CN206589959U - A kind of multi-mode composite turning genealogical classification controller - Google Patents
A kind of multi-mode composite turning genealogical classification controller Download PDFInfo
- Publication number
- CN206589959U CN206589959U CN201621354202.7U CN201621354202U CN206589959U CN 206589959 U CN206589959 U CN 206589959U CN 201621354202 U CN201621354202 U CN 201621354202U CN 206589959 U CN206589959 U CN 206589959U
- Authority
- CN
- China
- Prior art keywords
- mode
- steering
- classifier
- power assist
- working condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
本实用新型公开了一种多模式复合转向系统分类控制器,通过工况特征提取模块对传感器模块输入的信号进行处理分析,建立分类函数,计算得到当前工况下分类函数的值。通过模式分类器Ⅰ将转向系统的转向模式分为模式A、模式B、模式C;通过模式分类器Ⅱ将模式C分为模式D、模式E,模式分类控制器向相应助力模块执行机构输出控制电流,驱动电动助力执行机构、液压助力执行机构输出助力,实现了系统多转向模式控制的功能,解决了车用多工作模式液压机电液耦合的助力系统助力特性可调性较差、模式切换响应速率较慢的问题。
The utility model discloses a classification controller of a multi-mode compound steering system, which processes and analyzes signals input by a sensor module through a working condition feature extraction module, establishes a classification function, and obtains the value of the classification function under the current working condition through calculation. The steering mode of the steering system is divided into mode A, mode B, and mode C by mode classifier I; mode C is divided into mode D and mode E by mode classifier II, and the mode classification controller outputs control to the corresponding booster module actuator The electric current drives the electric power assist actuator and the hydraulic power assist actuator to output power assist, realizes the function of multi-steering mode control of the system, and solves the poor adjustability of the power assist characteristics and mode switching response of the power assist system of the vehicle multi-working mode hydraulic electro-hydraulic coupling slow rate problem.
Description
技术领域technical field
本实用新型涉及汽车助力转向系统控制技术领域,具体指代一种多模式复合转向系统分类控制器。The utility model relates to the technical field of automobile power steering system control, and specifically refers to a classification controller of a multi-mode compound steering system.
背景技术Background technique
目前,国内外现有汽车采用的液压助力转向系统可在汽车低速工况下提供较大助力,减轻驾驶员转向时负担;但在高速工况下转向路感较差,操纵稳定性存在问题;电动助力转向系统由控制器、助力电机、减速机构转向盘转矩传感器以及车速传感器等组成,控制器接收传感器测得的转向盘转矩信号和车速信号并进行处理,控制电机根据事先确定的助力特性输出助力转矩。但受汽车本身蓄电池电压等电气特性影响,其输出的最大助力矩较小,不满足大型客车等车辆的需求。理想情况下,转向系统在汽车低速行驶时应输出较大的助力,以减轻驾驶员负担,实现良好的转向轻便性;在高速时应输出较小的助力,保障行驶安全,获得良好的转向路感。At present, the hydraulic power steering system used in existing cars at home and abroad can provide greater power assistance under low-speed working conditions and reduce the burden on the driver when steering; but under high-speed working conditions, the steering feel is poor and there are problems with handling stability; The electric power steering system is composed of a controller, a power assist motor, a steering wheel torque sensor of a reduction mechanism, and a vehicle speed sensor. The controller receives and processes the steering wheel torque signal and vehicle speed signal measured by the sensor, and controls the motor to Characteristic output assist torque. However, due to the influence of the electrical characteristics such as the battery voltage of the car itself, the maximum boost torque output by it is relatively small, which does not meet the needs of vehicles such as large passenger cars. Ideally, the steering system should output a large power boost when the car is running at low speeds to reduce the burden on the driver and achieve good steering portability; at high speeds, it should output a small power boost to ensure driving safety and obtain a good steering road. feel.
因此,在液压助力转向系统中融合电动助力模块,可实现车辆低速时的转向轻便性和高速时良好的路感;实现可变传动比功能,可进行主动转向干预,实现了汽车的操纵稳定性与驾驶舒适性的有机融合,是一种理想转向系统,具有广阔的应用前景。Therefore, the integration of the electric power assist module in the hydraulic power steering system can realize the steering convenience at low speed and good road feeling at high speed; realize the variable transmission ratio function, and can carry out active steering intervention to realize the steering stability of the vehicle The organic fusion with driving comfort is an ideal steering system with broad application prospects.
但多模式复合转向系统在工作过程中,存在当车辆处于临界工况时,系统转向模式判定模糊、模式切换过程中出现切换“死区”,以及转向系统在模式切换过程中助力执行机构响应存在迟滞等问题,因此需要设计相应控制器,来解决机电液耦合的多模式系统工作模式切换的问题。However, during the working process of the multi-mode compound steering system, when the vehicle is in a critical condition, the steering mode of the system is ambiguous, the switching "dead zone" occurs during the mode switching process, and the response of the power-assisted actuator in the steering system during the mode switching process exists. Hysteresis and other problems, so it is necessary to design a corresponding controller to solve the problem of working mode switching in the electromechanical-hydraulic coupled multi-mode system.
发明内容Contents of the invention
针对于上述现有技术的不足,本实用新型的目的在于提供一种多模式复合转向系统分类控制器,以解决机电液耦合的多工作模式系统的模式切换问题,现有技术中转向系统传动比固定、液压助力转向系统在高速工况下转向路感较差,操纵稳定性差等问题。Aiming at the deficiencies of the above-mentioned prior art, the purpose of this utility model is to provide a multi-mode compound steering system classification controller to solve the mode switching problem of the electromechanical-hydraulic coupled multi-working mode system. In the prior art, the transmission ratio of the steering system Fixed, hydraulic power steering system has problems such as poor steering feel and poor handling stability under high-speed conditions.
为达到上述目的,本实用新型的一种多模式复合转向系统分类控制器,包括:传感器模块、信息预处理模块、工况特征提取模块、模式分类器Ⅰ、模式分类器Ⅱ,上述各部分依次连接,其中,In order to achieve the above purpose, a multi-mode composite steering system classification controller of the present invention includes: a sensor module, an information preprocessing module, a working condition feature extraction module, a mode classifier I, and a mode classifier II. connection, where
所述的传感器模块将采集到的工况信息传递至信息预处理模块;The sensor module transmits the collected working condition information to the information preprocessing module;
所述的信息预处理模块向工况特征提取模块传递处理结果信息;The information preprocessing module transmits the processing result information to the working condition feature extraction module;
所述的工况特征提取模块将得到的当前车辆的工况特征函数传递至模式分类器Ⅰ进行分类操作;所述的模式分类器Ⅰ为一级模式分类器,并将系统转向模式分为转向模式A、转向模式B、转向模式C,将相应分类信号输出至模式分类器Ⅱ;所述转向模式A、转向模式B、转向模式C分别为电动助力模式、液压助力模式、复合助力模式;The working condition feature extraction module transfers the obtained working condition feature function of the current vehicle to the mode classifier I for classification operation; the mode classifier I is a first-level mode classifier, and divides the system steering mode into steering mode For mode A, steering mode B, and steering mode C, output corresponding classification signals to the mode classifier II; the steering mode A, steering mode B, and steering mode C are respectively electric power assist mode, hydraulic power assist mode, and compound power assist mode;
所述的模式分类器Ⅱ为复合模式分类器,依照复合模式分类算法将系统的复合模式分为转向模式D、转向模式E;所述转向模式D、转向模式E分别为原地转向模式、紧急避撞模式。The pattern classifier II is a compound pattern classifier, which divides the compound pattern of the system into steering pattern D and steering pattern E according to the compound pattern classification algorithm; Collision avoidance mode.
优选地,上述的传感器模块采集到的工况信息包括:车速信号、转向盘转角信号、转矩信号以及各个电机转速信号。Preferably, the working condition information collected by the above sensor module includes: vehicle speed signal, steering wheel angle signal, torque signal and each motor speed signal.
本实用新型的有益效果:The beneficial effects of the utility model:
本实用新型基于助力执行机构输出助力大小、工作能耗的关系,提出了车辆当前工况特征函数;通过模式分类器Ⅰ、模式分类器Ⅱ依照车辆工况对转向模式进行分类控制,实现了系统的多转向模式的功能,实现了车辆模式与工况的匹配,从而提高了系统的转向经济性和转向轻便性,提高了转向盘转矩控制精度,因此具有广阔的市场应用前景。The utility model proposes the characteristic function of the current working condition of the vehicle based on the relationship between the power output of the power-assisted actuator and the power consumption of the work; the steering mode is classified and controlled by the mode classifier I and mode classifier II according to the vehicle working conditions, and the system is realized. The multi-steering mode function realizes the matching of vehicle modes and working conditions, thereby improving the steering economy and portability of the system, and improving the steering wheel torque control accuracy, so it has broad market application prospects.
附图说明Description of drawings
图1绘示多模式复合转向系统的机械结构图;Fig. 1 shows the mechanical structure diagram of the multi-mode composite steering system;
图2绘示多模式复合转向系统分类控制器原理框图;Fig. 2 shows a functional block diagram of a classification controller of a multi-mode composite steering system;
图3绘示多模式复合转向系统分类控制器策略逻辑流程图。Fig. 3 is a flow chart showing the logic flow of the classification controller strategy of the multi-mode compound steering system.
具体实施方式detailed description
为了便于本领域技术人员的理解,下面结合实施例与附图对本实用新型作进一步的说明,实施方式提及的内容并非对本实用新型的限定。In order to facilitate the understanding of those skilled in the art, the utility model will be further described below in conjunction with the embodiments and accompanying drawings, and the contents mentioned in the implementation modes are not limitations of the utility model.
参照图1所示,一种多模式主动转向系统,包括:转向盘1、传感器模块2、转向柱3、行星齿轮组4、转向器7、电子控制单元(ECU)12、转向摇臂17、伺服电机C14、电动推杆、第一减速机构13、伺服电机A6、第二减速机构5、伺服电机B10、液压泵9、储油罐11、转阀8、液压助力缸15及助力耦合器16;Referring to Figure 1, a multi-mode active steering system includes: a steering wheel 1, a sensor module 2, a steering column 3, a planetary gear set 4, a steering gear 7, an electronic control unit (ECU) 12, a steering rocker 17, Servo motor C14, electric push rod, first reduction mechanism 13, servo motor A6, second reduction mechanism 5, servo motor B10, hydraulic pump 9, oil storage tank 11, rotary valve 8, hydraulic booster cylinder 15 and booster coupler 16 ;
所述的转向盘1连接转向柱3的力矩输入端,传感器模块2置于转向盘1与转向柱3之间,并与电子控制单元(ECU)12相连接,转向柱3的力矩输出端与行星齿轮组4输入端相连,转角修正模块通过行星齿轮组4中的下齿圈向转向系统提供修正力矩,转向力矩经行星齿轮组4输出端、转向器7、输出至转向摇臂17,转向助力模块向循环球转向器7提供转向助力矩。电子控制单元(ECU)12通过伺服电机控制信号b对伺服电机C14及第一减速机构13、电动推杆进行控制,助力矩经第一减速机构13减速增矩后传递给电动推杆、到行星齿轮组4的下齿圈,实现变传动比转角修正控制;伺服电机A6,第二减速机构5组成电动助力模块,电子控制单元(ECU)12通过伺服电机控制信号c对伺服电机A6进行控制,助力矩经第二减速机构5减速增矩后传递给助力耦合器16;伺服电机B10、液压泵9、储油罐11、转阀8、液压助力缸15组成液压助力模块,电子控制单元(ECU)12通过伺服电机控制信号d对助力伺服电机B10进行控制,驱动液压泵9将助力油液从储油罐11经转阀8泵入液压助力缸15,在液压助力缸15两端形成压差,从而产生助力,助力矩传递给助力耦合器16,助力耦合器16将合力矩传递至转向摇臂17。The steering wheel 1 is connected to the torque input end of the steering column 3, the sensor module 2 is placed between the steering wheel 1 and the steering column 3, and is connected to the electronic control unit (ECU) 12, and the torque output end of the steering column 3 is connected to the The input ends of the planetary gear set 4 are connected, and the rotation angle correction module provides correction torque to the steering system through the lower ring gear in the planetary gear set 4. The steering torque is output to the steering rocker arm 17 through the output end of the planetary gear set 4, the steering gear 7, and the steering The power assist module provides steering power torque to the recirculating ball steering device 7 . The electronic control unit (ECU) 12 controls the servo motor C14, the first reduction mechanism 13, and the electric push rod through the servo motor control signal b, and the boost torque is transmitted to the electric push rod and the planetary push rod after being decelerated and increased by the first reduction mechanism 13 The lower ring gear of the gear set 4 realizes the variable transmission ratio rotation angle correction control; the servo motor A6 and the second reduction mechanism 5 form an electric booster module, and the electronic control unit (ECU) 12 controls the servo motor A6 through the servo motor control signal c, The boost torque is transmitted to the boost coupler 16 after being decelerated and increased by the second reduction mechanism 5; the servo motor B10, the hydraulic pump 9, the oil storage tank 11, the rotary valve 8, and the hydraulic boost cylinder 15 form a hydraulic boost module, and the electronic control unit (ECU ) 12 controls the booster servo motor B10 through the servo motor control signal d, drives the hydraulic pump 9 to pump the booster oil from the oil storage tank 11 into the hydraulic booster cylinder 15 through the rotary valve 8, and forms a pressure difference at both ends of the hydraulic booster cylinder 15 , thereby generating power assist, the power assist torque is transmitted to the power assist coupler 16 , and the power assist coupler 16 transmits the resultant torque to the steering rocker arm 17 .
参照图2所示,本实用新型的一种多模式复合转向系统分类控制器,于实施例中基于上述多模式主动转向系统,包括:传感器模块、信息预处理模块、工况特征提取模块、模式分类器Ⅰ、模式分类器Ⅱ,上述各部分依次连接,其中,Referring to Fig. 2, a classification controller of a multi-mode composite steering system of the present invention is based on the above-mentioned multi-mode active steering system in an embodiment, including: a sensor module, an information preprocessing module, a working condition feature extraction module, and a mode Classifier Ⅰ, pattern classifier Ⅱ, the above parts are connected in sequence, wherein,
所述的传感器模块将采集到的工况信息传递至信息预处理模块;The sensor module transmits the collected working condition information to the information preprocessing module;
所述的信息预处理模块向工况特征提取模块输出转向盘转角信号θs、侧向加速度信号ay、前轮转角信号δf、纵向车速信号v、前轮主销内倾角信号β、前轮主销后倾角信号γ、控制器电流信号IA、助力油泵转速信号ω、转向齿条位移信号xr、伺服电机A、B转速信号θm1、θm2。The information preprocessing module outputs steering wheel angle signal θ s , lateral acceleration signal a y , front wheel angle signal δ f , longitudinal vehicle speed signal v, front wheel kingpin inclination angle signal β, front Kingpin caster angle signal γ, controller current signal I A , booster oil pump speed signal ω, steering rack displacement signal x r , servo motor A, B speed signals θ m1 , θ m2 .
所述的工况特征提取模块提取信息预处理模块输出的信号,得到当前车辆的工况特征函数,并将特征函数传递至模式分类器Ⅰ进行分类操作;所述的模式分类器Ⅰ为一级模式分类器,并将系统转向模式分为转向模式A、转向模式B、转向模式C,并将相应分类信号输出至模式分类器Ⅱ;所述转向模式A、转向模式B、转向模式C分别为电动助力模式、液压助力模式、复合助力模式;The working condition feature extraction module extracts the signal output by the information preprocessing module, obtains the working condition feature function of the current vehicle, and transfers the feature function to the mode classifier I for classification operation; the mode classifier I is a first-level mode classifier, and the steering mode of the system is divided into steering mode A, steering mode B, and steering mode C, and the corresponding classification signal is output to the mode classifier II; the steering mode A, steering mode B, and steering mode C are respectively Electric assist mode, hydraulic assist mode, compound assist mode;
所述的模式分类器Ⅱ为复合模式分类器,依照复合模式分类算法将系统的复合模式分为转向模式D、转向模式E;所述转向模式D、转向模式E分别为原地转向模式、紧急避撞模式。The pattern classifier II is a compound pattern classifier, which divides the compound pattern of the system into steering pattern D and steering pattern E according to the compound pattern classification algorithm; Collision avoidance mode.
各模式执行器分别依据模式分类器Ⅰ、模式分类器Ⅱ计算结果,输出电信号至执行机构模块的电动执行机构、液压执行机构,驱动相应执行机构输出助力距,实现动力转向。According to the calculation results of mode classifier Ⅰ and mode classifier Ⅱ, the actuators of each mode output electrical signals to the electric actuators and hydraulic actuators of the actuator module, and drive the corresponding actuators to output power assist distance to realize power steering.
其中,上述的传感器模块采集到的工况信息包括:车速信号、转向盘转角信号、转矩信号以及各个电机转速信号。Wherein, the working condition information collected by the above-mentioned sensor module includes: vehicle speed signal, steering wheel angle signal, torque signal and each motor speed signal.
其中,上述信息预处理模块包括:转角信息预处理模块、侧向加速度信息预处理模块、转向盘转矩信息预处理模块、车速信息预处理模块,分别对传感器模块采集到的转矩信号等进行滤波处理,以及通过参数估计来获取横摆角速度信号。Wherein, the above-mentioned information preprocessing module includes: a corner information preprocessing module, a lateral acceleration information preprocessing module, a steering wheel torque information preprocessing module, and a vehicle speed information preprocessing module. filter processing, and obtain the yaw rate signal through parameter estimation.
参照图3所示,本实用新型的多模式复合转向系统分类控制器策略流程如下:Referring to Fig. 3, the multi-mode composite steering system classification controller strategy flow of the present invention is as follows:
1)传感器模块采集工况信息,并将采集到的各个信号输出至信息预处理模块进行滤波处理;1) The sensor module collects working condition information, and outputs the collected signals to the information preprocessing module for filtering;
2)信息预处理模块将处理信号传递至工况特征提取模块,定义不同工况转向力矩、转向能耗函数,得到指标理想转向力矩理想转向能耗表达式如下:2) The information preprocessing module transmits the processing signal to the working condition feature extraction module, defines the steering torque and steering energy consumption functions under different working conditions, and obtains the ideal steering torque index Ideal steering energy consumption The expression is as follows:
式中:θs为转向盘转角;θm1、θm2分别为伺服电机A、B转速;V为车速;ω为助力油泵转速;IA为控制器电流;xr为转向齿条位移;b为主销转向节偏距;β为前轮主销内倾角;r为轮胎半径;R为转弯半径;γ为前轮主销后倾角;η1为转向系正传动效率;d为转向盘直径;iω为转向系角传动比;F1为满载前轴荷;CFr为速比摩擦系数;CFr2为速比平方摩擦系数;Ps为助力泵输出压力;q为助力泵排量;ρ为助力油液密度;Qs为油泵流量;Ap为液压缸活塞的有效面积;Cq为流量系数;Ai为第i个阀口的节流面积;In the formula: θ s is the steering wheel angle; θ m1 and θ m2 are the rotation speeds of servo motors A and B respectively; V is the vehicle speed; ω is the speed of the booster oil pump; I A is the controller current; x r is the displacement of the steering rack; b β is the inclination angle of the front wheel kingpin; r is the tire radius; R is the turning radius; γ is the caster angle of the front wheel; η 1 is the positive transmission efficiency of the steering system; d is the diameter of the steering wheel ; i ω is the angular transmission ratio of the steering system; F 1 is the full load front axle load; C Fr is the friction coefficient of the speed ratio; C Fr2 is the square friction coefficient of the speed ratio; P s is the output pressure of the booster pump; q is the displacement of the booster pump; ρ is the density of the booster oil; Q s is the flow rate of the oil pump; A p is the effective area of the hydraulic cylinder piston; C q is the flow coefficient; A i is the throttle area of the i-th valve port;
3)模式分类器Ⅰ基于信息预处理模块的输出结果,包括转向助力模块输出力矩大小与理想转向力矩间的偏差以及助力模块的能耗值,基于一级模式分类算法对转向系统模式划分进行判定:3) Mode classifier Ⅰ is based on the output of the information preprocessing module, including the deviation between the output torque of the steering assist module and the ideal steering torque and the energy consumption value of the assist module, and judges the mode division of the steering system based on the first-level mode classification algorithm :
所述一级模式分类算法为:转向系统处于单助力执行机构工作的工况下,当助力机构实际可提供的转向力矩大于相同工况下的理想转向力矩时,继续由单助力执行机构输出转向助力;当助力机构实际提供的转向力矩小于相同工况下的理想转向力矩时,电子控制单元向相应的伺服电机输出控制电流,驱动相应执行机构工作,转向系统进入复合转向模式,且电子控制单元通过控制伺服电机电流限制两个助力机构输出助力比例,使系统满足约束条件转向能耗在理想能耗区间内;The first-level mode classification algorithm is: when the steering system is in the working condition of a single power-assisted actuator, when the actual steering torque that the power-assisted mechanism can provide is greater than the ideal steering torque under the same working condition, the single-assisted actuator will continue to output steering torque. Power assist; when the steering torque actually provided by the power assist mechanism is less than the ideal steering torque under the same working conditions, the electronic control unit outputs control current to the corresponding servo motor to drive the corresponding actuator to work, the steering system enters the compound steering mode, and the electronic control unit By controlling the servo motor current to limit the output assist ratio of the two assist mechanisms, the system meets the constraint conditions and the steering energy consumption is within the ideal energy consumption range. Inside;
复合转向模式计算式如下:The compound steering mode calculation formula is as follows:
4)当模式分类器Ⅰ的计算得到的转向模式为复合转向模式时,模式分类器Ⅰ输出信号至模式分类器Ⅱ,模式分类器Ⅱ基于复合模式分类算法进行计算,所述复合模式分类算法为:计算实际转向助力执行机构能耗最小值,来确定液压执行机构、电动执行机构二者参与助力的比例关系,并限定计算得到的实际提供转向力矩在相同工况下的理想转向力矩区间内,防止由于限定系统转向能耗,从而导致助力机构输出助力过小,影响驾驶舒适性、操纵稳定性,复合转向比例判定式如下:4) When the steering mode calculated by the mode classifier I is a compound steering mode, the mode classifier I outputs a signal to the mode classifier II, and the mode classifier II performs calculations based on the composite mode classification algorithm, and the composite mode classification algorithm is : Calculate the minimum energy consumption of the actual power steering actuator to determine the proportional relationship between the hydraulic actuator and the electric actuator, and limit the ideal steering torque range of the calculated actual steering torque under the same working conditions In order to prevent the steering power consumption of the system from being limited, resulting in too little power output from the booster mechanism, which affects driving comfort and handling stability, the compound steering ratio judgment formula is as follows:
定义助力模式C下的比例系数KE,助力模式比例系数KE表示转向系统在复合助力模式下,电动助力模块所提供助力占转向系统所提供总助力理想值的百分比,通过对助力模式比例系数KE进行控制,将助力模式分为助力模式D、助力模式E,分别为原地转向模式、紧急避撞模式;从而实现转向系统的转向经济性和转向轻便性,其表达式为:Define the proportional coefficient K E under the power assist mode C. The proportional coefficient K E of the power assist mode indicates the percentage of the power assist provided by the electric power assist module to the ideal value of the total power assist provided by the steering system in the compound power assist mode of the steering system. By adjusting the power assist mode proportional coefficient Controlled by K E , the power assist mode is divided into power assist mode D and power assist mode E, which are respectively in-situ steering mode and emergency collision avoidance mode; thereby realizing the steering economy and steering portability of the steering system, the expression is:
5)模式执行器A、模式执行器B、模式执行器D、模式执行器E分别依据模式分类器Ⅰ、模式分类器Ⅱ计算结果,输出电信号至执行机构模块的电动执行机构、液压执行机构,驱动相应执行机构输出助力距,实现动力转向。5) Mode Actuator A, Mode Actuator B, Mode Actuator D, and Mode Actuator E respectively output electric signals to the electric actuators and hydraulic actuators of the actuator module according to the calculation results of Mode Classifier I and Mode Classifier II , to drive the corresponding actuator to output the power assist distance to realize the power steering.
本实用新型具体应用途径很多,以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以作出若干改进,这些改进也应视为本实用新型的保护范围。There are many specific application ways of the utility model, and the above descriptions are only the preferred implementation modes of the utility model. Improvements, these improvements should also be regarded as the protection scope of the present utility model.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621354202.7U CN206589959U (en) | 2016-12-12 | 2016-12-12 | A kind of multi-mode composite turning genealogical classification controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621354202.7U CN206589959U (en) | 2016-12-12 | 2016-12-12 | A kind of multi-mode composite turning genealogical classification controller |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206589959U true CN206589959U (en) | 2017-10-27 |
Family
ID=60131476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621354202.7U Withdrawn - After Issue CN206589959U (en) | 2016-12-12 | 2016-12-12 | A kind of multi-mode composite turning genealogical classification controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206589959U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106585714A (en) * | 2016-12-12 | 2017-04-26 | 南京航空航天大学 | Classification controller of multi-mode composite steering system and control method thereof |
CN107901979A (en) * | 2017-11-10 | 2018-04-13 | 南京双环电器股份有限公司 | A kind of electro-hydraulic active steering road feel control system of automobile and its control method |
WO2025062744A1 (en) * | 2023-09-22 | 2025-03-27 | 株式会社ジェイテクト | Steering device |
-
2016
- 2016-12-12 CN CN201621354202.7U patent/CN206589959U/en not_active Withdrawn - After Issue
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106585714A (en) * | 2016-12-12 | 2017-04-26 | 南京航空航天大学 | Classification controller of multi-mode composite steering system and control method thereof |
CN106585714B (en) * | 2016-12-12 | 2019-02-01 | 南京航空航天大学 | A kind of multi-mode composite turning genealogical classification controller and its control method |
CN107901979A (en) * | 2017-11-10 | 2018-04-13 | 南京双环电器股份有限公司 | A kind of electro-hydraulic active steering road feel control system of automobile and its control method |
CN107901979B (en) * | 2017-11-10 | 2020-02-28 | 南京双环电器股份有限公司 | A vehicle electro-hydraulic active steering road sense control system and its control method |
WO2025062744A1 (en) * | 2023-09-22 | 2025-03-27 | 株式会社ジェイテクト | Steering device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105857393B (en) | The differential boost line draining pressure forward method of full wheel independent electric drive articulator | |
CN106428197B (en) | Controller and control method based on multi-mode steering system power-assisted coupler | |
CN106184350B (en) | A kind of four-wheel steering system and steering pattern control method of multi-mode | |
CN105667580B (en) | A kind of wire-controlled steering system and its control method based on fuzzy control | |
CN105799549B (en) | One kind is for electric wheel truck EPS and DYC integrated control system and its method | |
CN109726516B (en) | Variable transmission ratio optimization design method of multi-mode drive-by-wire power-assisted steering system and special system thereof | |
CN105416392B (en) | A kind of push-down composite turning system and its mode switch control method | |
CN106043419B (en) | Electric-liquid composite power steering control device and its control method | |
CN203592907U (en) | Intelligent drive-by-wire chassis of mini-type electric car | |
CN104401388A (en) | Intelligent electro-hydraulic steering system | |
CN109017974A (en) | Assist steering system and its control method with active steering function | |
CN106428204B (en) | A kind of active composite turning system, torque control unit and method for controlling torque | |
CN104494464B (en) | Multi-motor coordination controller for distributed driving electric automobile | |
CN201580431U (en) | Electric control and electric four-wheeled steering (4WS) device of electric vehicle | |
CN206589959U (en) | A kind of multi-mode composite turning genealogical classification controller | |
CN103496396A (en) | Novel energy-saving differential power-assisted steering system of electric wheel automobile and control method thereof | |
CN107310623A (en) | The dual-motor electric servo steering system and power-assisted steering method of a kind of parallel-connection structure | |
CN106741132B (en) | A controller of a multi-mode active steering system and its control method | |
CN110435754B (en) | A human-machine co-driving mode switching device and method for an electro-hydraulic composite steering system | |
CN114379643B (en) | An electro-hydraulic steering gear with emergency steering function and its matching method | |
CN110606078A (en) | A steering control method for a multi-axis distributed electric drive vehicle | |
CN206719319U (en) | A kind of motor bus hydraulic pressure active front steering system | |
CN107010107B (en) | Hydraulic active steering system of motor bus and control method | |
CN206589958U (en) | A kind of active composite turning system and torque control unit | |
CN106585714B (en) | A kind of multi-mode composite turning genealogical classification controller and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20171027 Effective date of abandoning: 20190201 |