows the camera module in one embodiment of the present invention;
图16示出了本实用新型一个实施例中组装后的带有马达且马达未开启状态下的摄像模组;Figure 16 shows the assembled camera module with a motor and the motor is not turned on in one embodiment of the present invention;
图17示出了本实用新型一个实施例中组装后的带有马达且马达开启状态下的摄像模组。Fig. 17 shows an assembled camera module with a motor and the motor turned on in an embodiment of the present invention.
具体实施方式Detailed ways
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。For a better understanding of the application, various aspects of the application will be described in more detail with reference to the accompanying drawings. It should be understood that these detailed descriptions are descriptions of exemplary embodiments of the application only, and are not intended to limit the scope of the application in any way. Throughout the specification, the same reference numerals refer to the same elements. The expression "and/or" includes any and all combinations of one or more of the associated listed items.
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。It should be noted that in this specification, expressions of first, second, etc. are only used to distinguish one feature from another, and do not represent any limitation on the features. Accordingly, a first body discussed hereinafter may also be referred to as a second body without departing from the teachings of the present application.
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。In the drawings, the thickness, size and shape of objects have been slightly exaggerated for convenience of illustration. The drawings are examples only and are not strictly drawn to scale.
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。It should also be understood that the terms "comprises", "comprises", "has", "comprises" and/or "comprising", when used in this specification, means that there are stated features, integers, steps, operations , elements and/or components, but does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or combinations thereof. Furthermore, expressions such as "at least one of," when preceding a list of listed features, modify the entire listed feature and do not modify the individual elements of the list. In addition, when describing the embodiments of the present application, the use of "may" means "one or more embodiments of the present application". Also, the word "exemplary" is intended to mean an example or illustration.
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。As used herein, the terms "substantially", "about", and similar terms are used as terms of approximation, not as terms of degree, and are intended to illustrate what would be recognized by one of ordinary skill in the art, measure Inherent bias in a value or calculated value.
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。Unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms (such as those defined in commonly used dictionaries) should be interpreted to have a meaning consistent with their meaning in the context of the relevant art, and will not be interpreted in an idealized or overly formal sense unless It is expressly so defined herein.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present application will be described in detail below with reference to the accompanying drawings and embodiments.
图1示出了本实用新型一个实施例的摄像模组组装方法的流程图。参考图1,所述组装方法包括下列步骤100~400:FIG. 1 shows a flow chart of a method for assembling a camera module according to an embodiment of the present invention. Referring to FIG. 1, the assembly method includes the following steps 100-400:
步骤100:准备第一子镜头和第二子组件。图2示出了本实用新型一个实施例中第一子镜头1000、第二子组件6000及其初始布置位置的示意图。参考图2,所述第一子镜头1000包括第一镜筒1100和至少一个第一镜片1200。本实施例中,第一镜片1200有两个,但容易理解,在其它实施例中,第一镜片1200也可以是其它数目,例如一个、三个或四个等。Step 100: Prepare the first sub-camera and the second sub-assembly. Fig. 2 shows a schematic diagram of the first sub-lens 1000, the second sub-assembly 6000 and their initial arrangement positions in one embodiment of the present invention. Referring to FIG. 2 , the first sub-lens 1000 includes a first lens barrel 1100 and at least one first lens 1200 . In this embodiment, there are two first lenses 1200 , but it is easy to understand that in other embodiments, there may be other numbers of first lenses 1200 , such as one, three or four.
所述第二子组件6000包括固定在一起的第二子镜头2000和感光组件3000。所述第二子镜头2000包括第二镜筒2100和至少一个第二镜片2200。本实施例中,第二镜片2200有三个,但容易理解,在其它实施例中,第二镜片2200也可以是其它数目,例如一个、两个或四个等。本实施例中,第二子镜头2000的第二镜筒2100包含嵌套在一起的内镜筒2110和外镜筒2120(外镜筒2120有时也镜座),所述内镜筒2110和外镜筒2120螺纹连接。需注意,螺纹连接并非所述内镜筒2110和外镜筒2120之间的唯一连接方式。当然,容易理解,在其它实施例中,第二镜筒2100也可以是一体式镜筒。The second subassembly 6000 includes a second sublens 2000 and a photosensitive assembly 3000 fixed together. The second sub-lens 2000 includes a second barrel 2100 and at least one second lens 2200 . In this embodiment, there are three second lenses 2200, but it is easy to understand that in other embodiments, there may be other numbers of second lenses 2200, such as one, two or four. In this embodiment, the second lens barrel 2100 of the second sub-lens 2000 includes an inner lens barrel 2110 and an outer lens barrel 2120 (sometimes the outer lens barrel 2120 is also a lens holder) nested together, and the inner lens barrel 2110 and the outer lens barrel 2110 The lens barrel 2120 is threaded. It should be noted that threaded connection is not the only way of connection between the inner lens barrel 2110 and the outer lens barrel 2120 . Of course, it is easy to understand that in other embodiments, the second lens barrel 2100 may also be an integrated lens barrel.
仍然参考图2,在一个实施例中,所述感光组件3000包括线路板 3100、安装在线路板3100上的感光元件3200、制作在线路板3100上且围绕在所述感光元件3200周围的筒状支撑体3400,以及安装在支撑体3400上的滤色元件3300。筒状支撑体3400具有向内(指朝向感光元件3200的方向)延伸的可作为镜架的延伸部,所述滤色元件3300 安装在所述延伸部上。所述筒状支撑体3400还具有上表面,所述感光组件可通过该上表面与摄像模组的其它组件(例如第二子镜头2000) 连接在一起。当然,容易理解,在其它实施例中,感光组件3000也可以是其它结构,例如所述感光组件的线路板具有通孔,感光元件安装在所述线路板的通孔中;又例如所述支撑部通过模塑形成在感光元件周围并向内延伸并接触所述感光元件(例如支撑部覆盖位于所述感光元件边缘的至少一部分非感光区域);再例如所述感光组件还可以省略所述滤色元件。Still referring to FIG. 2 , in one embodiment, the photosensitive assembly 3000 includes a circuit board 3100 , a photosensitive element 3200 mounted on the circuit board 3100 , a cylindrical tube made on the circuit board 3100 and surrounding the photosensitive element 3200 A support body 3400 , and a color filter element 3300 installed on the support body 3400 . The cylindrical support body 3400 has an extension portion extending inward (directing toward the photosensitive element 3200 ) that can be used as a frame, and the color filter element 3300 is mounted on the extension portion. The cylindrical support 3400 also has an upper surface through which the photosensitive component can be connected with other components of the camera module (such as the second sub-lens 2000 ). Of course, it is easy to understand that in other embodiments, the photosensitive assembly 3000 can also have other structures, for example, the circuit board of the photosensitive assembly has a through hole, and the photosensitive element is installed in the through hole of the circuit board; another example is the support The part is formed around the photosensitive element by molding and extends inward and contacts the photosensitive element (for example, the support part covers at least a part of the non-photosensitive area located at the edge of the photosensitive element); for another example, the photosensitive component can also omit the filter color elements.
进一步地,在一个实施例中,通过非主动校准方式固定所述第二子镜头2000和所述感光组件3000,形成所述第二子组件6000。主动校准英文名为Active Alignment,可缩写为AA。非主动校准方式指主动校准以外的方式。例如,在一个例子中,可以采用机械对准方式将所述第二子镜头2000和所述感光组件3000固定在一起,形成所述的第二子组件6000。Further, in one embodiment, the second sub-lens 2000 and the photosensitive assembly 3000 are fixed by non-active calibration to form the second sub-assembly 6000 . The English name of active calibration is Active Alignment, which can be abbreviated as AA. The non-active calibration method refers to a method other than active calibration. For example, in one example, the second sub-lens 2000 and the photosensitive assembly 3000 may be fixed together by mechanical alignment to form the second sub-assembly 6000 .
步骤200:将所述第一子镜头1000布置于所述第二子组件6000 的光轴,构成包含所述至少一个第一镜片1200和所述至少一个第二镜片2200的可成像的光学系。本步骤中,将所述第一子镜头1000布置于所述第二子组件6000的光轴是指对二者进行初步对准,形成一个可成像的光学系。也就是说,只要包含所有第一镜片1200和所有第二镜片2200的光学系能够成像,即可视为完成了本步骤的布置工作。需要说明,由于子镜头与感光组件的制作过程中存在各种制作公差或其它原因,完成布置后,第一镜筒1100和第二镜筒1200的中轴线并不一定与光轴重叠。Step 200 : Arranging the first sub-lens 1000 on the optical axis of the second sub-assembly 6000 to form an imageable optical system including the at least one first lens 1200 and the at least one second lens 2200 . In this step, arranging the first sub-lens 1000 on the optical axis of the second sub-assembly 6000 refers to preliminarily aligning the two to form an imageable optical system. That is to say, as long as the optical system including all the first mirrors 1200 and all the second mirrors 2200 can form images, it can be considered that the arrangement work in this step is completed. It should be noted that due to various manufacturing tolerances or other reasons in the manufacturing process of the sub-lens and the photosensitive assembly, after the arrangement is completed, the central axes of the first lens barrel 1100 and the second lens barrel 1200 do not necessarily overlap with the optical axis.
步骤300:通过调整所述第一子镜头1000相对于所述第二子镜头 2000的相对位置,使得所述光学系成像的实测解像力最大化(使实测解像力提升达到预设的阈值,可视为实现了实测解像力最大化),并且使得所述光学系成像的实测像面倾斜最小化(使实测像面倾斜减小达到预设的阈值,可视为实现了实测像面倾斜最小化)。其中,第一子镜头1000和第二子镜头2000之间相对位置的调整可以包含多个自由度。Step 300: By adjusting the relative position of the first sub-lens 1000 relative to the second sub-lens 2000, the measured resolution of the optical system imaging is maximized (the measured resolution is increased to a preset threshold, which can be regarded as The actual measured resolution is maximized), and the measured image plane inclination of the optical system imaging is minimized (the actual measured image plane inclination is reduced to a preset threshold, which can be regarded as the actual measured image plane inclination is minimized). Wherein, the adjustment of the relative position between the first sub-lens 1000 and the second sub-lens 2000 may include multiple degrees of freedom.
图3示出了本实用新型一个实施例中的相对位置调节方式。在该调节方式中,所述第一子镜头可以相对于所述第二子镜头沿着x、y、 z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z 方向为沿着光轴的方向,x,y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。Fig. 3 shows the relative position adjustment method in one embodiment of the present invention. In this adjustment manner, the first sub-lens can move relative to the second sub-lens along x, y, z directions (that is, the relative position adjustment in this embodiment has three degrees of freedom). The z direction is the direction along the optical axis, and the x and y directions are the directions perpendicular to the optical axis. The x and y directions are both in an adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
图4示出了本实用新型另一个实施例中的旋转调节。在该实施例中,相对位置调整除了具有图3的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述调整平面P 内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。Fig. 4 shows the rotation adjustment in another embodiment of the present invention. In this embodiment, in addition to the three degrees of freedom shown in FIG. 3 , the relative position adjustment also adds a rotational degree of freedom, that is, adjustment in the r direction. In this embodiment, the adjustment in the r direction is a rotation within the adjustment plane P, that is, a rotation around an axis perpendicular to the adjustment plane P.
进一步地,图5示出了本实用新型又一个实施例中的增加了v、w 方向调节的相对位置调节方式。其中,v方向代表xoz平面的旋转角, w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过v方向和w方向调节,可以调节第一子镜头相对于第二子镜头的倾斜姿态(也就是所述第一子镜头的光轴相对于所述第二子镜头的光轴的倾斜)。Further, Fig. 5 shows a relative position adjustment mode in which v and w direction adjustments are added in another embodiment of the present invention. Wherein, the v direction represents the rotation angle of the xoz plane, the w direction represents the rotation angle of the yoz plane, and the rotation angles of the v direction and the w direction can be synthesized into a vector angle, which represents the total tilt state. That is to say, by adjusting the v direction and the w direction, the inclination posture of the first sub-lens relative to the second sub-lens can be adjusted (that is, the optical axis of the first sub-lens is relative to the optical axis of the second sub-lens). slope).
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本实用新型的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。The adjustment of the above six degrees of freedom of x, y, z, r, v, and w may affect the imaging quality of the optical system (for example, affect the resolution). In other embodiments of the present invention, the relative position adjustment method may be to adjust only any one of the above six degrees of freedom, or a combination of any two or more of them.
进一步地,在一个实施例中,获得所述光学系成像的实测解像力的方法包括:Further, in one embodiment, the method for obtaining the measured resolution of the imaging of the optical system includes:
步骤301:设置对应于参考视场和/或测试视场的多个标靶。例如,可以选择中心视场作为参考视场,选择一个或多个对应于感兴趣区域的视场作为测试视场(例如80%视场)。Step 301: Setting a plurality of targets corresponding to the reference field of view and/or the test field of view. For example, the central field of view may be selected as the reference field of view, and one or more fields of view corresponding to the region of interest may be selected as the test field of view (for example, 80% of the field of view).
步骤302:基于所述感光组件输出的图像获取对应于每一个标靶的解像力离焦曲线。根据所述解像力离焦曲线即可获得对应视场的实测解像力。Step 302: Obtain a resolution defocus curve corresponding to each target based on the image output by the photosensitive assembly. The measured resolution of the corresponding field of view can be obtained according to the resolution defocus curve.
该实施例中,解像力可以用MTF(调制传递函数)代表。MTF 值越高表示解像力越好。这样,根据所述感光组件输出的图像获取的MTF离焦曲线,即可实时地获得所述光学系成像的解像力。根据MTF 离焦曲线的变化情况,即可判断当前是否达到了解像力最大化的状态。图6示出了本实用新型一个实施例中原始状态下的MTF离焦曲线,其中包含中心视场的MTF离焦曲线和位于测试视场的两个标靶成像的弧矢方向和子午方向的MTF离焦曲线。In this embodiment, the resolution can be represented by MTF (Modulation Transfer Function). The higher the MTF value, the better the resolution. In this way, the imaging resolution of the optical system can be obtained in real time according to the MTF defocus curve obtained from the image output by the photosensitive component. According to the change of the MTF defocus curve, it can be judged whether the current state of maximizing the image power has been reached. Fig. 6 shows the MTF defocus curve in the original state in an embodiment of the present invention, which includes the MTF defocus curve of the central field of view and the sagittal direction and meridional direction of two target imaging located in the test field of view MTF defocus curve.
另一方面,光学系的成像往往存在像面倾斜的情况。图9示出了像面倾斜的示意图。可以看出,图9中垂直于光轴的物面经过透镜成像后形成了倾斜的像面。其中,中心视场的入射光线经过透镜后在中心焦点位置聚焦,轴外视场1入射光线经过透镜后在周边焦点1’位置聚焦,该位置与中心焦点位置之间具有轴向偏离D2,轴外视场1’入射光线经过透镜后在周边焦点1位置聚焦,该位置与中心焦点位置之间具有轴向偏离D1。这就导致当感光元件接收面垂直于光轴布置时,周边1和周边1’位置均无法清晰成像。图10示出了中心位置和周边1和周边1’位置的像的对比示意图,可以看出周边1和周边1’位置的像均明显模糊于中心位置的像。本实用新型中,可通过调整第一子镜头和第二子镜头之间的倾角来对上述像面倾斜进行补偿。On the other hand, the imaging of the optical system often has the situation that the image plane is tilted. FIG. 9 shows a schematic diagram of image plane tilt. It can be seen that the object plane perpendicular to the optical axis in Fig. 9 forms an oblique image plane after being imaged by the lens. Among them, the incident light in the central field of view is focused at the central focal point after passing through the lens, and the incident light in the off-axis field of view 1 is focused at the peripheral focal point 1' after passing through the lens. There is an axial deviation D2 between this position and the central focal point, and the axis The incident light in the outer field of view 1' passes through the lens and is focused at the position of the peripheral focal point 1, which has an axial deviation D1 from the position of the central focal point. As a result, when the receiving surface of the photosensitive element is arranged perpendicular to the optical axis, the peripheral 1 and peripheral 1' positions cannot be clearly imaged. Figure 10 shows a schematic diagram of the comparison between the images at the central position and the peripheral 1 and peripheral 1' positions, and it can be seen that the images at the peripheral 1 and peripheral 1' positions are obviously blurred by the images at the central position. In the present invention, the above-mentioned inclination of the image plane can be compensated by adjusting the inclination angle between the first sub-lens and the second sub-lens.
在一个实施例中,获取实测像面倾斜的方法包括:In one embodiment, the method for obtaining the measured image plane tilt includes:
步骤303:对于任一测试视场(例如80%视场),设置对应于该测试视场的不同测试位置的多个标靶。图14示出了一个实施例中的标靶设置方式的示例。如图14所示,测试视场为80%视场,四个标靶分别设置在标版的四角。Step 303: For any test field of view (eg, 80% field of view), set a plurality of targets corresponding to different test positions of the test field of view. Figure 14 shows an example of how targets are set up in one embodiment. As shown in FIG. 14 , the test field of view is 80% of the field of view, and four targets are respectively set at the four corners of the standard plate.
步骤304:基于所述感光组件输出的图像获取对应于同一视场的不同位置的每一个解像力离焦曲线。当这些解像力离焦曲线在横坐标轴(代表沿光轴方向的离焦量的坐标轴)上汇聚时,表示对应于该测试视场的像面倾斜已获得补偿,即在该测试视场上已实现所述的实测像面倾斜最小化。在一个实施例中,对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低达到对应的阈值,表示对应于该测试视场的像面倾斜已获得补偿。Step 304: Obtain each resolution defocus curve corresponding to different positions of the same field of view based on the image output by the photosensitive component. When these resolving power defocus curves converge on the abscissa axis (coordinate axis representing the defocus amount along the optical axis), it means that the image plane tilt corresponding to the test field of view has been compensated, that is, on the test field of view The described minimization of the measured image plane tilt has been achieved. In one embodiment, the position deviation of the peak value of the resolution defocus curve corresponding to different test positions of the test field of view in the direction of the optical axis decreases to a corresponding threshold, indicating that the image plane tilt corresponding to the test field of view has been Get compensated.
进一步地,在一个实施例中,所述步骤300包括下列子步骤:Further, in one embodiment, the step 300 includes the following sub-steps:
步骤310:通过使所述第一子镜头1000相对于所述第二子镜头 2000沿着调整平面P移动,使所述光学系成像的实测解像力提升达到对应的阈值。前文中描述了x、y、z、r、v、w六个自由度的调整。其中,x、y方向上的平移以及r方向的转动可视为本步骤中的沿着调整平面P移动。本步骤中,设置对应于参考视场和测试视场的多个标靶,然后基于所述感光组件输出的图像获取对应于每一个标靶的解像力离焦曲线。使所述第一子镜头1000相对于所述第二子镜头2000在x、y 和r方向上移动,使对应于参考视场的标靶成像的解像力离焦曲线的峰值提升达到对应的阈值。参考视场可选择中心视场,但需注意,参考视场并不限于中心视场,在一些实施例中,也可以选择其它视场作为参考视场。本步骤中,所述的达到对应的阈值是:使对应于参考视场的标靶成像的解像力离焦曲线的峰值提升达到对应的阈值。Step 310: By moving the first sub-lens 1000 relative to the second sub-lens 2000 along the adjustment plane P, the measured resolution of the imaging of the optical system is increased to a corresponding threshold. The adjustment of the six degrees of freedom of x, y, z, r, v, and w is described above. Wherein, the translation in the x and y directions and the rotation in the r direction can be regarded as moving along the adjustment plane P in this step. In this step, a plurality of targets corresponding to the reference field of view and the test field of view are set, and then the resolution defocus curve corresponding to each target is obtained based on the image output by the photosensitive component. The first sub-lens 1000 is moved relative to the second sub-lens 2000 in x, y and r directions, so that the peak value of the resolution defocus curve corresponding to the target imaging of the reference field of view is raised to a corresponding threshold. The reference field of view may be the central field of view, but it should be noted that the reference field of view is not limited to the central field of view, and in some embodiments, other fields of view may also be selected as the reference field of view. In this step, reaching the corresponding threshold is: making the peak value of the resolution defocus curve of the target imaging corresponding to the reference field of view reach the corresponding threshold.
图7示出了经步骤310调整后的MTF离焦曲线的示例。可以看出,在调整后,两个标靶成像的弧矢方向和子午方向的MTF值均获得明显提升。图8示出了本实用新型一个实施例中经步骤310调整后的第一子镜头1000和第二子组件6000及其位置关系。可以看出,第一子镜头1000的中轴线相对于第二子镜头2000的中轴线在x方向上偏移了△x。需要注意,图8仅仅是示例性的。虽然图8中未示出在y方向上偏移,但本领域技术人员容易理解,第一子镜头1000的中轴线相对于第二子镜头2000的中轴线在y方向上也可以具有△y的偏移。FIG. 7 shows an example of the MTF defocus curve adjusted in step 310 . It can be seen that after the adjustment, the MTF values of the sagittal and meridional directions of the two target imaging have been significantly improved. FIG. 8 shows the first sub-lens 1000 and the second sub-assembly 6000 adjusted in step 310 and their positional relationship in one embodiment of the present invention. It can be seen that the central axis of the first sub-lens 1000 is offset by Δx in the x direction relative to the central axis of the second sub-lens 2000 . It should be noted that Fig. 8 is only exemplary. Although the offset in the y direction is not shown in FIG. 8 , those skilled in the art can easily understand that the central axis of the first sub-lens 1000 can also have a value of Δy relative to the central axis of the second sub-lens 2000 in the y direction. offset.
步骤320:通过使所述第一子镜头1000的轴线相对于所述第二子镜头2000的轴线倾斜,使测试视场的所述光学系成像的实测解像力提升达到对应的阈值,并使测试视场的所述光学系成像的实测像面倾斜减小到达对应的阈值。其中,v、w方向上的转动对应于本步骤中的倾斜调整。本步骤中所述的实测解像力达到对应的阈值包括:使对应于该测试视场的不同测试位置的多个标靶成像的解像力离焦曲线的峰值中的最小的一个提升达到对应的阈值。在其它实施例中,所述的实测解像力达到对应的阈值还可以包括:使对应于该测试视场的不同测试位置的所述多个标靶成像的解像力离焦曲线的峰值的均匀性提升达到对应的阈值。所述的均匀性提升包括:使对应于该测试视场的所述多个标靶成像的解像力离焦曲线的峰值的方差降低达到对应的阈值。使测试视场的所述光学系成像的实测像面倾斜减小到达对应的阈值包括:使对应于测试视场的不同测试位置的解像力离焦曲线的峰值在所述光轴方向的位置偏移降低达到对应的阈值。Step 320: By tilting the axis of the first sub-lens 1000 relative to the axis of the second sub-lens 2000, the measured resolution of the imaging of the optical system in the test field of view is increased to a corresponding threshold, and the test field of view The measured inclination of the image plane imaged by the optical system of the field decreases to reach a corresponding threshold. Wherein, the rotation in the direction of v and w corresponds to the tilt adjustment in this step. The measured resolution reaching the corresponding threshold in this step includes: increasing the smallest one of the peaks of the resolution defocus curves corresponding to different test positions of the test field of view to reach the corresponding threshold. In other embodiments, the measured resolution reaching the corresponding threshold may also include: increasing the uniformity of the peak value of the resolution defocus curves of the multiple target imaging corresponding to different test positions of the test field of view to the corresponding threshold. The improvement of the uniformity includes: reducing the variance of the peak values of the resolution defocus curves of the plurality of target imaging corresponding to the test field of view to a corresponding threshold. Reducing the measured image plane inclination of the optical system imaging in the test field of view to reach the corresponding threshold includes: shifting the position of the peak value of the resolution defocus curve corresponding to different test positions of the test field of view in the direction of the optical axis decrease to reach the corresponding threshold.
图11示出了本实用新型一个实施例中经步骤320调整后的MTF 离焦曲线。图12示出了本实用新型一个实施例中经步骤320调整后的第一子镜头和第二子镜头的相对位置关系。可以看出,图12中,在第一子镜头的中轴线相对于第二子镜头的中轴线在x方向上偏移△x基础上,第一子镜头1000的中轴线还相对于所述第二子镜头2000的中轴线倾斜了△v2。需要注意,虽然图12中未示出w方向上的倾斜,但本领域技术人员容易理解,在w方向上感光组件3000的轴线相对于第二子镜头2000的中轴线也可以具有倾斜角。FIG. 11 shows the MTF defocus curve adjusted in step 320 in one embodiment of the present invention. FIG. 12 shows the relative positional relationship between the first sub-lens and the second sub-lens adjusted in step 320 in an embodiment of the present invention. It can be seen that in FIG. 12 , on the basis that the central axis of the first sub-lens is offset by Δx in the x direction relative to the central axis of the second sub-lens, the central axis of the first sub-lens 1000 is also relative to the central axis of the second sub-lens. The central axis of the second sub-lens 2000 is tilted by Δv2. It should be noted that although the inclination in the w direction is not shown in FIG. 12 , those skilled in the art can easily understand that the axis of the photosensitive assembly 3000 may also have an inclination angle with respect to the central axis of the second sub-lens 2000 in the w direction.
步骤400:连接所述第一子镜头1000和所述第二子镜头2000,使得所述第一子镜头1000和所述第二子镜头2000的相对位置保持不变。图13示出了本实用新型一个实施例中完成连接后所形成的摄像模组。Step 400: Connect the first sub-lens 1000 and the second sub-lens 2000 so that the relative positions of the first sub-lens 1000 and the second sub-lens 2000 remain unchanged. Fig. 13 shows the camera module formed after connection in one embodiment of the present invention.
连接第一子镜头和第二子镜头的工艺可以根据情况选择。例如,在一个实施例中,通过粘结工艺连接第一子镜头和第二子镜头,如图 13所示,该实施例中,通过胶材4000粘结第一子镜头1000和第二子镜头2000。在另一个实施例中,可通过激光焊接工艺连接第一子镜头和第二子镜头。在又一个实施例中,可通过超声焊工艺连接第一子镜头和第二子镜头。除了上述工艺以外,其它焊接工艺也可供选择。需注意,本实用新型中,“连接”一词并不限于直接连接。例如,在一个实施例中,第一子镜头和第二子镜头可以通过中介物(该中介物可以是刚性的中介物)连接,只要这种通过中介物的连接能够使第一子镜头和第二子镜头之间(感光组件和第二子镜头之间)的相对位置(包含相对距离及姿态)保持不变,那么就在“连接”一词的含义之内。The process of connecting the first sub-lens and the second sub-lens can be selected according to the situation. For example, in one embodiment, the first sub-lens and the second sub-lens are connected through a bonding process, as shown in FIG. 2000. In another embodiment, the first sub-lens and the second sub-lens may be connected by a laser welding process. In yet another embodiment, the first sub-lens and the second sub-lens may be connected by an ultrasonic welding process. In addition to the above processes, other welding processes are also available. It should be noted that in the present utility model, the term "connection" is not limited to direct connection. For example, in one embodiment, the first sub-lens and the second sub-lens can be connected through an intermediary (the intermediary can be a rigid intermediary), as long as the connection through the intermediary can make the first sub-lens and the second sub-lens The relative position (including relative distance and posture) between the two sub-lenses (between the photosensitive component and the second sub-lens) remains unchanged, so it is within the meaning of the word "connection".
上述实施例的摄像模组组装方法能够提升摄像模组的解像力;能够使大批量生产的摄像模组的过程能力指数(CPK)提升;能够使得对光学成像镜头以及模组的各个元件精度及其装配精度的要求变宽松,降低了光学成像镜头以及模组的整体成本;能够在组装过程中对摄像模组的各种像差进行实时调整,因而降低成像品质的波动性,降低不良率,降低生产成本,提升成像品质。The camera module assembly method of the above-mentioned embodiment can improve the resolution of the camera module; it can improve the process capability index (CPK) of the camera module produced in large quantities; it can make the accuracy of each component of the optical imaging lens and module and its The requirements for assembly accuracy become looser, which reduces the overall cost of optical imaging lenses and modules; various aberrations of the camera module can be adjusted in real time during the assembly process, thereby reducing the volatility of imaging quality, reducing the defective rate, and reducing Reduce production costs and improve imaging quality.
进一步地,在你一个实施例中,所述步骤300还可以包括:通过使所述第一子镜头相对于所述第二子镜头在所述光轴方向上移动,使所述光学系成像的实测像面与目标面匹配。前文中描述了x、y、z、r、 v、w六个自由度的调整。其中,z方向上的移动可视为本步骤中的在所述光轴方向上的移动。Further, in one of your embodiments, the step 300 may further include: making the optical system image by moving the first sub-lens relative to the second sub-lens in the direction of the optical axis The measured image plane matches the target plane. The adjustment of the six degrees of freedom of x, y, z, r, v, and w is described above. Wherein, the movement in the z direction can be regarded as the movement in the direction of the optical axis in this step.
对于组装完成的光学镜头,会有一个所期望的成像面,本文中将这个所期望的成像面称为目标面。在一些情形下,目标面为平面。例如,如果光学镜头所对应的摄像模组的感光元件的感光面为平面,那么为达到最佳成像品质,所述光学镜头所期望的成像面也是平面,也就是说,此时目标面为平面。在另一些情形下,所述目标面也可以是凸形或凹形的曲面,或者波浪形的曲面。例如,如果光学镜头所对应的摄像模组的感光元件的感光面为凸形或凹形的曲面,那么为达到最佳成像品质,目标面也应是凸形或凹形的曲面;如果光学镜头所对应的摄像模组的感光元件的感光面为波浪形的曲面,目标面也应是波浪形的曲面。For the assembled optical lens, there will be a desired imaging surface, which is referred to as the target surface in this paper. In some cases, the target surface is planar. For example, if the photosensitive surface of the photosensitive element of the camera module corresponding to the optical lens is a plane, then in order to achieve the best imaging quality, the desired imaging surface of the optical lens is also a plane, that is, the target surface is a plane at this time. . In other cases, the target surface may also be a convex or concave curved surface, or a wavy curved surface. For example, if the photosensitive surface of the photosensitive element of the camera module corresponding to the optical lens is a convex or concave curved surface, then in order to achieve the best imaging quality, the target surface should also be a convex or concave curved surface; if the optical lens The photosensitive surface of the photosensitive element of the corresponding camera module is a wavy curved surface, and the target surface should also be a wavy curved surface.
在一个实施例中,根据所述感光元件所输出的图像识别实测像面是否与目标面匹配。在使所述实测像面与目标面匹配的步骤中,使所述实测像面与目标面匹配包括:通过所述感光元件所输出的图像获得模组实测场曲,使所述模组实测场曲处于+/-5μm范围内。该实施例可以进一步提高摄像模组的成像品质。In one embodiment, it is identified according to the image output by the photosensitive element whether the measured image plane matches the target plane. In the step of matching the measured image surface with the target surface, matching the measured image surface with the target surface includes: obtaining the field curvature measured by the module through the image output by the photosensitive element, and making the field measured by the module Curves are within +/-5 μm. This embodiment can further improve the imaging quality of the camera module.
进一步地,在一个实施例中,在所述步骤320中,对于所选择的测试视场,成对地设置标靶。例如在第一方向上设置分别位于中心位置两端的一对第一标靶,在第二方向上设置分别位于中心位置两端的一对第二标靶。如图14所示,测试视场为80%视场,四个标靶分别设置在标版的四角。左下和右上的两个标靶可作为第一方向上的一对第一标靶,左上和右下的两个标靶可作为第二方向上的一对第二标靶。根据所述的一对第一标靶的解像力离焦曲线的在横坐标轴方向上(即光轴方向上)的偏移矢量,可识别出所述光学系成像的实测像面的在第一方向上的倾斜分量,根据所述的一对第二标靶的解像力离焦曲线的在横坐标轴方向上的偏移矢量,可识别出所述光学系成像的实测像面的在第二方向上的倾斜分量,然后调整所述第一子镜头相对于所述第二子镜头的姿态使得所述第一子镜头的轴线相对于所述第二子镜头的轴线的夹角改变,以补偿所述在第一方向上的倾斜分量和所述在第二方向上的倾斜分量。Further, in one embodiment, in the step 320, for the selected test field of view, targets are set in pairs. For example, a pair of first targets respectively located at two ends of the center position are arranged in the first direction, and a pair of second targets respectively located at both ends of the center position are arranged in the second direction. As shown in FIG. 14 , the test field of view is 80% of the field of view, and four targets are respectively set at the four corners of the standard plate. The two lower left and upper right targets can be used as a pair of first targets in the first direction, and the two upper left and lower right targets can be used as a pair of second targets in the second direction. According to the offset vector in the direction of the abscissa axis (that is, the direction of the optical axis) of the resolving power defocus curves of the pair of first targets, it is possible to identify the first position of the measured image plane imaged by the optical system. The tilt component in the direction, according to the offset vector in the direction of the abscissa axis of the resolving power defocus curve of the pair of second targets, can identify the measured image plane of the optical system imaging in the second direction , and then adjust the posture of the first sub-lens relative to the second sub-lens so that the included angle of the axis of the first sub-lens relative to the axis of the second sub-lens changes to compensate for the The tilt component in the first direction and the tilt component in the second direction.
进一步地,在一个实施例中,所述步骤310中,使所述第一子镜头相对于所述第二子镜头沿着所述调整平面在第一范围内移动;Further, in one embodiment, in the step 310, the first sub-lens is moved relative to the second sub-lens along the adjustment plane within a first range;
所述步骤320中,如果实测像面倾斜无法降至预设区间内,则进一步执行复调步骤330,直至实测像面倾斜降至预设区间内;In the step 320, if the measured image plane inclination cannot fall within the preset interval, further perform the readjustment step 330 until the measured image plane inclination falls within the preset interval;
其中,所述复调步骤330包括:Wherein, the retuning step 330 includes:
步骤331:通过使所述第一子镜头相对于所述第二子镜头沿着所述调整平面在第二范围内移动。其中所述第二范围小于第一范围,也就是说,相对于步骤310,步骤331中在一个小范围内在调整平面上对第一子镜头和第二子镜头的相对位置进行调整,一方面,由于调节范围较小,通过步骤310的调整所达到的实测解像力可基本保持,另一方面,可减小像面倾斜的程度,以便于像面倾斜在步骤332中获得补偿。Step 331 : Move the first sub-lens relative to the second sub-lens within a second range along the adjustment plane. Wherein the second range is smaller than the first range, that is, relative to step 310, in step 331, the relative positions of the first sub-lens and the second sub-lens are adjusted on the adjustment plane within a small range. On the one hand, Due to the small adjustment range, the measured resolution achieved through the adjustment in step 310 can be basically maintained. On the other hand, the degree of image plane inclination can be reduced so that the image plane inclination can be compensated in step 332 .
步骤332:通过调整所述第一子镜头的中轴线相对于所述第二子镜头的中轴线的夹角,使通过所述感光元件获得的所述光学系成像的实测像面倾斜减小达到对应的阈值。如果实测像面倾斜无法降至预设区间内,则上述步骤331和332循环执行,直至实测像面倾斜降至预设区间内。Step 332: By adjusting the angle between the central axis of the first sub-lens and the central axis of the second sub-lens, the measured image plane inclination of the optical system imaging obtained by the photosensitive element is reduced to the corresponding threshold. If the measured image plane inclination cannot fall within the preset interval, the above steps 331 and 332 are executed in a loop until the measured image plane inclination falls within the preset interval.
根据本实用新型的一个实施例,还提供了一种对应于前述摄像模组组装方法的摄像模组。图15示出了该实施例中的摄像模组。参考图 15,该摄像模组包括:第一子镜头1000和第二子组件6000。其中第一子镜头1000包括第一镜筒1100和至少一个第一镜片1200。第二子组件6000包括固定在一起的第二子镜头2000和感光组件3000,所述第二子镜头2000包括第二镜筒2100和至少一个第二镜片2200;所述感光组件3000包括感光元件3300。According to an embodiment of the present invention, a camera module corresponding to the aforementioned camera module assembly method is also provided. Fig. 15 shows the camera module in this embodiment. Referring to FIG. 15 , the camera module includes: a first sub-lens 1000 and a second sub-assembly 6000. Wherein the first sub-lens 1000 includes a first lens barrel 1100 and at least one first lens 1200 . The second subassembly 6000 includes a second sublens 2000 and a photosensitive assembly 3000 fixed together, the second sublens 2000 includes a second lens barrel 2100 and at least one second lens 2200; the photosensitive assembly 3000 includes a photosensitive element 3300 .
其中,所述第一子镜头1000布置于所述第二子镜头2000的光轴,构成包含所述至少一个第一镜片1200和所述至少一个第二镜片2200 的可成像的光学系;Wherein, the first sub-lens 1000 is arranged on the optical axis of the second sub-lens 2000 to form an imageable optical system including the at least one first lens 1200 and the at least one second lens 2200;
所述第一子镜头1000和所述第二子镜头2000通过连接介质4000 固定在一起,并且所述连接介质4000适于使所述第一子镜头1000的中轴线相对于所述第二子镜头2000的中轴线具有小于0.5度的倾角。所述连接介质4000还适于使所述第一子镜头1000与所述第二子镜头 2000的相对位置保持不变,并且所述相对位置使得通过所述感光元件 3300获得的所述光学系成像的实测解像力提升达到第一阈值,以及使通过所述感光元件3300获得的所述光学系成像的实测像面倾斜减小达到第二阈值。The first sub-lens 1000 and the second sub-lens 2000 are fixed together by a connection medium 4000, and the connection medium 4000 is suitable for making the central axis of the first sub-lens 1000 relative to the second sub-lens The central axis of 2000 has an inclination of less than 0.5 degrees. The connection medium 4000 is also adapted to keep the relative position of the first sub-lens 1000 and the second sub-lens 2000 unchanged, and the relative position makes the optical system image obtained by the photosensitive element 3300 The measured resolution of the improved image reaches a first threshold, and the measured image plane inclination of the optical system imaging obtained by the photosensitive element 3300 decreases to a second threshold.
在一个实施例中,连接介质可以是胶材或焊接片(例如金属片)。第二连接介质可以是胶材或焊接片(例如金属片)。连接第一子镜头和第二子镜头并使二者固定在一起的连接介质既不属于第一子镜头的一部分,也不属于第二子镜头的一部分。In one embodiment, the connection medium may be glue or a soldered sheet (eg, a metal sheet). The second connection medium can be adhesive material or welding sheet (such as metal sheet). The connection medium that connects the first sub-lens and the second sub-lens and fixes them together is neither a part of the first sub-lens nor a part of the second sub-lens.
在一个实施例中,所述连接介质还适于使所述第一子镜头的中轴线与所述第二子镜头的中轴线错开0~15μm。In one embodiment, the connection medium is further adapted to make the central axis of the first sub-lens deviate from the central axis of the second sub-lens by 0-15 μm.
在一个实施例中,所述连接介质还适于使所述第一子镜头与第二子镜头之间具有结构间隙。第一子镜头1000和第二子镜头2000均具有光学面和结构面。在镜头中,光学面是镜片上有效光线所经过的面。镜片上不属于光学面的面为结构面。而位于镜筒的面均为结构面。结构间隙是结构面之间的间隙。In one embodiment, the connection medium is further adapted to provide a structural gap between the first sub-lens and the second sub-lens. Both the first sub-lens 1000 and the second sub-lens 2000 have an optical surface and a structural surface. In the lens, the optical surface is the surface on the lens through which the effective light passes. The surface of the lens that is not an optical surface is a structural surface. The surfaces located in the lens barrel are structural surfaces. Structural gaps are gaps between structural faces.
进一步地,在一个实施例中,所述第二子镜头2000和所述感光组件3000通过机械对准方式组装在一起,形成所述第二子组件6000。所述第二子镜头2000和所述感光组件3000之间具有适于机械对准的间隙5000。在一个例子中,该适于机械对准的间隙5000为10-50μm 的间隙。Further, in one embodiment, the second sub-lens 2000 and the photosensitive assembly 3000 are assembled together by mechanical alignment to form the second sub-assembly 6000 . There is a gap 5000 suitable for mechanical alignment between the second sub-lens 2000 and the photosensitive assembly 3000 . In one example, the gap 5000 suitable for mechanical alignment is a gap of 10-50 μm.
本文中多处涉及到第一子镜头的中轴线和第二子镜头的中轴线。参考图16,为便于测量,第一子镜头1000的中轴线可以理解为第一子镜头1000中与第二子镜头2000最接近的光学面1201的中轴线;也可以理解为与第二子镜头2000最接近的第一镜片1200的结构面1202 所限定的中轴线;当第一子镜头1000的第一镜片1200和第一镜筒1100 紧配时,第一子镜头1000的中轴线还可以理解为第一镜筒内侧面所限定的中轴线。In this paper, the central axis of the first sub-lens and the central axis of the second sub-lens are involved in many places. Referring to Fig. 16, for the convenience of measurement, the central axis of the first sub-lens 1000 can be understood as the central axis of the optical surface 1201 closest to the second sub-lens 2000 in the first sub-lens 1000; 2000 is the central axis defined by the structural surface 1202 of the closest first lens 1200; when the first lens 1200 of the first sub-lens 1000 and the first lens barrel 1100 are tightly fitted, the central axis of the first sub-lens 1000 can also be understood is the central axis defined by the inner surface of the first lens barrel.
类似地,为便于测量,第二子镜头2000的中轴线可以理解为第二子镜头2000中与第一子镜头1000最接近的光学面2201的中轴线;也可以理解为与第一子镜头1000最接近的第二镜片2200的结构面2202 所限定的中轴线;当第二子镜头2000的第二镜片2200和第二镜筒 2100紧配时,第二子镜头2000的中轴线还可以理解为第二镜筒内侧面所限定的中轴线。Similarly, for the convenience of measurement, the central axis of the second sub-lens 2000 can be understood as the central axis of the optical surface 2201 closest to the first sub-lens 1000 in the second sub-lens 2000; The central axis defined by the structural surface 2202 of the closest second lens 2200; when the second lens 2200 of the second sub-lens 2000 and the second lens barrel 2100 are closely matched, the central axis of the second sub-lens 2000 can also be understood as The central axis defined by the inner surface of the second lens barrel.
本实用新型特别适合于镜头直径小于10mm的用于智能终端的小型化摄像模组。在一个实施例中,所述第一子镜头和所述第二子镜头的外侧面均具有足够的接触面,以便机械臂(或其它摄取装置)通过该接触面摄取(例如夹持或吸附)所述第一子镜头和所述第二子镜头,从而实现第一子镜头和第二子镜头之间相对位置的精确调节。这种精确调节可以是六个自由度的调节。调节步长可达到微米量级及以下。The utility model is particularly suitable for a miniaturized camera module for an intelligent terminal with a lens diameter less than 10 mm. In one embodiment, both the outer surfaces of the first sub-lens and the second sub-lens have a sufficient contact surface, so that the mechanical arm (or other ingestion device) can ingest (for example, clamp or absorb) through the contact surface The first sub-lens and the second sub-lens realize accurate adjustment of the relative position between the first sub-lens and the second sub-lens. This precise adjustment can be an adjustment in six degrees of freedom. The adjustment step size can reach the micron level and below.
进一步地,在一个实施例中,所述第二子镜头2000还可以包括马达,以便实现手机摄像模组的自动对焦。图16示出了本实用新型一个实施例中组装后的带有马达且马达未开启状态下的摄像模组。图17 示出了本实用新型一个实施例中组装后的带有马达且马达开启状态下的摄像模组。该实施例中,马达包括马达基座2310和安装在马达基座 2310上的马达支撑体2320。所述马达支撑体2320围绕所述第二镜筒 2100,马达的驱动机构(图中未示出)安装在该马达支撑体2320上。马达支撑体2320通过簧片2330连接第二镜筒2100。驱动机构通电时,第二子镜筒沿着光轴移动,簧片2330发生形变(如图17所示)。在步骤310和步骤320中,马达、第二镜筒2100和第二镜筒2100中所安装的第二镜片2200作为一个整体的第二子镜头2000进行移动和调整。步骤500中,通过将马达基座2310与感光组件3000连接来实现所述第二子镜头2000与感光组件3000的连接。进一步地,在步骤310中,调整第一子镜头和第二子镜头的相对位置时,使马达保持开启状态(例如马达通电可视为马达开启),这样,所获取实测解像力是马达开启状态下的实测解像力。在步骤320中,调整感光组件相对于第二子镜头中轴线的倾角时,也使马达保持开启状态,这样,所获取实测像面倾斜是马达开启状态下的实测像面倾斜。马达开启后,簧片会发生相应的形变。然而,相对于马达未开启状态,马达开启导致的簧片的形变可能导致第二子镜筒的中轴相对于第一子镜头的中轴产生额外的倾斜 (参考图17中的倾角△v4)。本实施例的方案可使马达开启导致的第二镜筒的额外倾斜在步骤310和步骤320的调整中被一并补偿,从而进一步提升自动对焦摄像模组的成像品质。Further, in one embodiment, the second sub-lens 2000 may further include a motor, so as to realize automatic focusing of the mobile phone camera module. Fig. 16 shows an assembled camera module with a motor and the motor is not turned on in an embodiment of the present invention. Fig. 17 shows an assembled camera module with a motor and the motor turned on in an embodiment of the present invention. In this embodiment, the motor includes a motor base 2310 and a motor support 2320 mounted on the motor base 2310. The motor supporting body 2320 surrounds the second lens barrel 2100, and the driving mechanism of the motor (not shown in the figure) is mounted on the motor supporting body 2320. The motor support body 2320 is connected to the second lens barrel 2100 through a reed 2330 . When the driving mechanism is energized, the second sub-lens barrel moves along the optical axis, and the reed 2330 deforms (as shown in FIG. 17 ). In steps 310 and 320, the motor, the second lens barrel 2100 and the second lens 2200 installed in the second lens barrel 2100 move and adjust as a whole second sub-lens 2000 . In step 500 , the second sub-lens 2000 is connected to the photosensitive component 3000 by connecting the motor base 2310 to the photosensitive component 3000 . Further, in step 310, when adjusting the relative position of the first sub-lens and the second sub-lens, the motor is kept on (for example, the motor is powered on, which can be regarded as the motor is turned on), so that the obtained measured resolution is the same as when the motor is turned on. measured resolution. In step 320, when adjusting the inclination angle of the photosensitive assembly relative to the central axis of the second sub-lens, the motor is also kept turned on, so that the obtained measured image plane inclination is the measured image plane inclination when the motor is turned on. When the motor is turned on, the reed will deform accordingly. However, compared to the state where the motor is not turned on, the deformation of the reed caused by the motor turning on may cause an additional inclination of the central axis of the second sub-lens barrel relative to the central axis of the first sub-lens (refer to the inclination angle Δv4 in Figure 17) . The solution of this embodiment can make the extra tilt of the second lens barrel caused by turning on the motor be compensated in the adjustments of step 310 and step 320, so as to further improve the imaging quality of the auto-focus camera module.
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的实用新型范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述实用新型构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principle. Those skilled in the art should understand that the scope of the utility model involved in this application is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, and should also cover the above-mentioned utility models without departing from the concept of the utility model. Other technical solutions formed by any combination of technical features or equivalent features. For example, a technical solution formed by replacing the above-mentioned features with technical features with similar functions disclosed in (but not limited to) this application.
Claims (10)
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611067103 | 2016-11-28 | ||
CN2016110671035 | 2016-11-28 | ||
CN201621286978 | 2016-11-28 | ||
CN2016212870522 | 2016-11-28 | ||
CN201621287052 | 2016-11-28 | ||
CN2016110699647 | 2016-11-28 | ||
CN2016110679253 | 2016-11-28 | ||
CN201621287147 | 2016-11-28 | ||
CN201611067925 | 2016-11-28 | ||
CN2016212944140 | 2016-11-28 | ||
CN201611067263X | 2016-11-28 | ||
CN201621294414 | 2016-11-28 | ||
CN201621286978X | 2016-11-28 | ||
CN201611067263 | 2016-11-28 | ||
CN2016212871474 | 2016-11-28 | ||
CN201611069964 | 2016-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207340018U true CN207340018U (en) | 2018-05-08 |
Family
ID=62228246
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201721157443.7U Active CN207340018U (en) | 2016-11-28 | 2017-09-11 | Camera module |
CN201721166314.4U Active CN207336891U (en) | 2016-11-28 | 2017-09-11 | More group's camera lenses and camera module |
CN201710814296.4A Active CN108121043B (en) | 2016-11-28 | 2017-09-11 | Multiple lens and camera modules |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201721166314.4U Active CN207336891U (en) | 2016-11-28 | 2017-09-11 | More group's camera lenses and camera module |
CN201710814296.4A Active CN108121043B (en) | 2016-11-28 | 2017-09-11 | Multiple lens and camera modules |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN207340018U (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109495672A (en) * | 2017-09-11 | 2019-03-19 | 宁波舜宇光电信息有限公司 | Camera module and its assemble method |
CN110618513A (en) * | 2018-06-20 | 2019-12-27 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
CN110650290A (en) * | 2019-10-12 | 2020-01-03 | 惠州市德赛自动化技术有限公司 | Active focusing adjustment method for camera |
WO2020034789A1 (en) * | 2018-08-14 | 2020-02-20 | 宁波舜宇光电信息有限公司 | Optical lens, photographing module, and assembling methods therefor |
WO2020073735A1 (en) * | 2018-10-09 | 2020-04-16 | 宁波舜宇光电信息有限公司 | Integrated lens barrel, optical lens, camera module, and assembly method |
CN111025513A (en) * | 2018-10-09 | 2020-04-17 | 宁波舜宇光电信息有限公司 | Integrated lens barrel, optical lens, camera module and assembly method |
CN111090158A (en) * | 2018-10-24 | 2020-05-01 | 宁波舜宇光电信息有限公司 | Clamping device, clamping method, optical lens and camera module assembly method |
WO2020088039A1 (en) * | 2018-10-31 | 2020-05-07 | 宁波舜宇光电信息有限公司 | Optical lens, camera module, and assembly method for same |
CN111629124A (en) * | 2019-02-28 | 2020-09-04 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and corresponding assembling method |
CN112166358A (en) * | 2018-05-30 | 2021-01-01 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
CN112311997A (en) * | 2020-11-23 | 2021-02-02 | 昆山丘钛光电科技有限公司 | Camera shooting module |
CN112649934A (en) * | 2018-05-30 | 2021-04-13 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207340018U (en) * | 2016-11-28 | 2018-05-08 | 宁波舜宇光电信息有限公司 | Camera module |
CN110824657B (en) * | 2018-08-14 | 2025-04-04 | 宁波舜宇光电信息有限公司 | Lens group assembly, optical lens, camera module and lens group assembly method |
WO2020038190A1 (en) * | 2018-08-21 | 2020-02-27 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method therefor |
CN110850547B (en) | 2018-08-21 | 2022-05-17 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
CN110873934A (en) * | 2018-08-30 | 2020-03-10 | 宁波舜宇光电信息有限公司 | Optical lens and method and system for assembling optical lens |
US12117664B2 (en) | 2018-08-30 | 2024-10-15 | Ningbo Sunny Opotech Co., Ltd. | Optical lens, camera module and assembling method |
CN110873936A (en) * | 2018-08-31 | 2020-03-10 | 宁波舜宇光电信息有限公司 | Multi-group lens, camera module and manufacturing method thereof |
WO2020073736A1 (en) * | 2018-10-10 | 2020-04-16 | 宁波舜宇光电信息有限公司 | Optical zoom camera module and assembling method therefor |
CN111405147B (en) * | 2019-01-02 | 2021-12-07 | 三赢科技(深圳)有限公司 | Lens module and electronic device |
EP3916456B1 (en) * | 2019-02-03 | 2024-08-21 | Ningbo Sunny Opotech Co., Ltd. | Optical lens, camera module, and assembly method for the optical lens |
CN111522113B (en) * | 2019-02-03 | 2025-05-23 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
US20220299728A1 (en) * | 2019-08-14 | 2022-09-22 | Ningbo Sunny Opotech Co., Ltd | Under-screen camera assembly, camera module, optical lens and manufacturing method therefor |
JP7638070B2 (en) * | 2020-06-09 | 2025-03-03 | マクセル株式会社 | Lens units and camera modules |
CN114791654A (en) * | 2021-01-08 | 2022-07-26 | 宁波舜宇光电信息有限公司 | Lens and camera module with lens |
CN115150526A (en) | 2021-03-31 | 2022-10-04 | 北京小米移动软件有限公司 | Lenses and Mobile Terminals |
CN113109913A (en) * | 2021-04-29 | 2021-07-13 | 南昌欧菲光电技术有限公司 | Optical lens, assembling method thereof, camera module and electronic equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100272328B1 (en) * | 1993-12-22 | 2001-02-01 | 이중구 | Air gap adjusting apparatus for lens |
CN102023361A (en) * | 2009-09-10 | 2011-04-20 | 鸿富锦精密工业(深圳)有限公司 | Fixed-focus lens module |
KR101983169B1 (en) * | 2014-04-18 | 2019-05-28 | 삼성전기주식회사 | Lens module, manufacturing method thereof and camera module including the same |
CN207340018U (en) * | 2016-11-28 | 2018-05-08 | 宁波舜宇光电信息有限公司 | Camera module |
-
2017
- 2017-09-11 CN CN201721157443.7U patent/CN207340018U/en active Active
- 2017-09-11 CN CN201721166314.4U patent/CN207336891U/en active Active
- 2017-09-11 CN CN201710814296.4A patent/CN108121043B/en active Active
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109495672A (en) * | 2017-09-11 | 2019-03-19 | 宁波舜宇光电信息有限公司 | Camera module and its assemble method |
CN111034169A (en) * | 2017-09-11 | 2020-04-17 | 宁波舜宇光电信息有限公司 | Camera module and assembling method thereof |
US11774698B2 (en) | 2017-09-11 | 2023-10-03 | Ningbo Sunny Opotech Co., Ltd. | Camera module and method for assembling same |
US11506857B2 (en) | 2017-09-11 | 2022-11-22 | Ningbo Sunny Opotech Co., Ltd. | Camera module and assembly method therefor |
CN112166358A (en) * | 2018-05-30 | 2021-01-01 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
CN112649934A (en) * | 2018-05-30 | 2021-04-13 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
CN110618513A (en) * | 2018-06-20 | 2019-12-27 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
US11974033B2 (en) | 2018-08-14 | 2024-04-30 | Ningbo Sunny Opotech Co., Ltd. | Optical camera lens, including at least three smooth regions for reflecting a light beam emitted by distance measuring equipment camera module and assembly method thereof |
WO2020034789A1 (en) * | 2018-08-14 | 2020-02-20 | 宁波舜宇光电信息有限公司 | Optical lens, photographing module, and assembling methods therefor |
CN110824653A (en) * | 2018-08-14 | 2020-02-21 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
CN110824653B (en) * | 2018-08-14 | 2021-08-06 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and assembling method thereof |
TWI720579B (en) * | 2018-08-14 | 2021-03-01 | 中國商寧波舜宇光電信息有限公司 | Optical lens, camera module and assembly method thereof |
WO2020073735A1 (en) * | 2018-10-09 | 2020-04-16 | 宁波舜宇光电信息有限公司 | Integrated lens barrel, optical lens, camera module, and assembly method |
TWI714272B (en) * | 2018-10-09 | 2020-12-21 | 中國商寧波舜宇光電信息有限公司 | Integrated lens barrel, optical lens, camera module and method of assembling the same |
CN111025513A (en) * | 2018-10-09 | 2020-04-17 | 宁波舜宇光电信息有限公司 | Integrated lens barrel, optical lens, camera module and assembly method |
CN111090158A (en) * | 2018-10-24 | 2020-05-01 | 宁波舜宇光电信息有限公司 | Clamping device, clamping method, optical lens and camera module assembly method |
WO2020088039A1 (en) * | 2018-10-31 | 2020-05-07 | 宁波舜宇光电信息有限公司 | Optical lens, camera module, and assembly method for same |
CN111629124A (en) * | 2019-02-28 | 2020-09-04 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and corresponding assembling method |
CN111629124B (en) * | 2019-02-28 | 2021-10-19 | 宁波舜宇光电信息有限公司 | Optical lens, camera module and corresponding assembling method |
CN110650290A (en) * | 2019-10-12 | 2020-01-03 | 惠州市德赛自动化技术有限公司 | Active focusing adjustment method for camera |
CN112311997A (en) * | 2020-11-23 | 2021-02-02 | 昆山丘钛光电科技有限公司 | Camera shooting module |
Also Published As
Publication number | Publication date |
---|---|
CN207336891U (en) | 2018-05-08 |
CN108121043A (en) | 2018-06-05 |
CN108121043B (en) | 2025-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207340018U (en) | Camera module | |
TWI720343B (en) | Camera module and its assembling method | |
JP6953625B2 (en) | Imaging module and its assembly method | |
CN110320625B (en) | Optical lens, camera module and assembly method thereof | |
CN110824653B (en) | Optical lens, camera module and assembling method thereof | |
US11711604B2 (en) | Camera module array and assembly method therefor | |
CN111123458A (en) | Optical lens, camera module and assembly method thereof | |
CN110557523B (en) | Camera module array and assembling method thereof | |
CN110941061B (en) | Optical lens, camera module and assembling method | |
TWI756521B (en) | Optical lens, camera module and assembly method thereof | |
WO2020088039A1 (en) | Optical lens, camera module, and assembly method for same | |
WO2020063190A1 (en) | Optical lens, camera module and assembling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |