CN206431044U - The refractive index sensing unit resonated based on metal dielectric waveguide coupled resonator Fano - Google Patents
The refractive index sensing unit resonated based on metal dielectric waveguide coupled resonator Fano Download PDFInfo
- Publication number
- CN206431044U CN206431044U CN201720045838.1U CN201720045838U CN206431044U CN 206431044 U CN206431044 U CN 206431044U CN 201720045838 U CN201720045838 U CN 201720045838U CN 206431044 U CN206431044 U CN 206431044U
- Authority
- CN
- China
- Prior art keywords
- cavity
- refractive index
- resonant cavity
- sensing unit
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 20
- 239000002184 metal Substances 0.000 title claims abstract description 20
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052709 silver Inorganic materials 0.000 claims abstract description 20
- 239000004332 silver Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 230000008878 coupling Effects 0.000 claims abstract description 11
- 238000010168 coupling process Methods 0.000 claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本实用新型公开了一种基于金属介质波导耦合谐振腔Fano共振的折射率传感单元,包括金属银衬底(1),所述金属银衬底(1)上设置有位于同一直线上的输入波导腔(2)和输出波导腔(5),所述金属银衬底(1)上位于输入波导腔(2)和输出波导腔(5)之间设置有矩形谐振腔(4),所述矩形谐振腔(4)的轴线与传输波导腔的轴线垂直;所述金属银衬底(1)上位于矩形谐振腔(4)的一侧设置有环形谐振腔(3)。本实用新型“基于金属介质波导耦合谐振腔Fano共振的折射率传感单元”,能够增强测量的准确度,由于是微量测量,不会影响待测物质。从原理上讲,该方案简便易行,易于操作,具有较好的市场应用价值。
The utility model discloses a refractive index sensing unit based on the Fano resonance of a metal dielectric waveguide coupling resonant cavity, which comprises a metal silver substrate (1), and the metal silver substrate (1) is provided with an input device located on the same straight line. A waveguide cavity (2) and an output waveguide cavity (5), the metallic silver substrate (1) is provided with a rectangular resonant cavity (4) between the input waveguide cavity (2) and the output waveguide cavity (5), the The axis of the rectangular resonant cavity (4) is perpendicular to the axis of the transmission waveguide cavity; the metal silver substrate (1) is provided with a ring resonant cavity (3) on one side of the rectangular resonant cavity (4). The utility model "refractive index sensing unit based on the Fano resonance of metal dielectric waveguide coupling resonator cavity" can enhance the accuracy of measurement, and will not affect the substance to be measured because it is a micro measurement. In principle, the scheme is simple, easy to operate, and has good market application value.
Description
技术领域technical field
本实用新型属于表面等离子光学领域和微纳系统领域,具体为一种基于金属介质波导耦合谐振腔Fano共振的折射率传感单元。The utility model belongs to the field of surface plasmon optics and the field of micro-nano systems, in particular to a refractive index sensing unit based on the Fano resonance of a metal dielectric waveguide coupled resonant cavity.
背景技术Background technique
计算机技术与互联网技术的发展,使得其运行速度与信息处理能力日渐强大,传统基于电子回路信息传递在热损耗等方面的局限愈发明显。光子器件在低热损耗、高速处理能力方面优于电子器件,并且随着纳米技术的发展,光子器件在实用的道路上愈来愈近。表面等离子激元共振现象的发现,突破传统光学衍射极限的限制,为纳米光子器件的发展带来新的契机。The development of computer technology and Internet technology has made its operating speed and information processing capability increasingly powerful, and the limitations of traditional electronic circuit-based information transmission in terms of heat loss have become more and more obvious. Photonic devices are superior to electronic devices in terms of low heat loss and high-speed processing capabilities, and with the development of nanotechnology, photonic devices are getting closer to practical roads. The discovery of the surface plasmon resonance phenomenon breaks through the limitation of the traditional optical diffraction limit and brings new opportunities for the development of nanophotonic devices.
表面等离激元(Surface Plasmon Polaritons, SPPs)被定义为电荷密度波,是等离子体和光子之间耦合的结果,其光场振幅在垂直界面方向以指数形式衰减。SPPs克服了光波衍射极限限制,使得制作纳米光子器件成为可能。近年来,随着金属亚波长波导器件的广泛应用,SPPs吸引了广泛的研究,并已成为一个新兴学科,如生物传感器、SPPs光刻以及超高分辨率成像。Surface Plasmon Polaritons (SPPs) are defined as charge density waves, which are the result of coupling between plasmons and photons, and the amplitude of their light field decays exponentially in the direction perpendicular to the interface. SPPs overcome the limitation of light diffraction limit, making it possible to fabricate nanophotonic devices. In recent years, with the widespread application of metallic subwavelength waveguide devices, SPPs have attracted extensive research and have become an emerging discipline, such as biosensors, SPPs lithography, and ultra-high-resolution imaging.
由于基于SPPs的金属-绝缘体-金属(Metal-Insulator-Metal, MIM)易于芯片化集成,因而引起了广泛的关注。等离子体结构作为传感器在很多的领域显得愈发重要,诸如物理学、化学、生物学、能源与信息领域等。Metal-Insulator-Metal (MIM) based on SPPs has attracted extensive attention due to its ease of chip integration. Plasma structures are becoming more and more important as sensors in many fields, such as physics, chemistry, biology, energy and information fields, etc.
发明内容Contents of the invention
本实用新型的目的是提出一种表面等离子体折射率传感单元,由一个环形谐振腔和矩形谐振腔耦合的MIM结构,该高灵敏度的折射率传感单元,用于不同介质的折射率测量,利用有限元法研究了其传感性能,通过改变传输介质的折射率,所设计的传感单元灵敏度为1000nm/RIU。The purpose of this utility model is to propose a surface plasmon refractive index sensing unit, which is a MIM structure coupled by a ring resonant cavity and a rectangular resonant cavity. This high-sensitivity refractive index sensing unit is used for the refractive index measurement of different media , using the finite element method to study its sensing performance, by changing the refractive index of the transmission medium, the sensitivity of the designed sensing unit is 1000nm/RIU.
本实用新型是采用如下技术方案实现的:The utility model is realized by adopting the following technical solutions:
一种基于金属介质波导耦合谐振腔Fano共振的折射率传感单元,包括金属银衬底,所述金属银衬底上设置有位于同一直线上的输入波导腔和输出波导腔,所述金属银衬底上位于输入波导腔和输出波导腔之间设置有矩形谐振腔,所述矩形谐振腔的轴线与传输波导腔的轴线垂直;所述金属银衬底上位于矩形谐振腔的一侧设置有环形谐振腔。A refractive index sensing unit based on the Fano resonance of metal dielectric waveguide coupling resonator, comprising a metal silver substrate, the metal silver substrate is provided with an input waveguide cavity and an output waveguide cavity located on the same straight line, the metal silver A rectangular resonant cavity is arranged on the substrate between the input waveguide cavity and the output waveguide cavity, and the axis of the rectangular resonant cavity is perpendicular to the axis of the transmission waveguide cavity; one side of the metallic silver substrate is located on the rectangular resonant cavity. ring resonator.
使用时,对于待测溶液:吸取微量待测溶液滴在传感单元上,使其充满谐振腔室。可调谐激光光源耦合进输入端,出射端连接光电探测器,同时调节激光波长,利用频谱仪分析传输曲线,记录峰值波长λ1,对比真空(折射率n0=1)状态下峰值处对应波长λ0。可得待测溶液的折射率n1:When in use, for the solution to be tested: draw a small amount of the solution to be tested and drop it on the sensing unit to fill the resonance chamber. The tunable laser light source is coupled into the input port, the output port is connected to the photodetector, and the laser wavelength is adjusted at the same time. The transmission curve is analyzed by a spectrum analyzer, and the peak wavelength λ 1 is recorded, compared with the corresponding wavelength at the peak in the vacuum (refractive index n 0 =1) state λ 0 . The refractive index n 1 of the solution to be measured can be obtained:
n1=n0+(λ1-λ0)/Sn 1 =n 0 +(λ 1 -λ 0 )/S
其中S为折射率传感器的灵敏度。where S is the sensitivity of the refractive index sensor.
对于待测气体,只需将传感单元置于待测气体环境中,原理同上,不在赘述。For the gas to be measured, it is only necessary to place the sensing unit in the environment of the gas to be measured, the principle is the same as above, and will not be repeated here.
本实用新型“基于金属介质波导耦合谐振腔Fano共振的折射率传感单元”,能够增强测量的准确度,由于是微量测量,不会影响待测物质。从原理上讲,该方案简便易行,易于操作,具有较好的市场应用价值。The utility model "refractive index sensing unit based on the Fano resonance of metal dielectric waveguide coupling resonator cavity" can enhance the accuracy of measurement, and will not affect the substance to be measured because it is a micro measurement. In principle, the scheme is simple, easy to operate, and has good market application value.
附图说明Description of drawings
图1表示等离子激元折射率传感单元二维结构示意图。Fig. 1 shows a schematic diagram of a two-dimensional structure of a plasmonic refractive index sensing unit.
图2表示等离子激元折射率传感单元三维结构示意图。FIG. 2 shows a schematic diagram of a three-dimensional structure of a plasmonic refractive index sensing unit.
图3表示改变介质折射率时的传输曲线,相邻传输曲线峰值处的波长间隔为20nm。Figure 3 shows the transmission curve when the refractive index of the medium is changed, and the wavelength interval between the peaks of adjacent transmission curves is 20nm.
图4表示折射率传感单元灵敏度拟合曲线,黑色方块表示仿真值,直线表示拟合结果。从图中可以看出该结构的折射率传感单元的灵敏度为1000nm/RIU。Fig. 4 shows the fitting curve of the sensitivity of the refractive index sensing unit, the black squares represent the simulated values, and the straight lines represent the fitting results. It can be seen from the figure that the sensitivity of the refractive index sensing unit of this structure is 1000nm/RIU.
图中:1-金属银衬底,2-输入波导腔,3-环形谐振腔,4-矩形谐振腔,5-输出波导腔。In the figure: 1-metal silver substrate, 2-input waveguide cavity, 3-ring resonant cavity, 4-rectangular resonant cavity, 5-output waveguide cavity.
具体实施方式detailed description
下面结合附图对本实用新型的具体实施例进行详细说明。Specific embodiments of the present utility model will be described in detail below in conjunction with the accompanying drawings.
一种基于金属介质波导耦合谐振腔Fano共振的折射率传感单元,如图2所示,包括金属银衬底1,所述金属银衬底1上设置有位于同一直线上的输入波导腔2和输出波导腔5,所述金属银衬底1上位于输入波导腔2和输出波导腔5之间设置有矩形谐振腔4,所述矩形谐振腔4的轴线与传输波导腔(输入波导腔2和输出波导腔5)的轴线垂直;所述金属银衬底1上位于矩形谐振腔4的一侧设置有环形谐振腔3。环形谐振腔3的圆心位于矩形谐振腔4的轴线上。A refractive index sensing unit based on the Fano resonance of the metal dielectric waveguide coupling resonator, as shown in Figure 2, includes a metal silver substrate 1, and the metal silver substrate 1 is provided with an input waveguide cavity 2 located on the same straight line and an output waveguide cavity 5, the metal silver substrate 1 is provided with a rectangular resonant cavity 4 between the input waveguide cavity 2 and the output waveguide cavity 5, the axis of the rectangular resonant cavity 4 is in line with the transmission waveguide cavity (input waveguide cavity 2 It is perpendicular to the axis of the output waveguide cavity 5 ); a ring resonant cavity 3 is provided on one side of the rectangular resonant cavity 4 on the metallic silver substrate 1 . The center of the ring resonator 3 is located on the axis of the rectangular resonator 4 .
如图1所示,该折射率传感单元是由MIM波导耦合矩形腔与环形腔组成。银(Ag)层折射率为ε m,图中阴影部分。白色代表电介质层,可以由待测溶液或者气体组成。为了保证基模(TM0)在波导中传播,设置传输波导腔(输入波导腔和输出波导腔)、环形谐振腔、矩形谐振腔的宽度均为d=50nm,耦合间距g1=g2=g3=10nm。环形谐振腔中内径r1=90nm、外径r3=140nm,矩形谐振腔高度h=100nm。光输入端口与光输出端口分别置于输入波导腔和输出波导腔的左右两端。As shown in Figure 1, the refractive index sensing unit is composed of a MIM waveguide coupled rectangular cavity and a ring cavity. The refractive index of the silver (Ag) layer is ε m , the shaded part in the figure. White represents the dielectric layer, which can be composed of the solution or gas to be measured. In order to ensure that the fundamental mode (TM 0 ) propagates in the waveguide, the width of the transmission waveguide cavity (input waveguide cavity and output waveguide cavity), ring resonator, and rectangular resonator is set to d=50nm, and the coupling distance g 1 =g 2 = g 3 =10nm. In the ring resonant cavity, the inner diameter r 1 =90nm, the outer diameter r 3 =140nm, and the height h=100nm of the rectangular resonant cavity. The optical input port and the optical output port are placed at the left and right ends of the input waveguide cavity and the output waveguide cavity respectively.
为了说明该折射率传感单元的传输特性,在理论上给出以下阐述:In order to illustrate the transmission characteristics of the refractive index sensing unit, the following explanations are theoretically given:
银的介电常数可以用Debye-Drude色散模式加以推导,公式如下:The dielectric constant of silver can be derived using the Debye-Drude dispersion model, the formula is as follows:
其中,ε∞=3.8344和εs=-9530.5分别是无限频率介电常数和静态介电常数。τ=7.35×10-15表示弛豫时间,σ=1.1486×107S/m代表银的电导率。Among them, ε ∞ =3.8344 and ε s =-9530.5 are the infinite frequency permittivity and static permittivity, respectively. τ=7.35×10 -15 represents the relaxation time, σ=1.1486×10 7 S/m represents the conductivity of silver.
为了解释仿真结果中法诺共振现象,Sj±(j=1或2)代表SPPs波,κ1、κ2、κ3分别代表各个腔之间的耦合系数。若一特定频率的光入射(频率ω),AS、AR分别表示矩形谐振腔与环形谐振腔的光场振幅,其随时间的变化关系如下:In order to explain the Fano resonance phenomenon in the simulation results, Sj±(j=1 or 2) represents the SPPs wave, and κ 1 , κ 2 , and κ 3 represent the coupling coefficients between the cavities, respectively. If light of a specific frequency is incident (frequency ω), A S and AR represent the light field amplitudes of the rectangular resonant cavity and the ring resonant cavity respectively, and their relationship with time is as follows:
其中,i是虚数单位,ωs与ωR分别是矩形谐振腔与环形谐振腔的谐振频率,根据能量守恒,入射与出射光波的幅度关系如下:Among them, i is the imaginary number unit, ω s and ω R are the resonant frequencies of the rectangular resonator and the ring resonator respectively. According to energy conservation, the amplitude relationship between the incident and outgoing light waves is as follows:
同时,传输函数T为如下方程:At the same time, the transfer function T is the following equation:
为了说明介质折射率的变化对波导传输曲线的影响,如图3所示,介质折射率分别设置为1.00、1.02、1.04、1.06、1.08,折射率差值为0.02。根据仿真结果,发现随着介质折射率的增大,传输谱线发生红移。这是由于增大折射率的同时,介质的有效折射率增大。如图4所示,折射率每增大0.02RIU,法诺共振峰值处对应的波长向长波方向移动20nm,经计算,其灵敏度为1000nm/RIU。In order to illustrate the influence of the change of the medium refractive index on the waveguide transmission curve, as shown in Figure 3, the medium refractive index is set to 1.00, 1.02, 1.04, 1.06, 1.08, respectively, and the refractive index difference is 0.02. According to the simulation results, it is found that with the increase of the refractive index of the medium, the transmission line is red-shifted. This is because the effective refractive index of the medium increases while increasing the refractive index. As shown in Figure 4, when the refractive index increases by 0.02RIU, the wavelength corresponding to the Fano resonance peak moves to the long-wave direction by 20nm. After calculation, the sensitivity is 1000nm/RIU.
最后应说明的是,以上实施例仅用以说明本实用新型的技术方案而非限制,尽管参照本实用新型实施例进行了详细说明,本领域的普通技术人员应当理解,对本实用新型的技术方案进行修改或者等同替换,都不脱离本实用新型的技术方案的精神和范围,其均应涵盖本实用新型的权利要求保护范围中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the utility model without limitation. Although detailed descriptions have been made with reference to the embodiments of the utility model, those of ordinary skill in the art should understand that the technical solutions of the utility model Modifications or equivalent replacements do not deviate from the spirit and scope of the technical solutions of the present utility model, and all of them should be covered by the protection scope of the claims of the present utility model.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720045838.1U CN206431044U (en) | 2017-01-16 | 2017-01-16 | The refractive index sensing unit resonated based on metal dielectric waveguide coupled resonator Fano |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720045838.1U CN206431044U (en) | 2017-01-16 | 2017-01-16 | The refractive index sensing unit resonated based on metal dielectric waveguide coupled resonator Fano |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206431044U true CN206431044U (en) | 2017-08-22 |
Family
ID=59582397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201720045838.1U Expired - Fee Related CN206431044U (en) | 2017-01-16 | 2017-01-16 | The refractive index sensing unit resonated based on metal dielectric waveguide coupled resonator Fano |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206431044U (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356558A (en) * | 2017-08-28 | 2017-11-17 | 兰州大学 | Micro-nano optical detection device and optical detection system |
CN108519716A (en) * | 2018-05-24 | 2018-09-11 | 华南师范大学 | Optical logic device and method for multi-bit input with microcavity structure |
CN108519713A (en) * | 2018-04-28 | 2018-09-11 | 西安柯莱特信息科技有限公司 | It is a kind of can dynamic regulation wideband transmissison characteristic optical device and its adjusting method |
CN108519686A (en) * | 2018-04-28 | 2018-09-11 | 西安柯莱特信息科技有限公司 | The optical device and its regulation and control method of a kind of controllable field distribution and intensity in transmission |
CN109239013A (en) * | 2018-10-16 | 2019-01-18 | 深圳大学 | Fano resonance MHM super-surface high-sensitivity background refractive index sensor |
CN112858221A (en) * | 2021-01-11 | 2021-05-28 | 北京邮电大学 | Three-fano resonance nanometer refractive index sensor based on metal-insulator-metal structure |
CN113036386A (en) * | 2020-07-13 | 2021-06-25 | 中国空间技术研究院 | Multi-mode excitation structure based on simple resonant cavity |
CN113281301A (en) * | 2021-05-13 | 2021-08-20 | 桂林电子科技大学 | Refractive index and temperature sensor of circular ring-rectangular resonant cavity structure |
CN113295647A (en) * | 2021-05-13 | 2021-08-24 | 山东大学 | Terahertz waveguide sensing device based on Fano resonance coupling resonant cavity and preparation method thereof |
CN113483792A (en) * | 2021-07-03 | 2021-10-08 | 桂林电子科技大学 | Visible light to near-infrared dual-waveband embedded elliptical resonant cavity sensor |
CN114778488A (en) * | 2022-03-09 | 2022-07-22 | 中国科学院合肥物质科学研究院 | Multiple Fano resonance refractive index sensor based on open-loop cavity coupling MIM waveguide |
-
2017
- 2017-01-16 CN CN201720045838.1U patent/CN206431044U/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107356558A (en) * | 2017-08-28 | 2017-11-17 | 兰州大学 | Micro-nano optical detection device and optical detection system |
CN108519713A (en) * | 2018-04-28 | 2018-09-11 | 西安柯莱特信息科技有限公司 | It is a kind of can dynamic regulation wideband transmissison characteristic optical device and its adjusting method |
CN108519686A (en) * | 2018-04-28 | 2018-09-11 | 西安柯莱特信息科技有限公司 | The optical device and its regulation and control method of a kind of controllable field distribution and intensity in transmission |
CN108519716A (en) * | 2018-05-24 | 2018-09-11 | 华南师范大学 | Optical logic device and method for multi-bit input with microcavity structure |
CN108519716B (en) * | 2018-05-24 | 2024-04-05 | 华南师范大学 | Optical logic device and method for multi-bit input of microcavity structure |
CN109239013B (en) * | 2018-10-16 | 2022-05-13 | 深圳大学 | A Fano Resonant MHM Metasurface High Sensitivity Background Refractive Index Sensor |
CN109239013A (en) * | 2018-10-16 | 2019-01-18 | 深圳大学 | Fano resonance MHM super-surface high-sensitivity background refractive index sensor |
CN113036386A (en) * | 2020-07-13 | 2021-06-25 | 中国空间技术研究院 | Multi-mode excitation structure based on simple resonant cavity |
CN113036386B (en) * | 2020-07-13 | 2021-11-26 | 中国空间技术研究院 | Multi-mode excitation structure based on simple resonant cavity |
CN112858221A (en) * | 2021-01-11 | 2021-05-28 | 北京邮电大学 | Three-fano resonance nanometer refractive index sensor based on metal-insulator-metal structure |
CN113281301A (en) * | 2021-05-13 | 2021-08-20 | 桂林电子科技大学 | Refractive index and temperature sensor of circular ring-rectangular resonant cavity structure |
CN113295647A (en) * | 2021-05-13 | 2021-08-24 | 山东大学 | Terahertz waveguide sensing device based on Fano resonance coupling resonant cavity and preparation method thereof |
CN113295647B (en) * | 2021-05-13 | 2022-04-12 | 山东大学 | Fano-based resonant coupling resonator terahertz waveguide sensor device and preparation method thereof |
CN113483792A (en) * | 2021-07-03 | 2021-10-08 | 桂林电子科技大学 | Visible light to near-infrared dual-waveband embedded elliptical resonant cavity sensor |
CN114778488A (en) * | 2022-03-09 | 2022-07-22 | 中国科学院合肥物质科学研究院 | Multiple Fano resonance refractive index sensor based on open-loop cavity coupling MIM waveguide |
CN114778488B (en) * | 2022-03-09 | 2023-08-11 | 中国科学院合肥物质科学研究院 | A Multiple Fano Resonant Refractive Index Sensor Based on Open-loop Cavity-Coupled MIM Waveguides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206431044U (en) | The refractive index sensing unit resonated based on metal dielectric waveguide coupled resonator Fano | |
An et al. | Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance | |
CN208206796U (en) | Index sensor based on MIM waveguide coupling rectangular and double circular ring shape resonant cavities | |
CN109030415B (en) | A Refractive Index Sensor Based on Double Fano Resonance | |
CN109709069B (en) | Gas sensor and preparation method thereof | |
Sadafi et al. | A tunable hybrid graphene-metal metamaterial absorber for sensing in the THz regime | |
CN105022004B (en) | Waveguide magnetic field/current sensor and its device based on surface phasmon | |
CN101261345A (en) | An array microresonator tunable integrated optical filter | |
CN106996920A (en) | A kind of low-refraction PCF spr sensors for being operated in middle-infrared band | |
CN103808692B (en) | The strength investigation type sensor of a kind of Mach-Zehnder interferometer and microcavity cascade | |
CN108802468A (en) | Photonic crystal fiber electromagnetism dual sampling device | |
CN108490647B (en) | Tunable directional waveguide signal detector based on graphene and nanoantenna arrays | |
CN110068893B (en) | A double-straight waveguide microring structure with local intermediate index cladding | |
CN103926218B (en) | High-sensitivity refractive index sensor based on surface plasma resonance | |
CN105424220A (en) | Temperature sensor based on surface plasmon | |
CN112067569A (en) | A slit optical waveguide sensor based on surface-enhanced infrared absorption spectroscopy and its preparation and detection method | |
CN111122517A (en) | A sensor based on asymmetric nanoparticle dimer micro-nano structure | |
Lei et al. | Multifunctional on-chip directional coupler for spectral and polarimetric routing of Bloch surface wave | |
CN103267742A (en) | Structures for Localized Surface Plasmon and Waveguide Mode Coupling | |
CN109781710A (en) | On-chip Raman spectroscopy detection system based on waveguide structure with Raman enhancement effect | |
CN114034663A (en) | three-Fano resonance micro-nano refractive index sensor based on all-dielectric super-surface | |
CN113483792A (en) | Visible light to near-infrared dual-waveband embedded elliptical resonant cavity sensor | |
CN112858220A (en) | Multi-Fano resonance nano refractive index sensor based on toothed right-angled triangular resonant cavity | |
Sharmin et al. | Numerical investigation of nanodots implanted high-performance plasmonic refractive index sensor | |
CN209946004U (en) | A Fiber Optic Sensor Based on a Tunable Mach-Zehnder Interferometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170822 Termination date: 20180116 |