CN206638898U - An ultra-short focal projection optical device - Google Patents
An ultra-short focal projection optical device Download PDFInfo
- Publication number
- CN206638898U CN206638898U CN201720319814.0U CN201720319814U CN206638898U CN 206638898 U CN206638898 U CN 206638898U CN 201720319814 U CN201720319814 U CN 201720319814U CN 206638898 U CN206638898 U CN 206638898U
- Authority
- CN
- China
- Prior art keywords
- lens
- lens group
- satisfies
- ultra
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 51
- 238000005286 illumination Methods 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 6
- 230000003068 static effect Effects 0.000 abstract 1
- 230000004075 alteration Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
Landscapes
- Lenses (AREA)
Abstract
Description
【技术领域】【Technical field】
本实用新型涉及光电显示行业的投影技术,尤其是一种超短焦投影光学装置。The utility model relates to projection technology in the photoelectric display industry, in particular to an ultra-short-focus projection optical device.
【背景技术】【Background technique】
近年来随着投影技术的发展,投影仪已经广泛应用于家用、教育、办公等领域,其中,超短焦投影能够在短距离投影的情况下投射出大尺寸的画面,备受广大用户的喜爱。In recent years, with the development of projection technology, projectors have been widely used in household, education, office and other fields. Among them, ultra-short-focus projection can project large-size images in the case of short-distance projection, and is loved by the majority of users. .
目前市场上的超短焦投影镜头有两种设计方式:1、采用折射式的反远距镜头结构,镜头体积大,使用镜片数量较多,为了校正畸变和场曲,不得不牺牲分辨率,导致分辨率偏低,制造公差敏感,无法批量生产;2、混合式的结构即折射透镜组件加反射透镜组,目前采用这种结构的超短焦镜头普遍分辨率偏低、投射比小,亮度低、投射距离变化时场曲和畸变明显变大,导致解像力变差,并且投射距离的范围较小,虽然少数镜头的分辨率达到了1080P,但是为了提高分辨率,却牺牲了投射比,并增加较多非球面,导致制造良率低,无法批量生产;也有少部分镜头为了降低成本,采用塑胶非球面,导致镜头在投影机长时间使用时因高温发热而产生虚焦现象,目前市场上还没有超短焦镜头能够同时克服上述缺点。At present, there are two design methods for ultra-short-focus projection lenses on the market: 1. Refractive anti-telephoto lens structure is adopted. The lens is large in size and uses a large number of lenses. In order to correct distortion and field curvature, the resolution has to be sacrificed. Resulting in low resolution, sensitive manufacturing tolerances, and cannot be mass-produced; 2. The hybrid structure is the refractive lens assembly plus the reflective lens group. Low, field curvature and distortion increase significantly when the projection distance changes, resulting in poor resolution, and the range of projection distance is small. Although the resolution of a few lenses reaches 1080P, in order to improve the resolution, the projection ratio is sacrificed. The addition of more aspheric surfaces leads to low manufacturing yields and cannot be mass-produced; there are also a small number of lenses that use plastic aspheric surfaces in order to reduce costs. There is no ultra-short-focus lens that can overcome the above-mentioned shortcomings at the same time.
因此,本实用新型正是基于以上的不足而产生的。Therefore, the utility model just produces based on above deficiency.
【实用新型内容】【Content of utility model】
本实用新型要解决的技术问题是提供一种超短焦投影光学装置,该装置分辨率高,亮度高,高温不虚焦,投射距离范围大、不同投射距离下解像力不降低、畸变不变大、可批量生产。The technical problem to be solved by the utility model is to provide an ultra-short-focus projection optical device, which has high resolution, high brightness, no false focus at high temperature, a large range of projection distances, no reduction in resolution and no increase in distortion under different projection distances , Can be mass produced.
为解决上述技术问题,本实用新型采用了下述技术方案:一种超短焦投影光学装置,其特征在于,在投射方向上依次设置有:照明系统、折射透镜组件、非球面反射镜;所述照明系统包括DMD芯片、等效棱镜;In order to solve the above-mentioned technical problems, the utility model adopts the following technical solutions: an ultra-short-focus projection optical device, which is characterized in that, in the projection direction, there are sequentially arranged: an illumination system, a refracting lens assembly, and an aspheric reflector; The above lighting system includes DMD chips and equivalent prisms;
所述折射透镜组件包括:The refractive lens assembly includes:
能相对DMD芯片前后移动的第一透镜组,所述第一透镜组的光焦度为正;A first lens group that can move back and forth relative to the DMD chip, the refractive power of the first lens group is positive;
能相对DMD芯片前后移动的第二透镜组,所述第二透镜组的光焦度为正;A second lens group that can move back and forth relative to the DMD chip, the refractive power of the second lens group is positive;
能相对DMD芯片前后移动的第三透镜组,所述第三透镜组的光焦度为负;A third lens group that can move back and forth relative to the DMD chip, the refractive power of the third lens group is negative;
相对DMD芯片静止的第四透镜组,所述第四透镜组的光焦度为正。The fourth lens group that is stationary relative to the DMD chip has a positive refractive power.
如上所述的一种超短焦投影光学装置,其特征在于:所述的第一透镜组包括沿投射方向依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、光阑和第七透镜;所述第二透镜组包括第八透镜;所述第三透镜组包括第九透镜;所述第四透镜组包括 沿投射方向依次设置的第十透镜、第十一透镜、第十二透镜和第十三透镜。An ultra-short-focus projection optical device as described above is characterized in that: the first lens group includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged in sequence along the projection direction , the sixth lens, the diaphragm and the seventh lens; the second lens group includes the eighth lens; the third lens group includes the ninth lens; the fourth lens group includes the tenth lens arranged in sequence along the projection direction , the eleventh lens, the twelfth lens and the thirteenth lens.
如上所述的一种超短焦投影光学装置,其特征在于:所述的DMD芯片相对于光轴偏离放置,使得DMD芯片的中心与光轴偏离距离为0.8mm-1mm。The above-mentioned ultra-short-focus projection optical device is characterized in that: the DMD chip is placed offset from the optical axis, so that the center of the DMD chip is offset from the optical axis by a distance of 0.8mm-1mm.
如上所述的一种超短焦投影光学装置,其特征在于:所述第一透镜组的光焦度满足0.03≤|φ210|≤0.04;所述第二透镜组的光焦度满足0.004≤|φ220|≤0.005;所述第三透镜组的光焦度满足0.03≤|φ230|≤0.035;所述第四透镜组的光焦度满足0.007≤|φ240|≤0.008,所述非球面反射镜的光焦度满足0.03≤|φ300|≤0.033。The ultra-short-focus projection optical device as described above is characterized in that: the optical power of the first lens group satisfies 0.03≤|φ 210 |≤0.04; the optical power of the second lens group satisfies 0.004≤ |φ 220 |≤0.005; the optical power of the third lens group satisfies 0.03≤|φ 230 |≤0.035; the optical power of the fourth lens group satisfies 0.007≤|φ 240 |≤0.008, the non The focal power of the spherical mirror satisfies 0.03≤|φ 300 |≤0.033.
如上所述的一种超短焦投影光学装置,其特征在于:所述第十一透镜的光焦度φ11为负,所述第十透镜的光焦度φ10为正,光焦度满足0.8≤|φ11/φ10|≤0.9;所述第十三透镜的光焦度φ13为负,所述第十二透镜的光焦度φ12为正,光焦度满足0.2≤|φ13/φ12|≤0.3。An ultra-short focal projection optical device as described above is characterized in that: the refractive power φ 11 of the eleventh lens is negative, the refractive power φ 10 of the tenth lens is positive, and the refractive power satisfies 0.8≤|φ 11 /φ 10 |≤0.9; the refractive power φ 13 of the thirteenth lens is negative, the refractive power φ 12 of the twelfth lens is positive, and the refractive power satisfies 0.2≤|φ 13 /φ 12 |≤0.3.
如上所述的一种超短焦投影光学装置,其特征在于:所述第六透镜的光焦度为负,光焦度φ6满足:0.008≤|φ6|≤0.009;所述第六透镜的两面均弯向DMD芯片;所述第五透镜的光焦度为正,第四透镜的光焦度为负,第四透镜两面均弯向非球面反射镜,光焦度满足0.04≤|φ4/φ5|≤0.041,折射率满足0.3≤(ND4-ND5)≤0.4;所述第三透镜的光焦度为正,所述第二透镜的光焦度为负,第二透镜的两面均弯向非球面反射镜,光焦度满足0.014≤|φ2/φ3|≤0.016,折射率满足0.4≤(ND2-ND3)≤0.43。An ultra-short-focus projection optical device as described above is characterized in that: the sixth lens has a negative refractive power, and the refractive power φ 6 satisfies: 0.008≤|φ 6 |≤0.009; the sixth lens Both sides of the lens are bent towards the DMD chip; the fifth lens has a positive power, the fourth lens has a negative power, both sides of the fourth lens are bent towards an aspheric mirror, and the power satisfies 0.04≤|φ 4 /φ 5 |≤0.041, the refractive index satisfies 0.3≤(ND 4 -ND 5 )≤0.4; the refractive power of the third lens is positive, the refractive power of the second lens is negative, and the refractive power of the second lens The two sides of both are bent to the aspheric mirror, the focal power satisfies 0.014≤|φ 2 /φ 3 |≤0.016, and the refractive index satisfies 0.4≤(ND 2 -ND 3 )≤0.43.
如上所述的一种超短焦投影光学装置,其特征在于:所述第二透镜与所述第三透镜通过光学胶水粘合,所述第四透镜与所述第五透镜通过光学胶水粘合。The ultra-short-focus projection optical device as described above is characterized in that: the second lens and the third lens are bonded by optical glue, and the fourth lens and the fifth lens are bonded by optical glue .
如上所述的一种超短焦投影光学装置,其特征在于:所述第一透镜、第六透镜、第八透镜、第九透镜和非球面反射镜为玻璃非球面镜片。The above-mentioned ultra-short-focus projection optical device is characterized in that: the first lens, the sixth lens, the eighth lens, the ninth lens and the aspheric mirror are glass aspheric mirrors.
如上所述的一种超短焦投影光学装置,其特征在于:所述第一透镜、第六透镜、第八透镜、第九透镜和非球面反射镜的非球面表面形状满足方程式:An ultra-short-focus projection optical device as described above is characterized in that: the shape of the aspheric surface of the first lens, the sixth lens, the eighth lens, the ninth lens and the aspheric mirror satisfies the equation:
上述方程式中参数c为半径所对应的曲率,y为径向坐标其单位和透镜长度单位相同,k为圆锥二次曲线系数;当k系数小于-1时,透镜的面形曲线为双曲线;当k系数等于-1时,透镜的面形曲线为抛物线;当k系数介于-1到0之间时,透镜的面形曲线为椭圆,当k系数等于0时,透镜的面形曲线为圆形,当k系数大于0时,透镜的面形曲线为扁圆形;α1至α8分别表示各径向坐标所对应的系数。The parameter c in the above equation is the curvature corresponding to the radius, y is the radial coordinate and its unit is the same as the lens length unit, and k is the conic conic conic coefficient; when the k coefficient is less than -1, the surface curve of the lens is a hyperbola; When the k coefficient is equal to -1, the surface curve of the lens is a parabola; when the k coefficient is between -1 and 0, the lens surface curve is an ellipse; when the k coefficient is equal to 0, the lens surface curve is Circular, when the k coefficient is greater than 0, the surface curve of the lens is oblate; α 1 to α 8 represent the coefficients corresponding to each radial coordinate.
与现有技术相比,本实用新型的一种超短焦投影光学装置,达到了如下效果:Compared with the prior art, an ultra-short-focus projection optical device of the present invention achieves the following effects:
1、本实用新型分辨率高,实现了0.18以下投射比,并在高温状态下不虚焦。1. The utility model has high resolution, realizes a projection ratio below 0.18, and does not lose focus under high temperature conditions.
2、本实用新型实现了在不同投射距离下的分辨率不降低和畸变 不变大。2. The utility model realizes that the resolution does not decrease and the distortion does not increase under different projection distances.
3、本实用新型通过对装置光焦度的合理分配,使装配敏感度大幅度降低,可进行批量化生产。3. The utility model greatly reduces the assembly sensitivity by rationally allocating the focal power of the device, and can be mass-produced.
【附图说明】【Description of drawings】
下面结合附图对本实用新型的具体实施方式作进一步详细说明,其中:Below in conjunction with accompanying drawing, the specific embodiment of the present utility model is described in further detail, wherein:
图1为本实用新型示意图;Fig. 1 is the utility model schematic diagram;
图2为本实用新型光路示意图;Fig. 2 is the utility model optical path schematic diagram;
附图说明:100、照明系统;110、DMD芯片;120、等效棱镜;200、折射透镜组件;210、第一透镜组;220、第二透镜组;230、第三透镜组;240、第四透镜组;300、非球面反射镜;1、第一透镜;2、第二透镜;3、第三透镜;4、第四透镜;5、第五透镜;6、第六透镜;7、第七透镜;8、第八透镜;9、第九透镜;10、第十透镜;11、十一透镜;12、第十二透镜;13、第十三透镜;14、光阑。Description of drawings: 100, lighting system; 110, DMD chip; 120, equivalent prism; 200, refracting lens assembly; 210, first lens group; 220, second lens group; 230, third lens group; 240, first Four lens groups; 300, aspheric mirror; 1, the first lens; 2, the second lens; 3, the third lens; 4, the fourth lens; 5, the fifth lens; 6, the sixth lens; 7, the first lens Seventh lens; 8. Eighth lens; 9. Ninth lens; 10. Tenth lens; 11. Eleventh lens; 12. Twelfth lens; 13. Thirteenth lens; 14. Stop.
【具体实施方式】【detailed description】
下面结合附图对本实用新型的实施方式作详细说明。Below in conjunction with accompanying drawing, the embodiment of the present utility model is described in detail.
如图1和图2所示,一种超短焦投影光学装置,在投射方向上依次设置有:照明系统100、折射透镜组件200、非球面反射镜300;所述照明系统100包括DMD芯片110、等效棱镜120;As shown in Figures 1 and 2, an ultra-short-focus projection optical device is sequentially arranged in the projection direction: an illumination system 100, a refractive lens assembly 200, and an aspheric mirror 300; the illumination system 100 includes a DMD chip 110 , Equivalent prism 120;
所述折射透镜组件200包括:The refractive lens assembly 200 includes:
相对DMD芯片110前后移动的第一透镜组210,所述第一透镜组210的光焦度为正;所述第一透镜组相对DMD芯片可前后移动,补偿镜头装配时后焦的变化量。The first lens group 210 that moves back and forth relative to the DMD chip 110 has a positive refractive power; the first lens group can move back and forth relative to the DMD chip to compensate for changes in back focus during lens assembly.
能相对DMD芯片110前后移动的第二透镜组220,所述第二透镜组220的光焦度为正。The second lens group 220 that can move back and forth relative to the DMD chip 110 has a positive refractive power.
能相对DMD芯片110前后移动的第三透镜组230,所述第三透镜组230的光焦度为负。第三透镜组和第二透镜组为联动组,相对DMD芯片110一起移动。The third lens group 230 that can move back and forth relative to the DMD chip 110 , the refractive power of the third lens group 230 is negative. The third lens group and the second lens group are a linkage group and move together relative to the DMD chip 110 .
相对DMD芯片110静止的第四透镜组240,所述第四透镜组240的光焦度为正。Relative to the fourth lens group 240 that is stationary with respect to the DMD chip 110 , the refractive power of the fourth lens group 240 is positive.
如图1和图2所示,在本实施例中,所述的第一透镜组210包括沿投射方向依次设置的第一透镜1、第二透镜2、第三透镜3、第四透镜4、第五透镜5、第六透镜6、光阑14和第七透镜7;所述第二透镜组220包括第八透镜8;第八透镜8的两面均弯向非球面反射镜300;所述第三透镜组230包括第九透镜9;所述第四透镜组240包括沿投射方向依次设置的第十透镜10、第十一透镜11、第十二透镜12和第十三透镜13。As shown in Figures 1 and 2, in this embodiment, the first lens group 210 includes a first lens 1, a second lens 2, a third lens 3, a fourth lens 4, The fifth lens 5, the sixth lens 6, the diaphragm 14 and the seventh lens 7; the second lens group 220 includes the eighth lens 8; both sides of the eighth lens 8 are bent to the aspheric mirror 300; The three lens groups 230 include the ninth lens 9 ; the fourth lens group 240 includes the tenth lens 10 , the eleventh lens 11 , the twelfth lens 12 and the thirteenth lens 13 arranged in sequence along the projection direction.
如图1所示,在本实施例中,所述的DMD芯片110相对于光轴偏离放置,使得DMD芯片110的中心与光轴偏离距离为0.8mm-1mm。用来满足折射透镜组件200的出射光线经过非球面反射镜300后的光线与折射透镜组件不干涉;DMD芯片为0.65英寸,其分辨率为1920*1080。As shown in FIG. 1 , in this embodiment, the DMD chip 110 is placed offset from the optical axis, so that the center of the DMD chip 110 deviates from the optical axis by a distance of 0.8mm-1mm. The light emitted from the refracting lens assembly 200 passes through the aspheric mirror 300 without interference with the refracting lens assembly; the DMD chip is 0.65 inches, and its resolution is 1920*1080.
如图1和图2所示,在本实施例中,所述第一透镜组210的光焦度满足0.03≤|φ210|≤0.04;所述第二透镜组220的光焦度满足0.004≤|φ220|≤0.005;所述第三透镜组230的光焦度满足0.03≤|φ230|≤0.035;所述第四透镜组240的光焦度满足0.007≤|φ240|≤0.008,所述非球面反射镜300的光焦度满足0.03≤|φ300|≤0.033。当透镜组按照上述光焦度分配时,可实现0.18以下投射比,高温不虚焦,并可大幅度降低装置装配公差的敏感度,可进行批量化生产。As shown in Figures 1 and 2, in this embodiment, the optical power of the first lens group 210 satisfies 0.03≤|φ 210 |≤0.04; the optical power of the second lens group 220 satisfies 0.004≤ |φ 220 |≤0.005; the optical power of the third lens group 230 satisfies 0.03≤|φ 230 |≤0.035; the optical power of the fourth lens group 240 satisfies 0.007≤|φ 240 |≤0.008, so The optical power of the aspheric mirror 300 satisfies 0.03≤|φ 300 |≤0.033. When the lens group is allocated according to the above-mentioned focal power, the projection ratio below 0.18 can be realized, the high temperature does not cause virtual focus, and the sensitivity of the device assembly tolerance can be greatly reduced, and mass production can be carried out.
第三透镜组光焦度为负,第二透镜组光焦度为正,第三透镜组和第二透镜组采用同步移动的方式,第三透镜组和第二透镜组光焦度满足:6.5≤|φ230/φ220|≤6.8,第三透镜组采用玻璃非球面,两面均弯向DMD芯片,第二透镜组220为玻璃非球面,两面均背向DMD芯片,以上条件同时满足后,可补偿不同投射距离下的共轭距离变化量,实现较大范围的投射距离,同时可校正不同投射距离下的场曲和畸变,使不同投射距离下的分辨率保持不变。The refractive power of the third lens group is negative, and the refractive power of the second lens group is positive. The third lens group and the second lens group move synchronously. The refractive power of the third lens group and the second lens group meets: 6.5 ≤|φ 230 /φ 220 |≤6.8, the third lens group adopts glass aspheric surface, both sides are bent towards the DMD chip, the second lens group 220 is glass aspheric surface, both sides are facing away from the DMD chip, after the above conditions are met at the same time, It can compensate the variation of the conjugate distance under different projection distances to achieve a wider range of projection distances. At the same time, it can correct field curvature and distortion under different projection distances, so that the resolution under different projection distances remains unchanged.
如图1和图2所示,在本实施例中,所述第十一透镜11的光焦度φ11为负,所述第十透镜10的光焦度φ10为正,光焦度满足0.8≤|φ11/φ10|≤0.9;所述第十三透镜13的光焦度φ13为负,所述第十二透镜12的光焦度φ12为正,光焦度满足0.2≤|φ13/φ12|≤0.3。能够减小非球面反射镜的尺寸,从而使光学装置体积小。As shown in Fig. 1 and Fig. 2, in the present embodiment, the refractive power φ 11 of the eleventh lens 11 is negative, the refractive power φ 10 of the tenth lens 10 is positive, and the refractive power satisfies 0.8≤|φ 11 /φ 10 |≤0.9; the refractive power φ 13 of the thirteenth lens 13 is negative, the refractive power φ 12 of the twelfth lens 12 is positive, and the refractive power satisfies 0.2≤ |φ 13 /φ 12 |≤0.3. The size of the aspheric mirror can be reduced, thereby making the optical device compact.
如图1和图2所示,在本实施例中,所述第六透镜6的光焦度为负,光焦度φ6满足:0.008≤|φ6|≤0.009;所述第六透镜6的两面均弯向DMD芯片;可校正光阑产生的光阑球差和慧差,并可加大后组 光线的高度,实现较大光圈,提升投射画面亮度;所述第五透镜5的光焦度为正,第四透镜4的光焦度为负,满足0.04≤|φ4/φ5|≤0.041;折射率满足0.3≤(ND4-ND5)≤0.4;所述第四透镜4的两面均弯向非球面反射镜300;所述第三透镜3的光焦度为正,所述第二透镜2的光焦度为负,满足0.014≤|φ2/φ3|≤0.016;折射率满足0.4≤(ND2-ND3)≤0.43。可大幅度降低装置的高级像差,提升装置分辨率,降低装置对像差的敏感度,实现批量化生产。第一透镜1采用玻璃非球面,校正装置其它镜片产生的畸变和象散,使装置最终得到高质量的成像。As shown in Figure 1 and Figure 2, in this embodiment, the refractive power of the sixth lens 6 is negative, and the refractive power φ 6 satisfies: 0.008≤|φ 6 |≤0.009; the sixth lens 6 Both sides of the lens are bent towards the DMD chip; the spherical aberration and coma aberration produced by the aperture can be corrected, and the height of the rear group of light rays can be increased to achieve a larger aperture and improve the brightness of the projected picture; the light of the fifth lens 5 The focal power is positive, and the focal power of the fourth lens 4 is negative, satisfying 0.04≤|φ 4 /φ 5 |≤0.041; the refractive index satisfying 0.3≤(ND 4 -ND 5 )≤0.4; the fourth lens 4 The two sides of both bend towards the aspheric mirror 300; the refractive power of the third lens 3 is positive, and the refractive power of the second lens 2 is negative, satisfying 0.014≤|φ 2 /φ 3 |≤0.016; The refractive index satisfies 0.4≤(ND 2 −ND 3 )≤0.43. The high-level aberration of the device can be greatly reduced, the resolution of the device can be improved, the sensitivity of the device to aberration can be reduced, and mass production can be realized. The first lens 1 adopts a glass aspheric surface to correct distortion and astigmatism produced by other lenses of the device, so that the device finally obtains high-quality imaging.
如图1和图2所示,在本实施例中,所述第二透镜2与所述第三透镜3通过光学胶水粘合,所述第四透镜4与所述第五透镜5通过光学胶水粘合。As shown in Figures 1 and 2, in this embodiment, the second lens 2 and the third lens 3 are bonded by optical glue, and the fourth lens 4 and the fifth lens 5 are bonded by optical glue. bonding.
如图1和图2所示,在本实施例中,所述第一透镜1、第六透镜6、第八透镜9、第九透镜10和非球面反射镜300为玻璃非球面镜片。As shown in FIG. 1 and FIG. 2 , in this embodiment, the first lens 1 , the sixth lens 6 , the eighth lens 9 , the ninth lens 10 and the aspheric mirror 300 are glass aspheric mirrors.
如图1和图2所示,在本实施例中,所述第一透镜1、第六透镜6、第八透镜8、第九透镜9和非球面反射镜300的非球面表面形状满足方程式:As shown in Figures 1 and 2, in this embodiment, the aspheric surface shapes of the first lens 1, the sixth lens 6, the eighth lens 8, the ninth lens 9 and the aspheric mirror 300 satisfy the equation:
上述方程式中参数c为半径所对应的曲率,y为径向坐标其单位和透镜长度单位相同,k为圆锥二次曲线系数;当k系数小于-1时,透镜的面形曲线为双曲线;当k系数等于-1时,透镜的面形曲线为抛物线;当k系数介于-1到0之间时,透镜的面形曲线为椭圆,当k 系数等于0时,透镜的面形曲线为圆形,当k系数大于0时,透镜的面形曲线为扁圆形;α1至α8分别表示各径向坐标所对应的系数。The parameter c in the above equation is the curvature corresponding to the radius, y is the radial coordinate and its unit is the same as the lens length unit, and k is the conic conic conic coefficient; when the k coefficient is less than -1, the surface curve of the lens is a hyperbola; When the k coefficient is equal to -1, the surface curve of the lens is a parabola; when the k coefficient is between -1 and 0, the lens surface curve is an ellipse; when the k coefficient is equal to 0, the lens surface curve is Circular, when the k coefficient is greater than 0, the surface curve of the lens is oblate; α 1 to α 8 represent the coefficients corresponding to each radial coordinate.
以下案例为0.18投射比、分辨率为1080P的超短焦镜头的实际设计参数:The following example shows the actual design parameters of an ultra-short-focus lens with a throw ratio of 0.18 and a resolution of 1080P:
非球面反射镜S1的系数为:The coefficient of the aspheric mirror S1 is:
k:-1.484k: -1.484
a1:0a1:0
a2:-4.1775889e-008a2: -4.1775889e-008
a3:-1.7469322e-011a3: -1.7469322e-011
a4:1.7400545e-015a4: 1.7400545e-015
a5:-1.3744689e-019a5: -1.3744689e-019
a6:5.819994e-024a6: 5.819994e-024
a7:-9.0128358e-029a7: -9.0128358e-029
第九透镜9的第一面S10的系数为:The coefficient of the first surface S10 of the ninth lens 9 is:
k:-1.209079k: -1.209079
a1:0a1:0
a2:1.4598802e-005a2: 1.4598802e-005
a3:7.3836402e-009a3: 7.3836402e-009
a4:-1.0722255e-010a4: -1.0722255e-010
a5:2.2856103e-013a5: 2.2856103e-013
a6:-2.2696405e-016a6: -2.2696405e-016
a7:5.7114412e-020a7: 5.7114412e-020
第九透镜9的第二面S11的系数为:The coefficient of the second surface S11 of the ninth lens 9 is:
k:-0.7290704k: -0.7290704
a1:0a1:0
a2:3.2176776e-005a2: 3.2176776e-005
a3:1.5832509e-007a3: 1.5832509e-007
a4:5.9875149e-011a4: 5.9875149e-011
a5:-8.0436318e-013a5: -8.0436318e-013
a6:2.8736159e-015a6: 2.8736159e-015
a7:4.7557297e-018a7: 4.7557297e-018
第八透镜8的第一面S12的系数为:The coefficient of the first surface S12 of the eighth lens 8 is:
k:14.41962k:14.41962
a1:0a1:0
a2:7.714615e-007a2: 7.714615e-007
a3:-4.3287749e-009a3: -4.3287749e-009
a4:-3.2946437e-011a4: -3.2946437e-011
a5:-9.887032e-014a5: -9.887032e-014
a6:-1.4271619e-015a6: -1.4271619e-015
a7:-6.8875224e-018a7: -6.8875224e-018
a8:-1.7003567e-020a8: -1.7003567e-020
第八透镜8的第二面S13的系数为:The coefficient of the second surface S13 of the eighth lens 8 is:
k:-0.7130752k: -0.7130752
a1:0a1:0
a2:-1.4711743e-006a2: -1.4711743e-006
a3:4.3075608e-009a3: 4.3075608e-009
a4:-4.7317027e-011a4: -4.7317027e-011
a5:-2.0277632e-013a5: -2.0277632e-013
a6:-1.4895262e-016a6: -1.4895262e-016
a7:1.5629029e-018a7: 1.5629029e-018
a8:-7.1817264e-020a8: -7.1817264e-020
第六透镜6的第一面S17的系数为:The coefficient of the first surface S17 of the sixth lens 6 is:
k:21.03896k:21.03896
a1:0a1:0
a2:-7.4996101e-005a2: -7.4996101e-005
a3:9.4385801e-007a3: 9.4385801e-007
a4:-2.6751325e-008a4: -2.6751325e-008
a5:-4.8054944e-010a5: -4.8054944e-010
a6:2.7932337e-011a6: 2.7932337e-011
a7:-3.046491e-013a7: -3.046491e-013
第六透镜6的第二面S18的系数为:The coefficient of the second surface S18 of the sixth lens 6 is:
k:0.6876403k: 0.6876403
a1:0a1:0
a2:-4.9595905e-005a2: -4.9595905e-005
a3:2.787858e-007a3: 2.787858e-007
a4:1.0856431e-008a4: 1.0856431e-008
a5:-1.5897707e-010a5: -1.5897707e-010
a6:-1.7977373e-011a6: -1.7977373e-011
a7:4.0060191e-013a7: 4.0060191e-013
第一透镜1的第一面S25的系数为:The coefficient of the first surface S25 of the first lens 1 is:
k:-1.789004k: -1.789004
a1:0a1:0
a2:8.263905e-006a2: 8.263905e-006
a3:-1.7911823e-008a3: -1.7911823e-008
a4:3.7017951e-011a4: 3.7017951e-011
a5:4.6598193e-014a5: 4.6598193e-014
a6:7.4790277e-017a6: 7.4790277e-017
a7:6.4726266e-019a7: 6.4726266e-019
第一透镜1的第二面S26的系数为:The coefficient of the second surface S26 of the first lens 1 is:
k:-0.5580475k: -0.5580475
a1:0a1:0
a2:-2.9634338e-005a2: -2.9634338e-005
a3:2.3313592e-008a3: 2.3313592e-008
a4:-5.5797887e-011a4: -5.5797887e-011
a5:1.3393404e-013a5: 1.3393404e-013
a6:2.4826738e-016a6: 2.4826738e-016
a7:6.2566959e-019a7: 6.2566959e-019
超短焦投影镜头的投射范围为0.35m至0.6m,超短焦投影镜头对焦时,移动第一透镜组调整后焦,调整范围为±0.1mm,后焦调整好后,第一透镜组固定不动,第二透镜组和第三透镜组联动进行对焦,对焦时各透镜组之间的间隔变化范围如下:第一透镜组与第二透镜组之间的间隔为17.1mm~19.28mm,第二透镜组与第三透镜组之间的间隔为14.6mm~13.5mm,第三透镜组与第四透镜组之间的间隔为2.0mm~1.0mm。The projection range of the ultra-short-focus projection lens is 0.35m to 0.6m. When the ultra-short-focus projection lens is focused, move the first lens group to adjust the back focus. The adjustment range is ±0.1mm. After the back focus is adjusted, the first lens group is fixed. No movement, the second lens group and the third lens group are linked to focus, and the distance between each lens group varies as follows: the distance between the first lens group and the second lens group is 17.1mm to 19.28mm, and the first lens group The distance between the second lens group and the third lens group is 14.6mm-13.5mm, and the distance between the third lens group and the fourth lens group is 2.0mm-1.0mm.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720319814.0U CN206638898U (en) | 2017-03-28 | 2017-03-28 | An ultra-short focal projection optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720319814.0U CN206638898U (en) | 2017-03-28 | 2017-03-28 | An ultra-short focal projection optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206638898U true CN206638898U (en) | 2017-11-14 |
Family
ID=60262444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201720319814.0U Active CN206638898U (en) | 2017-03-28 | 2017-03-28 | An ultra-short focal projection optical device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206638898U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113126253A (en) * | 2021-03-04 | 2021-07-16 | 重庆融豪太视科技有限公司 | High-resolution direct-injection type short-focus projection lens |
-
2017
- 2017-03-28 CN CN201720319814.0U patent/CN206638898U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113126253A (en) * | 2021-03-04 | 2021-07-16 | 重庆融豪太视科技有限公司 | High-resolution direct-injection type short-focus projection lens |
CN113126253B (en) * | 2021-03-04 | 2022-06-21 | 重庆融豪太视科技有限公司 | High-resolution direct-injection type short-focus projection lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106842590B (en) | Ultrashort-focus projection optical system | |
CN107664823A (en) | An ultra-short-focus projection optical system with ultra-small volume and 4K resolution | |
CN107144944B (en) | Ultra-short-focus projection optical system | |
CN207396833U (en) | An ultra-short-focus projection optical system with ultra-small volume and 4K resolution | |
CN109884780B (en) | Ultra-short-focus projection optical system with low cost and high resolution | |
CN108303784A (en) | A kind of ultrashort out-of-focus projection's optical system | |
CN107422464B (en) | Zoom projection optical system | |
JP2015108797A (en) | Wide-angle projection optical system | |
CN101915980B (en) | Image space telecentric projection camera lens | |
CN108303788B (en) | Refractive ultra-short focal projection optical system | |
CN109407288B (en) | Refraction and reflection type ultra-short-focus projection lens system | |
CN205982805U (en) | A large aperture small volume high pixel zoom projection optical system | |
CN108227150B (en) | A high-resolution and low-distortion micro-projection lens | |
CN111123481B (en) | An ultra-short-throw projection lens based on catadioptric optical lenses | |
CN108398846B (en) | Ultra-large projection range projection optical system | |
CN207114865U (en) | A zoom projection optical device | |
CN209640594U (en) | Low-cost and high-resolution ultrashort-focus projection optical device | |
CN207965338U (en) | A kind of low distortion Miniature projection lens of high-resolution | |
CN206638898U (en) | An ultra-short focal projection optical device | |
CN208013521U (en) | An ultra-short focal projection optical device | |
CN208013526U (en) | A high-resolution projection optical system with large aperture and large image surface | |
CN105717612B (en) | Full reflection zooming short-throw projection optical system based on object space telecentricity | |
CN205404938U (en) | A mobile phone imaging lens | |
CN107144945B (en) | Large aperture projection optical system | |
CN211348833U (en) | Projection lens based on refraction and reflection type optical lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |