CN206422088U - The LED of growth on a glass substrate - Google Patents
The LED of growth on a glass substrate Download PDFInfo
- Publication number
- CN206422088U CN206422088U CN201621450922.3U CN201621450922U CN206422088U CN 206422088 U CN206422088 U CN 206422088U CN 201621450922 U CN201621450922 U CN 201621450922U CN 206422088 U CN206422088 U CN 206422088U
- Authority
- CN
- China
- Prior art keywords
- gan
- grown
- layer
- glass substrate
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 73
- 239000011521 glass Substances 0.000 title claims abstract description 40
- 239000010408 film Substances 0.000 claims abstract description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000010409 thin film Substances 0.000 claims abstract description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000004888 barrier function Effects 0.000 claims description 9
- 230000008901 benefit Effects 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- 235000012431 wafers Nutrition 0.000 description 15
- 230000008569 process Effects 0.000 description 12
- 238000005498 polishing Methods 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
本实用新型公开了生长在玻璃衬底上的LED外延片,包括生长在玻璃衬底上的铝金属层,生长在铝金属层上的银金属层,生长在银金属层上的AlN缓冲层,生长在AlN缓冲层上的GaN缓冲层,生长在GaN缓冲层上的非掺杂GaN层,生长在非掺杂GaN层上的n型掺杂GaN薄膜,生长在n型掺杂GaN薄膜上的InGaN/GaN多量子阱,生长在InGaN/GaN多量子阱上的p型掺杂GaN薄膜。本实用新型的生长在玻璃衬底上的LED外延片具有缺陷密度低、结晶质量好,发光性能优良的优点。
The utility model discloses an LED epitaxial wafer grown on a glass substrate, comprising an aluminum metal layer grown on the glass substrate, a silver metal layer grown on the aluminum metal layer, an AlN buffer layer grown on the silver metal layer, GaN buffer layer grown on AlN buffer layer, undoped GaN layer grown on GaN buffer layer, n-type doped GaN thin film grown on undoped GaN layer, n-type doped GaN thin film grown on n-type doped GaN thin film InGaN/GaN multiple quantum wells, p-type doped GaN films grown on InGaN/GaN multiple quantum wells. The LED epitaxial wafer grown on the glass substrate of the utility model has the advantages of low defect density, good crystal quality and excellent luminous performance.
Description
技术领域technical field
本实用新型涉及LED外延片,特别涉及生长在玻璃衬底上的LED外延片。The utility model relates to an LED epitaxial sheet, in particular to an LED epitaxial sheet grown on a glass substrate.
背景技术Background technique
发光二极管(LED)作为一种新型固体照明光源和绿色光源,具有体积小、耗电量低、环保、使用寿命长、高亮度、低热量以及多彩等突出特点,在室外照明、商业照明以及装饰工程等领域都具有广泛的应用。当前,在全球气候变暖问题日趋严峻的背景下,节约能源、减少温室气体排放成为全球共同面对的重要问题。以低能耗、低污染、低排放为基础的低碳经济,将成为经济发展的重要方向。在照明领域,LED发光产品的应用正吸引着世人的目光,LED作为一种新型的绿色光源产品,必然是未来发展的趋势。但是现阶段LED的应用成本较高,发光效率较低,这些因素都会大大限制LED向高效节能环保的方向发展。Light-emitting diode (LED), as a new type of solid-state lighting source and green light source, has outstanding features such as small size, low power consumption, environmental protection, long service life, high brightness, low heat and colorful, and is widely used in outdoor lighting, commercial lighting and decoration Engineering and other fields have a wide range of applications. At present, under the background of the increasingly serious problem of global warming, saving energy and reducing greenhouse gas emissions has become an important issue faced by the whole world. A low-carbon economy based on low energy consumption, low pollution, and low emissions will become an important direction of economic development. In the field of lighting, the application of LED light-emitting products is attracting the attention of the world. As a new type of green light source product, LED must be the trend of future development. However, at this stage, the application cost of LED is high, and the luminous efficiency is low. These factors will greatly limit the development of LED in the direction of high efficiency, energy saving and environmental protection.
III族氮化物GaN在电学、光学以及声学上具有极其优异的性质,近几年受到广泛关注。GaN是直接带隙材料,且声波传输速度快,化学和热稳定性好,热导率高,热膨胀系数低,击穿介电强度高,是制造高效的LED器件的理想材料。目前,GaN基LED的发光效率现在已经达到28%并且还在进一步的增长,该数值远远高于目前通常使用的白炽灯(约为2%)或荧光灯(约为10%)等照明方式的发光效率。Group III nitride GaN has extremely excellent properties in electricity, optics and acoustics, and has attracted extensive attention in recent years. GaN is a direct bandgap material with fast acoustic wave transmission, good chemical and thermal stability, high thermal conductivity, low thermal expansion coefficient, and high breakdown dielectric strength. It is an ideal material for manufacturing high-efficiency LED devices. At present, the luminous efficiency of GaN-based LEDs has reached 28% and is still increasing, which is much higher than that of incandescent lamps (about 2%) or fluorescent lamps (about 10%) and other lighting methods commonly used today. Luminous efficiency.
LED要真正实现大规模广泛应用,需要进一步提高LED芯片的发光效率,同时降低LED芯片的价格。虽然LED的发光效率已经超过日光灯和白炽灯,但是商业化LED发光效率还是低于钠灯(150lm/W),单位流明/瓦的价格偏高。目前大多数GaN基LED都是基于蓝宝石和SiC衬底上进行外延生长,大尺寸的蓝宝石和SiC衬底价格昂贵,导致LED制造成本高。因此迫切寻找一种价格低廉的衬底材料应用于外延生长GaN基LED外延片。If LEDs are to be widely used on a large scale, it is necessary to further improve the luminous efficiency of LED chips and reduce the price of LED chips at the same time. Although the luminous efficiency of LED has surpassed that of fluorescent lamps and incandescent lamps, the luminous efficiency of commercial LEDs is still lower than that of sodium lamps (150lm/W), and the price per lumen/watt is relatively high. At present, most GaN-based LEDs are epitaxially grown on sapphire and SiC substrates. Large-sized sapphire and SiC substrates are expensive, resulting in high LED manufacturing costs. Therefore, it is urgent to find a low-cost substrate material for epitaxial growth of GaN-based LED epitaxial wafers.
实用新型内容Utility model content
为了克服现有技术的上述缺点与不足,本实用新型的目的在于提供一种生长在玻璃衬底上的LED外延片,具有缺陷密度低、结晶质量好,发光性能优良的优点。In order to overcome the above shortcomings and deficiencies of the prior art, the purpose of this utility model is to provide an LED epitaxial wafer grown on a glass substrate, which has the advantages of low defect density, good crystal quality and excellent luminous performance.
本实用新型的目的通过以下技术方案实现:The purpose of this utility model is achieved through the following technical solutions:
生长在玻璃衬底上的LED外延片,包括生长在玻璃衬底上的铝金属层,生长在铝金属层上的银金属层,生长在银金属层上的AlN缓冲层,生长在AlN缓冲层上的GaN缓冲层,生长在GaN缓冲层上的非掺杂GaN层,生长在非掺杂GaN层上的n型掺杂GaN薄膜,生长在n型掺杂GaN薄膜上的InGaN/GaN多量子阱,生长在InGaN/GaN多量子阱上的p型掺杂GaN薄膜。LED epitaxial wafer grown on glass substrate, including aluminum metal layer grown on glass substrate, silver metal layer grown on aluminum metal layer, AlN buffer layer grown on silver metal layer, AlN buffer layer grown on GaN buffer layer on GaN buffer layer, non-doped GaN layer grown on GaN buffer layer, n-type doped GaN thin film grown on undoped GaN layer, InGaN/GaN multiquantum grown on n-type doped GaN thin film Well, a p-type doped GaN thin film grown on InGaN/GaN multiple quantum wells.
所述铝金属层的厚度为150~200μm。The thickness of the aluminum metal layer is 150-200 μm.
所述银金属层的厚度为100~300nm。The thickness of the silver metal layer is 100-300nm.
所述AlN缓冲层的厚度为5~50nm。The thickness of the AlN buffer layer is 5-50 nm.
所述GaN缓冲层的厚度为50~80nm。The thickness of the GaN buffer layer is 50-80nm.
所述非掺杂GaN层的厚度为200~300nm。The thickness of the non-doped GaN layer is 200-300nm.
所述n型掺杂GaN薄膜的厚度为3~5μm。The thickness of the n-type doped GaN thin film is 3-5 μm.
所述InGaN/GaN量子阱为7~10个周期的InGaN阱层/GaN垒层,其中InGaN阱层的厚度为2~3nm;GaN垒层的厚度为10~13nm。The InGaN/GaN quantum well is 7-10 periods of InGaN well layer/GaN barrier layer, wherein the thickness of the InGaN well layer is 2-3 nm; the thickness of the GaN barrier layer is 10-13 nm.
所述p型掺杂GaN薄膜的厚度为300~350nm。The thickness of the p-type doped GaN thin film is 300-350 nm.
所述的生长在玻璃衬底上的LED外延片的制备方法,包括以下步骤:The preparation method of the LED epitaxial wafer grown on the glass substrate comprises the following steps:
(1)玻璃衬底表面抛光、清洗;(1) Polishing and cleaning the surface of the glass substrate;
(2)铝金属层的生长:在分子束外延系统中,在衬底温度为400~600℃条件下,沉积铝金属层;(2) Growth of the aluminum metal layer: in the molecular beam epitaxy system, the aluminum metal layer is deposited under the condition that the substrate temperature is 400-600°C;
(3)银金属层的生长:在分子束外延系统中,采用分子束外延系统中的电子束蒸发功能,在衬底温度为400~600℃条件下,沉积的银金属层;(3) Growth of the silver metal layer: in the molecular beam epitaxy system, the electron beam evaporation function in the molecular beam epitaxy system is used, and the silver metal layer is deposited under the condition of the substrate temperature of 400-600 °C;
(4)AlN缓冲层的生长:衬底温度调为450~550℃,在反应室的压力为4.0~7.2×10-5Pa、生长速度为0.2~0.8ML/s的条件下沉积金属铝薄膜,然后采用氮等离体子源对该金属铝薄膜进行氮化,等离体子源的功率为300~450W,氮气流量为1~5sccm,氮化时间为10~50分钟,获得AlN薄膜;(4) Growth of AlN buffer layer: the substrate temperature is adjusted to 450-550°C, the pressure of the reaction chamber is 4.0-7.2×10 -5 Pa, and the growth rate is 0.2-0.8ML/s to deposit metal aluminum film , and then nitriding the metal aluminum thin film by using a nitrogen plasma ion source, the power of the plasma ion source is 300-450W, the flow rate of nitrogen gas is 1-5 sccm, and the nitriding time is 10-50 minutes to obtain an AlN thin film;
(5)GaN缓冲层外延生长:衬底温度调为450~550℃,在反应室的压力为6.0~7.2×10-5Pa、束流比V/III值为50~60、生长速度为0.4~0.6ML/s的条件下生长GaN缓冲层;(5) GaN buffer layer epitaxial growth: the substrate temperature is adjusted to 450-550°C, the pressure in the reaction chamber is 6.0-7.2×10 -5 Pa, the beam current ratio V/III is 50-60, and the growth rate is 0.4 Growth of GaN buffer layer under the condition of ~0.6ML/s;
(6)非掺杂GaN层的外延生长:采用分子束外延生长工艺,衬底温度为500~600℃,在反应室的压力为4.0~5.0×10-5Pa、束流比V/III值为30~40、生长速度为0.6~0.8ML/s条件下,在步骤(4)得到的GaN缓冲层上生长非掺杂GaN;(6) Epitaxial growth of non-doped GaN layer: the molecular beam epitaxy growth process is adopted, the substrate temperature is 500-600°C, the pressure in the reaction chamber is 4.0-5.0×10 -5 Pa, and the beam current ratio V/III value growing non-doped GaN on the GaN buffer layer obtained in step (4) under the conditions of 30 to 40 and a growth rate of 0.6 to 0.8 ML/s;
(7)n型掺杂GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底温度升至650~750℃,在反应室压力为5.0~6.0×10-5Pa、束流比V/III值为40~50、生长速度为0.6~0.8ML/s条件下,在非掺杂GaN层上生长n型掺杂GaN薄膜;(7) Epitaxial growth of n-type doped GaN film: using molecular beam epitaxy growth process, the substrate temperature is raised to 650-750°C, the pressure in the reaction chamber is 5.0-6.0×10 -5 Pa, the beam current ratio V/ Under the conditions of III value of 40-50 and growth rate of 0.6-0.8ML/s, n-type doped GaN film is grown on the non-doped GaN layer;
(8)InGaN/GaN多量子阱的外延生长:采用分子束外延生长工艺,生长温度为750~850℃,在反应室的压力为4.0~5.0×10-5Pa、束流比V/III值为30~40、生长速度为0.4~0.6ML/s条件下,在n型掺杂GaN薄膜上生长InGaN/GaN多量子阱;(8) Epitaxial growth of InGaN/GaN multiple quantum wells: molecular beam epitaxy growth process is adopted, the growth temperature is 750-850°C, the pressure in the reaction chamber is 4.0-5.0×10 -5 Pa, and the beam current ratio V/III value InGaN/GaN multiple quantum wells are grown on n-type doped GaN films under the conditions of 30-40 and growth rate of 0.4-0.6ML/s;
(9)p型掺杂GaN薄膜的外延生长:采用分子束外延生长工艺,将衬底温度调至650~750℃,反应室的压力5.0~6.0×10-5Pa、束流比V/III值30~40、生长速度0.6~0.8ML/s条件下,在InGaN/GaN多量子阱上生长p型掺杂GaN薄膜。(9) Epitaxial growth of p-type doped GaN film: use molecular beam epitaxy growth process, adjust the substrate temperature to 650-750°C, the pressure of the reaction chamber is 5.0-6.0×10 -5 Pa, and the beam current ratio is V/III The p-type doped GaN thin film is grown on the InGaN/GaN multi-quantum well under the condition of the value of 30-40 and the growth rate of 0.6-0.8ML/s.
与现有技术相比,本实用新型具有以下优点和有益效果:Compared with the prior art, the utility model has the following advantages and beneficial effects:
(1)本实用新型的生长在玻璃衬底上的LED外延片,能有效的减少位错的形成,制备出高质量LED外延片,有利提高了载流子的辐射复合效率,可大幅度提高LED的发光效率。(1) The LED epitaxial wafer grown on the glass substrate of the utility model can effectively reduce the formation of dislocations, prepare high-quality LED epitaxial wafers, and improve the radiation recombination efficiency of carriers, which can greatly improve Luminous efficiency of LEDs.
(2)本实用新型的生长在玻璃衬底上的LED外延片,在进行玻璃衬底去除之后,铝金属层具有作为支撑层、导电、导热的功能;银金属层具有光线发射的功能。在预先沉积铝金属、银金属层上进行GaN薄膜的生长,为制备低成本、高导热、高导电、高发光性能LED奠定了基础。(2) For the LED epitaxial wafer grown on the glass substrate of the present invention, after the glass substrate is removed, the aluminum metal layer has the functions of being a support layer, conducting electricity and heat conduction; the silver metal layer has the function of light emission. The growth of GaN film on the pre-deposited aluminum and silver metal layers lays the foundation for the preparation of low-cost, high thermal conductivity, high electrical conductivity, and high luminous performance LEDs.
(3)本实用新型使用玻璃作为衬底,玻璃衬底容易获得,价格便宜,有利于降低生产成本。(3) The utility model uses glass as a substrate, and the glass substrate is easy to obtain and cheap, which is conducive to reducing production costs.
(4)本实用新型采用玻璃衬底,具有容易去除的优点,然后在去除玻璃衬底后的LED外延片上制作n型电极,从而可以有利于制备垂直结构的LED。(4) The utility model adopts a glass substrate, which has the advantage of being easy to remove, and then makes an n-type electrode on the LED epitaxial wafer after removing the glass substrate, which can be beneficial to the preparation of a vertically structured LED.
附图说明Description of drawings
图1是实施例1制备的LED外延片的截面示意图。FIG. 1 is a schematic cross-sectional view of the LED epitaxial wafer prepared in Example 1.
图2是实施例1制备的LED外延片的电致发光(EL)图谱。FIG. 2 is an electroluminescence (EL) spectrum of the LED epitaxial wafer prepared in Example 1. FIG.
具体实施方式detailed description
下面结合实施例,对本实用新型作进一步地详细说明,但本实用新型的实施方式不限于此。The utility model will be described in further detail below in conjunction with the examples, but the implementation of the utility model is not limited thereto.
实施例1Example 1
如图1所示,本实施例制备的生长在玻璃衬底上的LED外延片,包括生长在玻璃衬底10上的铝金属层11,生长在铝金属层11上的银金属层12,生长在银金属层12上的AlN缓冲层13,生长在AlN缓冲层13上的GaN缓冲层14,生长在GaN缓冲层14上的非掺杂GaN层15,生长在非掺杂GaN层15上的n型掺杂GaN薄膜16,生长在n型掺杂GaN薄膜16上的InGaN/GaN量子阱17,生长在InGaN/GaN量子阱上17的p型掺杂GaN薄膜18。As shown in Figure 1, the LED epitaxial wafer grown on the glass substrate prepared in this embodiment includes an aluminum metal layer 11 grown on a glass substrate 10, a silver metal layer 12 grown on the aluminum metal layer 11, and a growth The AlN buffer layer 13 on the silver metal layer 12, the GaN buffer layer 14 grown on the AlN buffer layer 13, the undoped GaN layer 15 grown on the GaN buffer layer 14, the undoped GaN layer 15 grown on the undoped GaN layer 15 An n-type doped GaN thin film 16, an InGaN/GaN quantum well 17 grown on the n-type doped GaN thin film 16, and a p-type doped GaN thin film 18 grown on the InGaN/GaN quantum well 17.
本实施例的生长在玻璃衬底上的LED外延片的制备方法,包括以下步骤:The preparation method of the LED epitaxial wafer grown on the glass substrate of the present embodiment comprises the following steps:
(1)衬底的选取:采用普通玻璃衬底;(1) Selection of substrate: use ordinary glass substrate;
(2)衬底表面抛光、清洗处理;(2) Substrate surface polishing and cleaning treatment;
所述衬底表面抛光,具体为:The surface polishing of the substrate is specifically:
首先将玻璃衬底表面用金刚石泥浆进行抛光,配合光学显微镜观察衬底表面,直到没有划痕后,再采用化学机械抛光的方法进行抛光处理;First, the surface of the glass substrate is polished with diamond slurry, and the surface of the substrate is observed with an optical microscope until there are no scratches, and then the chemical mechanical polishing method is used for polishing;
所述清洗,具体为:The cleaning is specifically:
将玻璃衬底放入去离子水中室温下超声清洗3分钟,去除玻璃衬底表面粘污颗粒,再依次经过丙酮、乙醇洗涤,去除表面有机物,用高纯干燥氮气吹干;Put the glass substrate into deionized water and ultrasonically clean it at room temperature for 3 minutes to remove the dirt particles on the surface of the glass substrate, then wash it with acetone and ethanol in order to remove the surface organic matter, and dry it with high-purity dry nitrogen;
(3)铝金属层的生长:在分子束外延系统中,在衬底温度为400℃条件下,沉积厚度为150μm的铝金属层;(3) Growth of the aluminum metal layer: in the molecular beam epitaxy system, the aluminum metal layer with a thickness of 150 μm is deposited under the condition of the substrate temperature of 400 ° C;
(4)银金属层的生长:在分子束外延系统中,采用分子束外延系统中的电子束蒸发功能,在衬底温度为400℃条件下,沉积厚度为100nm厚度的银金属层;(4) Growth of the silver metal layer: in the molecular beam epitaxy system, the electron beam evaporation function in the molecular beam epitaxy system is used, and the silver metal layer with a thickness of 100nm is deposited under the condition that the substrate temperature is 400°C;
(5)AlN缓冲层的生长:衬底温度调为500℃,在反应室的压力为4.0×10-5Pa、生长速度为0.2ML/s的条件下沉积厚度为10nm的金属铝薄膜,然后采用氮等离体子源对该铝层进行氮化,氮等离体子源的功率为300W,氮气流量为1.5sccm,氮化时间为10分钟,获得AlN薄膜。(5) Growth of AlN buffer layer: adjust the substrate temperature to 500°C, deposit a metal aluminum film with a thickness of 10nm under the conditions of a reaction chamber pressure of 4.0×10 -5 Pa and a growth rate of 0.2ML/s, and then The aluminum layer was nitrided by a nitrogen plasma source, the power of the nitrogen plasma source was 300 W, the flow rate of nitrogen gas was 1.5 sccm, and the nitriding time was 10 minutes to obtain an AlN film.
(6)GaN缓冲层外延生长:衬底温度调为500℃,在反应室的压力为6.0×10-5Pa、束流比V/III值为50、生长速度为0.4ML/s的条件下生长厚度为50nm的GaN缓冲层;(6) GaN buffer layer epitaxial growth: the substrate temperature is adjusted to 500°C, the pressure of the reaction chamber is 6.0×10 -5 Pa, the beam current ratio V/III is 50, and the growth rate is 0.4ML/s. Grow a GaN buffer layer with a thickness of 50nm;
(7)非掺杂GaN层的外延生长:采用分子束外延生长工艺,衬底温度为500℃,在反应室的压力为4.0×10-5Pa、束流比V/III值为30、生长速度0.6ML/s条件下,在步骤(4)得到的GaN缓冲层上生长厚度为200nm的非掺杂GaN薄膜。(7) Epitaxial growth of non-doped GaN layer: using molecular beam epitaxy growth process, the substrate temperature is 500°C, the pressure in the reaction chamber is 4.0×10 -5 Pa, the beam current ratio V/III is 30, and the growth Under the condition of a speed of 0.6ML/s, a non-doped GaN thin film with a thickness of 200nm is grown on the GaN buffer layer obtained in step (4).
(8)n型掺杂GaN薄膜的外延生长:采用分子束外延生长工艺,衬底温度为650℃,在反应室压力为5.0×10-5Pa、束流比V/III值为40、生长速度为0.6ML/s条件下,在步骤(5)得到的非掺杂GaN层上生长厚度为3μm的n型掺杂GaN薄膜;(8) Epitaxial growth of n-type doped GaN film: using molecular beam epitaxy growth process, the substrate temperature is 650°C, the pressure in the reaction chamber is 5.0×10 -5 Pa, the beam current ratio V/III is 40, and the growth Under the condition of a speed of 0.6ML/s, grow an n-type doped GaN film with a thickness of 3 μm on the non-doped GaN layer obtained in step (5);
(9)InGaN/GaN多量子阱的外延生长:采用分子束外延生长工艺,生长温度为750℃,在反应室的压力为4.0×10-5Pa、束流比V/III值为30、生长速度为0.4ML/s条件下,在步骤(6)得到的n型掺杂GaN薄膜上生长InGaN/GaN多量子阱;所述InGaN/GaN量子阱为7个周期的InGaN阱层/GaN垒层,其中InGaN阱层的厚度为2nm,GaN垒层的厚度为10nm;(9) Epitaxial growth of InGaN/GaN multiple quantum wells: using molecular beam epitaxy growth process, the growth temperature is 750°C, the pressure in the reaction chamber is 4.0×10 -5 Pa, the beam current ratio V/III is 30, the growth Under the condition of a speed of 0.4ML/s, grow InGaN/GaN multiple quantum wells on the n-type doped GaN film obtained in step (6); the InGaN/GaN quantum wells are 7 cycles of InGaN well layers/GaN barrier layers , wherein the thickness of the InGaN well layer is 2nm, and the thickness of the GaN barrier layer is 10nm;
(10)p型掺杂GaN薄膜的外延生长:采用分子束外延生长工艺,衬底温度为650℃,在反应室的压力为5.0×10-5Pa、束流比V/III值为30、生长速度为0.6ML/s条件下,在步骤(7)得到的InGaN/GaN多量子阱上生长的厚度为300nm的p型掺杂GaN薄膜,经测定,本实施例制备的p型掺杂GaN薄膜的粗糙度RMS值低于1.6nm;表明获得表明光滑的高质量的p型掺杂GaN薄膜。(10) Epitaxial growth of p-type doped GaN film: using molecular beam epitaxy growth process, the substrate temperature is 650°C, the pressure in the reaction chamber is 5.0×10 -5 Pa, the beam current ratio V/III is 30, Under the condition of a growth rate of 0.6ML/s, a p-type doped GaN film with a thickness of 300nm grown on the InGaN/GaN multi-quantum well obtained in step (7) was measured, and the p-type doped GaN film prepared in this embodiment The roughness RMS value of the film is lower than 1.6nm; indicating that a smooth high-quality p-type doped GaN film is obtained.
图2是本实用新型制备出的LED外延片的EL图谱,其电致发光峰为455.6nm,半峰宽为22.2nm,达到目前照明要求水平,显示出了本实用新型制备的LED器件优异的电学性能。Fig. 2 is the EL spectrum of the LED epitaxial wafer prepared by the utility model, and its electroluminescence peak is 455.6nm, and the half-maximum width is 22.2nm, reaches the current lighting requirement level, has shown the excellent performance of the LED device prepared by the utility model electrical properties.
实施例2Example 2
本实施例的生长在玻璃衬底上的LED外延片的制备方法,包括以下步骤:The preparation method of the LED epitaxial wafer grown on the glass substrate of the present embodiment comprises the following steps:
(1)衬底的选取:采用普通玻璃衬底;(1) Selection of substrate: use ordinary glass substrate;
(2)衬底表面抛光、清洗处理;(2) Substrate surface polishing and cleaning treatment;
所述衬底表面抛光,具体为:The surface polishing of the substrate is specifically:
首先将玻璃衬底表面用金刚石泥浆进行抛光,配合光学显微镜观察衬底表面,直到没有划痕后,再采用化学机械抛光的方法进行抛光处理;First, the surface of the glass substrate is polished with diamond slurry, and the surface of the substrate is observed with an optical microscope until there are no scratches, and then the chemical mechanical polishing method is used for polishing;
所述清洗,具体为:The cleaning is specifically:
将玻璃衬底放入去离子水中室温下超声清洗5分钟,去除玻璃衬底表面粘污颗粒,再依次经过丙酮、乙醇洗涤,去除表面有机物,用高纯干燥氮气吹干;Put the glass substrate into deionized water and ultrasonically clean it at room temperature for 5 minutes to remove the dirt particles on the surface of the glass substrate, then wash it with acetone and ethanol in sequence to remove the surface organic matter, and dry it with high-purity dry nitrogen;
(3)铝金属层的生长:在分子束外延系统中,在衬底温度为600℃条件下,沉积厚度为200μm的铝金属层;(3) Growth of the aluminum metal layer: in the molecular beam epitaxy system, the aluminum metal layer with a thickness of 200 μm is deposited under the condition of the substrate temperature of 600 ° C;
(4)银金属层的生长:在分子束外延系统中,采用分子束外延系统中的电子束蒸发功能,在衬底温度为600℃条件下,沉积厚度为300nm厚度的银金属层;(4) Growth of the silver metal layer: in the molecular beam epitaxy system, the electron beam evaporation function in the molecular beam epitaxy system is used, and the silver metal layer with a thickness of 300nm is deposited under the condition that the substrate temperature is 600°C;
(5)AlN缓冲层的生长:衬底温度为550℃,在反应室的压力为7.2×10-5Pa、生长速度为0.2ML/s的条件下沉积厚度为20nm的金属铝薄膜,然后采用氮等离体子源对该铝层进行氮化,氮等离体子源的功率为300W,氮气流量为1.5sccm,氮化时间为20分钟,获得AlN薄膜。(5) Growth of AlN buffer layer: the substrate temperature is 550°C, the pressure of the reaction chamber is 7.2×10 -5 Pa, and the growth rate is 0.2ML/s. A metal aluminum film with a thickness of 20nm is deposited, and then A nitrogen plasma source was used to nitride the aluminum layer. The power of the nitrogen plasma source was 300 W, the flow rate of nitrogen gas was 1.5 sccm, and the nitriding time was 20 minutes to obtain an AlN film.
(6)GaN缓冲层外延生长:衬底温度为550℃,在反应室的压力为6.0×10-5Pa、束流比V/III值为50、生长速度为0.4ML/s的条件下生长厚度为50nm的GaN缓冲层;(6) Epitaxial growth of GaN buffer layer: the substrate temperature is 550°C, the pressure of the reaction chamber is 6.0×10 -5 Pa, the beam current ratio V/III is 50, and the growth rate is 0.4ML/s. A GaN buffer layer with a thickness of 50nm;
(7)非掺杂GaN层的外延生长:采用分子束外延生长工艺,衬底温度为600℃,在反应室的压力为4.0×10-5Pa、束流比V/III值为30、生长速度0.6ML/s条件下,在步骤(4)得到的GaN缓冲层上生长厚度为200nm的非掺杂GaN薄膜。(7) Epitaxial growth of non-doped GaN layer: using molecular beam epitaxy growth process, the substrate temperature is 600°C, the pressure in the reaction chamber is 4.0×10 -5 Pa, the beam current ratio V/III is 30, and the growth Under the condition of a speed of 0.6ML/s, a non-doped GaN thin film with a thickness of 200nm is grown on the GaN buffer layer obtained in step (4).
(8)n型掺杂GaN薄膜的外延生长:采用分子束外延生长工艺,衬底温度为750℃,在反应室压力为5.0×10-5Pa、束流比V/III值为40、生长速度为0.6ML/s条件下,在步骤(5)得到的非掺杂GaN层上生长厚度为3μm的n型掺杂GaN薄膜;(8) Epitaxial growth of n-type doped GaN film: using molecular beam epitaxy growth process, the substrate temperature is 750°C, the pressure in the reaction chamber is 5.0×10 -5 Pa, the beam current ratio V/III is 40, and the growth Under the condition of a speed of 0.6ML/s, grow an n-type doped GaN film with a thickness of 3 μm on the non-doped GaN layer obtained in step (5);
(9)InGaN/GaN多量子阱的外延生长:采用分子束外延生长工艺,衬底温度为850℃,在反应室的压力为4.0×10-5Pa、束流比V/III值为30、生长速度为0.4ML/s条件下,在步骤(6)得到的n型掺杂GaN薄膜上生长InGaN/GaN多量子阱;所述InGaN/GaN量子阱为7个周期的InGaN阱层/GaN垒层,其中InGaN阱层的厚度为2nm,GaN垒层的厚度为10nm;(9) Epitaxial growth of InGaN/GaN multiple quantum wells: the molecular beam epitaxy growth process is adopted, the substrate temperature is 850°C, the pressure in the reaction chamber is 4.0×10 -5 Pa, and the beam current ratio V/III is 30, Under the condition that the growth rate is 0.4ML/s, grow InGaN/GaN multiple quantum wells on the n-type doped GaN film obtained in step (6); the InGaN/GaN quantum wells are 7 cycles of InGaN well layers/GaN barriers layer, wherein the thickness of the InGaN well layer is 2nm, and the thickness of the GaN barrier layer is 10nm;
(10)p型掺杂GaN薄膜的外延生长:采用分子束外延生长工艺,衬底温度为750℃,在反应室的压力为5.0×10-5Pa、束流比V/III值为30、生长速度为0.6ML/s条件下,在步骤(7)得到的InGaN/GaN多量子阱上生长的厚度为300nm的p型掺杂GaN薄膜。(10) Epitaxial growth of p-type doped GaN film: molecular beam epitaxy growth process is adopted, the substrate temperature is 750°C, the pressure in the reaction chamber is 5.0×10 -5 Pa, and the beam current ratio V/III is 30, A p-type doped GaN thin film with a thickness of 300 nm is grown on the InGaN/GaN multiple quantum well obtained in step (7) under the condition of a growth rate of 0.6ML/s.
本实施例制备的玻璃衬底上的LED外延片无论是在电学性质、光学性质上,还是在缺陷密度、结晶质量都具有非常好的性能,测试数据与实施例1相近,在此不再赘述。The LED epitaxial wafer on the glass substrate prepared in this embodiment has very good performance in terms of electrical properties, optical properties, defect density, and crystal quality. The test data is similar to that of Example 1, and will not be repeated here. .
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受所述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。The above-mentioned embodiment is a preferred implementation mode of the present utility model, but the implementation mode of the present utility model is not limited by the described embodiment, and any other changes, modifications, modifications, Substitution, combination, and simplification should all be equivalent replacement methods, and are all included in the protection scope of the present utility model.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621450922.3U CN206422088U (en) | 2016-12-27 | 2016-12-27 | The LED of growth on a glass substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621450922.3U CN206422088U (en) | 2016-12-27 | 2016-12-27 | The LED of growth on a glass substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN206422088U true CN206422088U (en) | 2017-08-18 |
Family
ID=59576780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201621450922.3U Active CN206422088U (en) | 2016-12-27 | 2016-12-27 | The LED of growth on a glass substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN206422088U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784224A (en) * | 2016-12-27 | 2017-05-31 | 华南理工大学 | Growth LED on a glass substrate and preparation method thereof |
CN110429163A (en) * | 2019-07-12 | 2019-11-08 | 华南师范大学 | A kind of ultraviolet LED epitaxial wafer and preparation method thereof |
-
2016
- 2016-12-27 CN CN201621450922.3U patent/CN206422088U/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784224A (en) * | 2016-12-27 | 2017-05-31 | 华南理工大学 | Growth LED on a glass substrate and preparation method thereof |
CN106784224B (en) * | 2016-12-27 | 2019-01-29 | 华南理工大学 | The LED epitaxial wafer and preparation method thereof of growth on a glass substrate |
CN110429163A (en) * | 2019-07-12 | 2019-11-08 | 华南师范大学 | A kind of ultraviolet LED epitaxial wafer and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104037284B (en) | A kind of GaN thin film grown on Si substrate and preparation method thereof | |
CN102945898B (en) | Growth AlN film on metal A g substrate and preparation method thereof, application | |
CN106784224A (en) | Growth LED on a glass substrate and preparation method thereof | |
CN103296066B (en) | Growth GaN film on strontium aluminate tantalum lanthanum substrate and preparation method thereof, application | |
CN104037288B (en) | A kind of LED grown on a si substrate and preparation method thereof | |
CN103996611B (en) | GaN thin film growing on metal Al substrate and preparing method and application thereof | |
CN203910840U (en) | LED epitaxial wafer grown on Si patterned substrate | |
CN108807617A (en) | The GaN base nano-pillar LED epitaxial wafer and preparation method thereof being grown in silicon/graphene compound substrate | |
CN111599904A (en) | LED epitaxial wafer grown on Si substrate and preparation method thereof | |
CN103996764B (en) | LED epitaxial wafer growing on Ag substrate and preparing method and application of LED epitaxial wafer | |
CN103296158B (en) | Growth Doped GaN film on strontium aluminate tantalum lanthanum substrate and preparation method thereof | |
CN206422088U (en) | The LED of growth on a glass substrate | |
CN203950831U (en) | Be grown in the LED epitaxial wafer of Cu substrate | |
CN103296157B (en) | Grow the LED on strontium aluminate tantalum lanthanum substrate and preparation method | |
CN206422090U (en) | The InGaN/GaN MQWs of growth on a glass substrate | |
CN103296159B (en) | Grow the InGaN/GaN Multiple Quantum Well on strontium aluminate tantalum lanthanum substrate and preparation method | |
CN106505135A (en) | InGaN/GaN multiple quantum well grown on glass substrate and its preparation method | |
CN206422089U (en) | The GaN film of growth on a glass substrate | |
CN203339207U (en) | LED epitaxial wafer grown on strontium aluminate tantalum lanthanum substrate | |
CN203339206U (en) | InGaN/GaN Multiple Quantum Wells Grown on Strontium Tantalum Lanthanum Aluminate Substrates | |
CN203339168U (en) | GaN Thin Films Grown on Strontium Tantalum Lanthanum Aluminate Substrates | |
CN204067413U (en) | InGaN/GaN Multiple Quantum Wells Grown on W Substrates | |
CN203339209U (en) | Doped GaN Thin Films Grown on Strontium-Tantalum-Lathanum Aluminate Substrates | |
CN103996758A (en) | LED epitaxial wafer growing on Cu substrate and preparing method and application of LED epitaxial wafer | |
CN203983319U (en) | LED epitaxial wafer grown on W substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |