CN205734940U - A kind of online fast calibration device of TCP being applied to industrial robot - Google Patents
A kind of online fast calibration device of TCP being applied to industrial robot Download PDFInfo
- Publication number
- CN205734940U CN205734940U CN201620482685.2U CN201620482685U CN205734940U CN 205734940 U CN205734940 U CN 205734940U CN 201620482685 U CN201620482685 U CN 201620482685U CN 205734940 U CN205734940 U CN 205734940U
- Authority
- CN
- China
- Prior art keywords
- tcp
- industrial robot
- calibration
- beam photoelectric
- end tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Landscapes
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
本实用新型公开了一种应用于工业机器人的TCP在线快速标定装置,包括控制柜、TCP标定装置、工业机器人、末端工具和控制总线,控制柜通过控制总线分别连接TCP标定装置和工业机器人,末端工具安装在工业机器人上;TCP标定装置包括TCP检测装置、标定控制器和安装底座,TCP检测装置通过安装底座固定安装在工业机器人的一侧,测量平面与工业机器人基坐标系的XOY平面平行。根据对射式光电传感器的通断信号,记录法兰位姿数据,计算并补偿末端工具在X/Y轴及Z轴方向上的位姿偏差,通过多次重复操作,降低TCP标定误差,有效的提高工业机器人的作业精度,减少工业机器人停机维护时间,提高了工业生产线的自动化程度。
The utility model discloses a TCP online rapid calibration device applied to industrial robots, which comprises a control cabinet, a TCP calibration device, an industrial robot, terminal tools and a control bus. The control cabinet is respectively connected to the TCP calibration device and the industrial robot through the control bus. The tool is installed on the industrial robot; the TCP calibration device includes a TCP detection device, a calibration controller and an installation base. The TCP detection device is fixedly installed on one side of the industrial robot through the installation base, and the measurement plane is parallel to the XOY plane of the industrial robot's base coordinate system. According to the on-off signal of the through-beam photoelectric sensor, record the flange pose data, calculate and compensate the pose deviation of the end tool in the X/Y axis and Z axis direction, and reduce the TCP calibration error through repeated operations, effectively Improve the working accuracy of industrial robots, reduce the downtime and maintenance time of industrial robots, and improve the automation of industrial production lines.
Description
技术领域technical field
本发明涉及一种工业机器人末端工具标定技术,具体涉及一种应用于工业机器人的TCP在线快速标定方法及装置。The invention relates to an industrial robot terminal tool calibration technology, in particular to a TCP online rapid calibration method and device applied to an industrial robot.
背景技术Background technique
随着工业机器人技术的快速发展,其逐渐在焊接、切削、装配等领域得到越来越广泛的应用。通过安装不同的末端工具,工业机器人能够完成多种作业任务。其中,工具中心点(Tool Center Point,TCP)的位姿标定精度直接影响工业机器人的作业精度。With the rapid development of industrial robot technology, it has gradually been more and more widely used in welding, cutting, assembly and other fields. By installing different end tools, industrial robots can complete a variety of tasks. Among them, the pose calibration accuracy of the Tool Center Point (TCP) directly affects the operation accuracy of the industrial robot.
工业机器人的末端工具(如螺柱焊枪、切削刀具等)经过长时间工作之后,会出现一定的位姿偏差,从而导致工业机器人无法完成预设功能等问题。目前,针对工业机器人末端工具TCP的标定主要采用离线人工示教的多点法。该方法首先将工业机器人末端工具的TCP对齐到一固定点上,然后通过调整工业机器人的关节角度,实现TCP标定。但此类方法存在一定的弊端:(1)多点法的TCP标定过程主要受人为因素(如操作经验等)的影响,不可避免地引入较大的误差;(2)标定过程耗时较长,将影响工业机器人的生产作业效率;(3)为实现对生产线地周期性标定,将耗费大量的人力资源,同时降低了生产线的总体产能。工业机器人TCP快速在线准确的标定直接关系到生产线的产品质量和生产效率,因此,亟待提出一种应用于工业机器人的TCP快速在线标定方法,既能够保证工业机器人的作业精度,又可以提高工业机器人的自动化程度。After working for a long time, the end tools of industrial robots (such as stud welding guns, cutting tools, etc.) will have certain posture deviations, which will cause problems such as the inability of industrial robots to complete preset functions. At present, the calibration of the end tool TCP of industrial robots mainly adopts the multi-point method of offline manual teaching. In this method, the TCP of the end tool of the industrial robot is first aligned to a fixed point, and then the TCP calibration is realized by adjusting the joint angle of the industrial robot. However, this method has certain disadvantages: (1) The TCP calibration process of the multi-point method is mainly affected by human factors (such as operating experience, etc.), which inevitably introduces large errors; (2) The calibration process takes a long time , will affect the production efficiency of industrial robots; (3) in order to achieve periodic calibration of the production line, it will consume a lot of human resources and reduce the overall production capacity of the production line. The fast online and accurate calibration of industrial robot TCP is directly related to the product quality and production efficiency of the production line. Therefore, it is urgent to propose a TCP fast online calibration method applied to industrial robots, which can not only ensure the working accuracy of industrial robots, but also improve the quality of industrial robots. degree of automation.
发明内容Contents of the invention
为解决现有技术的不足,本发明的目的在于提供一种能够实现工业机器人 TCP的自由度标定的应用于工业机器人的TCP在线快速标定方法及装置。In order to solve the deficiencies in the prior art, the object of the present invention is to provide a TCP online rapid calibration method and device applied to industrial robots that can realize the degree of freedom calibration of industrial robot TCP.
为了实现上述目标,本发明采用如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种应用于工业机器人的TCP在线快速标定装置,包括控制柜,TCP标定装置,工业机器人、末端工具和控制总线,所述控制柜通过控制总线分别连接TCP标定装置和工业机器人,末端工具安装在工业机器人上;所述TCP标定装置包括TCP检测装置、标定控制器和安装底座,TCP检测装置通过安装底座固定安装在工业机器人的一侧,测量平面与工业机器人基坐标系的XOY平面平行。A TCP online rapid calibration device applied to industrial robots, including a control cabinet, a TCP calibration device, an industrial robot, an end tool and a control bus, the control cabinet is respectively connected to the TCP calibration device and the industrial robot through the control bus, and the end tool is installed on the On the industrial robot; the TCP calibration device includes a TCP detection device, a calibration controller and a mounting base, the TCP detection device is fixedly installed on one side of the industrial robot through the mounting base, and the measurement plane is parallel to the XOY plane of the industrial robot base coordinate system.
上述TCP检测装置包括装置上盖、装置本体、精度检验开关以及四组对射式光电传感器,所述精度检验开关设置于装置本体上表面,所述装置本体为纵向镂空正方形的长方体,四组对射式光电传感器分别设置于装置本体内侧面的纵向中线上,对射式光电传感器的激光射线相互垂直且在同一水平面。The above-mentioned TCP detection device includes a device upper cover, a device body, an accuracy inspection switch and four groups of opposite-beam photoelectric sensors. The accuracy inspection switch is arranged on the upper surface of the device body. The beam-type photoelectric sensors are respectively arranged on the longitudinal centerline of the inner side of the device body, and the laser rays of the beam-type photoelectric sensors are perpendicular to each other and on the same horizontal plane.
上述标定控制器包括装置外壳、微控制器单元、显示单元、按键单元、状态指示灯和通信接口,所述标定控制器获取精度检验开关的输出信号以及四组对射式光电传感器的通断信号,通过连接通信接口的控制总线与控制柜进行数据通信,并通过显示单元、状态指示灯反馈工作信息。The above-mentioned calibration controller includes a device shell, a microcontroller unit, a display unit, a key unit, a status indicator light and a communication interface, and the calibration controller obtains the output signal of the precision inspection switch and the on-off signal of four groups of through-beam photoelectric sensors , communicate with the control cabinet through the control bus connected to the communication interface, and feed back the working information through the display unit and status indicator light.
一种应用于工业机器人的TCP在线快速标定方法,包括如下步骤:A TCP online rapid calibration method applied to industrial robots, comprising the following steps:
S1、保持工业机器人末端工具垂直于基坐标系的XOY平面,通过人工示教方法实现工业机器人末端工具与TCP检测装置的精度检测开关对准,记录工业机器人法兰的空间位姿数据;S1. Keep the end tool of the industrial robot perpendicular to the XOY plane of the base coordinate system, realize the alignment of the end tool of the industrial robot with the precision detection switch of the TCP detection device through the manual teaching method, and record the space pose data of the flange of the industrial robot;
S2、工业机器人连续工作一段时间后,工业机器人根据初始人工示教的空间位姿数据检测当前工业机器人的TCP点是否偏移较大,若无法满足生产要求,则进入标定程序;S2. After the industrial robot has been working continuously for a period of time, the industrial robot detects whether the TCP point of the current industrial robot has a large offset according to the spatial pose data of the initial manual teaching. If it cannot meet the production requirements, it enters the calibration procedure;
S3、标定程序:标定控制器通过控制柜控制工业机器人的末端工具以初始 姿态在TCP检测装置中做正方形轨迹的标定运动;在运动过程中,标定控制器的微控制器单元监测TCP检测装置内的四组对射式光电传感器通断状态,根据该通断信号的时间点,读取并存储工业机器人在该时间点的法兰空间位姿数据,利用以上存储的空间位姿数据计算工业机器人末端工具在X轴与Y轴方向上的位置偏差以及角度偏差,并实现TCP的误差补偿;S3. Calibration program: the calibration controller controls the terminal tool of the industrial robot to perform a calibration movement of a square trajectory in the TCP detection device with an initial posture through the control cabinet; during the movement process, the microcontroller unit of the calibration controller monitors the TCP detection device According to the on-off state of the four groups of through-beam photoelectric sensors, according to the time point of the on-off signal, read and store the flange space pose data of the industrial robot at that time point, and use the space pose data stored above to calculate the industrial robot The position deviation and angle deviation of the end tool in the direction of X-axis and Y-axis, and realize the error compensation of TCP;
S4、重复步骤S3的操作,通过标定结果的迭代,降低TCP标定误差;S4, repeating the operation of step S3, and reducing the TCP calibration error through the iteration of the calibration results;
S5、控制末端工具在基坐标系的Z轴方向上做匀速直线运动,以确定工业机器人TCP在Z轴方向上位置偏差,补偿TCP的误差;S5. Control the end tool to perform uniform linear motion in the Z-axis direction of the base coordinate system to determine the position deviation of the industrial robot TCP in the Z-axis direction and compensate for the error of the TCP;
S6、重复步骤S5的操作,通过标定结果的迭代,降低TCP标定误差。S6. Repeat the operation of step S5, and reduce the TCP calibration error by iterating the calibration results.
上述的一种应用于工业机器人的TCP在线快速标定方法,其特征在于所述步骤S3中末端工具在X轴与Y轴方向上的位置偏差的计算方法为:The above-mentioned TCP online rapid calibration method applied to industrial robots is characterized in that the calculation method of the position deviation of the end tool in the X-axis and Y-axis directions in the step S3 is:
在标定运动过程中,末端工具每经过一组对射式光电传感器,标定控制器读取工业机器人法兰坐标系的空间位姿数据,记为Pijn;During the calibration movement, every time the end tool passes through a group of through-beam photoelectric sensors, the calibration controller reads the space pose data of the flange coordinate system of the industrial robot, which is recorded as P ijn ;
所述i表示第i组对射式光电传感器,i=1或2或3或4,其中1为对射式光电传感器1,2为对射式光电传感器2,3为对射式光电传感器3,4为对射式光电传感器4;The i represents the i-th group of through-beam photoelectric sensors, i=1 or 2 or 3 or 4, wherein 1 is the through-beam photoelectric sensor 1, 2 is the through-beam photoelectric sensor 2, and 3 is the through-beam photoelectric sensor 3 , 4 is the through-beam photoelectric sensor 4;
所述j表示对射式光电传感器的通断,j=1或2,1表示对射式光电传感器信号接通,2表示对射式光电传感器信号断开;Said j represents the on-off of the through-beam photoelectric sensor, j=1 or 2, 1 means that the through-beam photoelectric sensor signal is connected, and 2 means that the through-beam photoelectric sensor signal is disconnected;
所述n表示单次循环运动中,第n次通过第i组对射式光电传感器,n=1或2;The n represents the nth pass through the i-th group of through-beam photoelectric sensors in a single cycle movement, n=1 or 2;
基于标定控制器获取的法兰坐标系空间位姿数据,Based on the space pose data of the flange coordinate system obtained by the calibration controller,
A、末端工具第一次通过第1组对射式光电传感器1时,末端工具的中线与对射式光电传感器1的激光射线的交点Y轴坐标为:A. When the end tool passes through the first group of through-beam photoelectric sensors 1 for the first time, the Y-axis coordinates of the intersection point between the center line of the end tool and the laser beam of the through-beam photoelectric sensor 1 are:
末端工具第一次通过第3组对射式光电传感器3时,末端工具的中线与对射式光电传感器3的激光射线的交点Y轴坐标为:When the end tool passes through the third group of through-beam photoelectric sensors 3 for the first time, the Y-axis coordinates of the intersection point between the center line of the end tool and the laser ray of the through-beam photoelectric sensor 3 are:
末端工具第二次通过第1组对射式光电传感器1时,末端工具的中线与对射式光电传感器1的激光射线的交点Y轴坐标为:When the end tool passes through the first group of through-beam photoelectric sensors 1 for the second time, the Y-axis coordinates of the intersection point between the center line of the end tool and the laser ray of the through-beam photoelectric sensor 1 are:
末端工具第二次通过第3组对射式光电传感器3时,末端工具的中线与对射式光电传感器3的激光射线的交点Y轴坐标为:When the end tool passes through the third group of through-beam photoelectric sensors 3 for the second time, the Y-axis coordinates of the intersection point between the center line of the end tool and the laser ray of the through-beam photoelectric sensor 3 are:
因此,末端工具的TCP在Y轴方向上的位置偏差可由下式计算得出:Therefore, the position deviation of the TCP of the end tool in the Y-axis direction can be calculated by the following formula:
B、末端工具第一次通过第2组对射式光电传感器2时,末端工具的中线与对射式光电传感器2的激光射线的交点X轴坐标为:B. When the end tool passes through the second group of through-beam photoelectric sensors 2 for the first time, the X-axis coordinates of the intersection point between the center line of the end tool and the laser ray of the through-beam photoelectric sensor 2 are:
末端工具第一次通过第3组对射式光电传感器4时,末端工具的中线与对射式光电传感器4的激光射线的交点Y轴坐标为:When the end tool passes through the third group of through-beam photoelectric sensors 4 for the first time, the Y-axis coordinates of the intersection of the center line of the end tool and the laser ray of the through-beam photoelectric sensor 4 are:
末端工具第二次通过第2组对射式光电传感器2时,末端工具的中线与对射式光电传感器2的激光射线的交点X轴坐标为:When the end tool passes through the second group of through-beam photoelectric sensors 2 for the second time, the X-axis coordinates of the intersection of the centerline of the end tool and the laser ray of the through-beam photoelectric sensor 2 are:
末端工具第二次通过第3组对射式光电传感器4时,末端工具的中线与对射式光电传感器4的激光射线的交点Y轴坐标为:When the end tool passes through the third group of through-beam photoelectric sensors 4 for the second time, the Y-axis coordinates of the intersection point between the center line of the end tool and the laser ray of the through-beam photoelectric sensor 4 are:
因此,计算得到末端工具的TCP在X轴方向上的位置偏差:Therefore, the position deviation of the TCP of the end tool in the X-axis direction is calculated as:
上述步骤S3中角度偏差的计算方法为:The calculation method of the angular deviation in the above step S3 is:
上下两层对射式光电传感器1和3之间的距离为d,计算末端工具的Y方向的角度偏差如下式所示:The distance between the upper and lower layers of opposite-beam photoelectric sensors 1 and 3 is d, and the angle deviation in the Y direction of the end tool is calculated as follows:
上下两层对射式光电传感器2和4之间的距离为d,计算末端工具的X方向的角度偏差如下式所示:The distance between the upper and lower layers of opposite-beam photoelectric sensors 2 and 4 is d, and the angle deviation in the X direction of the end tool is calculated as follows:
上述步骤S5中工业机器人TCP在Z轴方向上位置偏差的计算方法为:The calculation method of the position deviation of the industrial robot TCP in the Z-axis direction in the above step S5 is:
标定控制器通过控制柜控制工业机器人的末端工具运动到对射式光电传感器1和2交点的正上方,沿着Z轴方向匀速直线向下运动,对射式光电传感器1和2检测到末端工具到达两射线交点时的位姿数据,与通过人工示教得到的初始值PTCP0之间的差值就是末端工具的TCP在Z轴方向上的偏差:The calibration controller controls the end tool of the industrial robot to move directly above the intersection of the through-beam photoelectric sensors 1 and 2 through the control cabinet, and moves downward along the Z axis at a constant speed. The through-beam photoelectric sensors 1 and 2 detect the end tool The difference between the pose data at the intersection of the two rays and the initial value P TCP0 obtained through manual teaching is the deviation of the TCP of the end tool in the Z-axis direction:
TCPΔz=PTCP.Z-PTCP0.Z。TCP Δz =P TCP .ZP TCP0 .Z.
本发明的有益之处在于:本发明提供的一种应用于工业机器人的TCP在线快速标定装置的的TCP检测装置及方法:一、能够有效提高工业机器人的作业精度;二、减少工业机器人停机维护时间,提高工业生产线的效率和产能;三、有效地提高工业生产线的自动化程度,节省人力、物力,降低成本。The benefits of the present invention are: a TCP detection device and method applied to a TCP online rapid calibration device of an industrial robot provided by the present invention: 1. It can effectively improve the working accuracy of the industrial robot; 2. It can reduce the downtime and maintenance of the industrial robot 3. Effectively improve the automation of industrial production lines, save manpower and material resources, and reduce costs.
附图说明Description of drawings
图1是本发明的一种应用于工业机器人的TCP在线快速标定装置的结构示意图。Fig. 1 is a schematic structural diagram of a TCP online rapid calibration device applied to industrial robots according to the present invention.
图2是本发明的一种应用于工业机器人的TCP在线快速标定装置的TCP标定装置的结构示意图。FIG. 2 is a schematic structural diagram of a TCP calibration device of the present invention applied to a TCP online rapid calibration device for industrial robots.
图3是本发明的一种应用于工业机器人的TCP在线快速标定装置的TCP检测装置的结构示意图。Fig. 3 is a schematic structural diagram of a TCP detection device of a TCP online rapid calibration device applied to an industrial robot according to the present invention.
图4是本发明的一种应用于工业机器人的TCP在线快速标定装置的标定控制器的结构示意图。Fig. 4 is a structural schematic diagram of a calibration controller of a TCP online rapid calibration device applied to an industrial robot according to the present invention.
图5是本发明的一种应用于工业机器人的TCP在线快速标定装置的末端工具的运动轨迹示意图。Fig. 5 is a schematic diagram of the movement trajectory of the end tool of a TCP online rapid calibration device applied to an industrial robot according to the present invention.
图6是本发明的一种应用于工业机器人的TCP在线快速标定装置的的TCP检测装置测量X/Y轴方向上位移误差示意图。Fig. 6 is a schematic diagram of measuring the displacement error in the X/Y axis direction by the TCP detection device of a TCP online rapid calibration device applied to an industrial robot according to the present invention.
图7是本发明的一种应用于工业机器人的TCP在线快速标定装置的TCP检测装置测量X/Y轴方向上角度误差示意图。Fig. 7 is a schematic diagram of measuring angular errors in the X/Y axis direction by a TCP detection device of a TCP online rapid calibration device applied to an industrial robot according to the present invention.
图8是本发明的一种应用于工业机器人的TCP在线快速标定装置的TCP检测装置测量Z轴方向上位移误差示意图。Fig. 8 is a schematic diagram of measuring the displacement error in the Z-axis direction by a TCP detection device of a TCP online rapid calibration device applied to an industrial robot according to the present invention.
图9是本发明的一种应用于工业机器人的TCP在线快速标定装置的TCP在线标定方法流程图。FIG. 9 is a flow chart of a TCP online calibration method of a TCP online rapid calibration device applied to an industrial robot according to the present invention.
附图中标记的含义如下:The meanings of the marks in the accompanying drawings are as follows:
1、控制柜,2、TCP标定装置,3、工业机器人,4、末端工具,5、控制总线;1. Control cabinet, 2. TCP calibration device, 3. Industrial robot, 4. End tool, 5. Control bus;
201、TCP检测装置,202、安装底座,203、标定控制器;201. TCP detection device, 202. Installation base, 203. Calibration controller;
301、对射式光电传感器1,302、对射式光电传感器2,303、对射式光电传感器3,304、对射式光电传感器4,305、精度检验开关,306、上盖,307、装置本体;301, through-beam photoelectric sensor 1, 302, through-beam photoelectric sensor 2, 303, through-beam photoelectric sensor 3, 304, through-beam photoelectric sensor 4, 305, accuracy inspection switch, 306, upper cover, 307, device Ontology;
401、装置外壳,402、显示单元,403、按键单元,404、状态指示灯,405、通信接口。401. Device shell, 402. Display unit, 403. Key unit, 404. Status indicator light, 405. Communication interface.
具体实施方式detailed description
下面结合附图和实施例,对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
如图1所示:一种应用于工业机器人3的TCP在线快速标定装置,包括控制柜1,TCP标定装置2,工业机器人3、末端工具4和控制总线5,控制柜1通过控制总线5分别连接TCP标定装置2和工业机器人3,末端工具4安装在工业机器人3上;As shown in Figure 1: a TCP online rapid calibration device applied to an industrial robot 3, including a control cabinet 1, a TCP calibration device 2, an industrial robot 3, an end tool 4 and a control bus 5, and the control cabinet 1 passes through the control bus 5 respectively Connect the TCP calibration device 2 and the industrial robot 3, and the end tool 4 is installed on the industrial robot 3;
如图2所示:TCP标定装置2包括TCP检测装置201、标定控制器203和安装底座202,TCP检测装置201通过安装底座202固定安装在工业机器人3的一侧,测量平面与工业机器人3基坐标系的XOY平面平行。As shown in Figure 2: the TCP calibration device 2 includes a TCP detection device 201, a calibration controller 203 and an installation base 202, the TCP detection device 201 is fixedly installed on one side of the industrial robot 3 through the installation base 202, and the measurement plane is basically the same as the industrial robot 3 The XOY plane of the coordinate system is parallel.
对射式光电传感器1-301、3-303的激光射线与工业机器人3基坐标系的X轴平行。对射式光电传感器2-302、4-304的激光射线与工业机器人3基坐标系的Y轴平行。The laser rays of the through-beam photoelectric sensors 1-301 and 3-303 are parallel to the X-axis of the industrial robot 3 base coordinate system. The laser rays of the through-beam photoelectric sensors 2-302 and 4-304 are parallel to the Y-axis of the industrial robot's 3-base coordinate system.
如图3所示:TCP检测装置201包括装置上盖306、装置本体307、精度检验开关305以及四组对射式光电传感器,所述精度检验开关305设置于装置本体307上表面,所述装置本体307为纵向镂空正方形的长方体,四组对射式光电传感器分别设置于装置本体307内侧面,对射式光电传感器1-301、3-303在同一垂直平面内,传感器的安装距离为d,对射式光电传感器2-302、4-304在同一垂直平面内,传感器的安装距离为d,对射式光电传感器3-303、4-304的激光射线相互垂直且在同一水平面内,对射式光电传感器1-301、2-302的激光射线也相互垂直且在同一水平面内。As shown in Figure 3: the TCP detection device 201 includes a device upper cover 306, a device body 307, an accuracy inspection switch 305 and four groups of through-beam photoelectric sensors, the accuracy inspection switch 305 is arranged on the upper surface of the device body 307, and the device The main body 307 is a rectangular parallelepiped with a hollowed out longitudinal direction. Four groups of through-beam photoelectric sensors are arranged on the inner side of the device body 307 respectively. The through-beam photoelectric sensors 1-301 and 3-303 are in the same vertical plane, and the installation distance of the sensors is d. The through-beam photoelectric sensors 2-302 and 4-304 are in the same vertical plane, and the installation distance of the sensors is d. The laser rays of the through-beam photoelectric sensors 3-303 and 4-304 are perpendicular to each other and in the same horizontal plane. The laser rays of the type photoelectric sensors 1-301, 2-302 are also perpendicular to each other and in the same horizontal plane.
如图4所示,标定控制器203包括装置外壳401、微控制器单元、显示单元 402、按键单元403、状态指示灯404和通信接口405,所述标定控制器203获取精度检验开关305的输出信号以及四组对射式光电传感器的通断信号,通过连接通信接口405的控制总线5与控制柜1进行数据通信,并通过显示单元402、状态指示灯404反馈工作信息。As shown in Figure 4, the calibration controller 203 includes a device housing 401, a microcontroller unit, a display unit 402, a key unit 403, a status indicator light 404 and a communication interface 405, and the calibration controller 203 obtains the output of the precision inspection switch 305 The signals and the on-off signals of the four groups of through-beam photoelectric sensors communicate with the control cabinet 1 through the control bus 5 connected to the communication interface 405 , and feed back the working information through the display unit 402 and the status indicator light 404 .
如图9所示:一种应用于工业机器人3的TCP在线快速标定方法,其特征在于,包括如下步骤:As shown in Figure 9: a TCP online fast calibration method applied to an industrial robot 3, characterized in that it comprises the following steps:
S1、保持工业机器人3末端工具4垂直于基坐标系的XOY平面,通过人工示教方法实现工业机器人3末端工具4与TCP检测装置201的精度检测开关对准,记录工业机器人3法兰的空间位姿数据;S1. Keep the end tool 4 of the industrial robot 3 perpendicular to the XOY plane of the base coordinate system, realize the alignment of the end tool 4 of the industrial robot 3 with the precision detection switch of the TCP detection device 201 through manual teaching methods, and record the space of the flange of the industrial robot 3 pose data;
S2、工业机器人3连续工作一段时间后,工业机器人3根据初始人工示教的空间位姿数据检测当前工业机器人3的TCP点是否偏移较大,若无法满足生产要求,则进入标定程序;S2. After the industrial robot 3 has been working continuously for a period of time, the industrial robot 3 detects whether the current TCP point of the industrial robot 3 has a large offset according to the spatial pose data of the initial manual teaching. If it cannot meet the production requirements, it enters the calibration procedure;
S3、标定程序:标定控制器203通过控制柜1控制工业机器人3的末端工具4以初始姿态在TCP检测装置201中做正方形轨迹的标定运动;在运动过程中,标定控制器203的微控制器单元监测TCP检测装置201内的四组对射式光电传感器通断状态,根据该通断信号的时间点,读取并存储工业机器人3在该时间点的法兰空间位姿数据,利用以上存储的空间位姿数据计算工业机器人3末端工具4在X轴与Y轴方向上的位置偏差以及角度偏差,并实现TCP的误差补偿;S3. Calibration program: the calibration controller 203 controls the end tool 4 of the industrial robot 3 through the control cabinet 1 to perform a calibration movement of a square trajectory in the TCP detection device 201 with an initial posture; during the motion process, the microcontroller of the calibration controller 203 The unit monitors the on-off status of the four sets of through-beam photoelectric sensors in the TCP detection device 201, reads and stores the flange space pose data of the industrial robot 3 at the time point according to the time point of the on-off signal, and uses the above storage Calculate the position deviation and angle deviation of the end tool 4 of the industrial robot 3 in the X-axis and Y-axis directions based on the space pose data, and realize TCP error compensation;
S4、重复2次步骤S3的操作,通过标定结果的迭代,降低TCP标定误差;S4. Repeat the operation of step S3 twice, and reduce the TCP calibration error by iterating the calibration results;
S5、控制末端工具4在基坐标系的Z轴方向上做匀速直线运动,以确定工业机器人3TCP在Z轴方向上位置偏差,补偿TCP的误差;S5. Control the end tool 4 to perform a uniform linear motion in the Z-axis direction of the base coordinate system, so as to determine the position deviation of the industrial robot 3TCP in the Z-axis direction and compensate the error of the TCP;
S6、重复2次步骤S5的操作,通过标定结果的迭代,降低TCP标定误差。S6. Repeat the operation of step S5 twice, and reduce the TCP calibration error by iterating the calibration results.
上述的一种应用于工业机器人3的TCP在线快速标定方法,步骤S3中末端工具4在X轴与Y轴方向上的位置偏差的计算方法为:In the above-mentioned TCP online rapid calibration method applied to the industrial robot 3, the calculation method of the position deviation of the end tool 4 in the X-axis and Y-axis directions in step S3 is:
如图5所示,末端工具4在TCP检测装置201内做正方形轨迹的标定运动,在运动过程中前半路径内的末端工具4保持姿态不变,在后半路径内的末端工具4绕法兰坐标系的Z轴旋转180°。As shown in Figure 5, the end tool 4 performs a calibration movement of a square trajectory in the TCP detection device 201. During the movement, the end tool 4 in the first half of the path keeps its posture unchanged, and the end tool 4 in the second half of the path wraps around the flange. The Z axis of the coordinate system is rotated by 180°.
如图6所示,标定控制器203通过机器人控制柜1控制工业机器人3的末端工具4以初始姿态在TCP检测装置201中做正方形轨迹的标定运动。在标定运动过程中,末端工具4首先通过对射式光电传感器1-301与3-303。每经过一组对射式光电传感器,标定控制器203读取工业机器人3法兰坐标系的空间位姿数据,记为Pijn As shown in FIG. 6 , the calibration controller 203 controls the end tool 4 of the industrial robot 3 to perform a calibration movement of a square trajectory in the TCP detection device 201 at an initial posture through the robot control cabinet 1 . During the calibration movement, the end tool 4 first passes through the through-beam photoelectric sensors 1-301 and 3-303. After passing through a group of through-beam photoelectric sensors, the calibration controller 203 reads the space pose data of the industrial robot 3 flange coordinate system, which is denoted as P ijn
所述i表示第i组对射式光电传感器,i=1或2或3或4,其中1为对射式光电传感器1-301,2为对射式光电传感器2-302,3-303为对射式光电传感器3-303,4-304为对射式光电传感器4-304;The i represents the i-th group of through-beam photoelectric sensors, i=1 or 2 or 3 or 4, wherein 1 is the through-beam photoelectric sensor 1-301, 2 is the through-beam photoelectric sensor 2-302, and 3-303 is The through-beam photoelectric sensor 3-303, 4-304 is the through-beam photoelectric sensor 4-304;
所述j表示对射式光电传感器的通断,j=1或2,1表示对射式光电传感器信号接通,2表示对射式光电传感器信号断开;Said j represents the on-off of the through-beam photoelectric sensor, j=1 or 2, 1 means that the through-beam photoelectric sensor signal is connected, and 2 means that the through-beam photoelectric sensor signal is disconnected;
所述n表示单次循环运动中,第n次通过第i组对射式光电传感器,n=1或2;The n represents the nth pass through the i-th group of through-beam photoelectric sensors in a single cycle movement, n=1 or 2;
基于标定控制器203获取的法兰坐标系空间位姿数据,Based on the flange coordinate system space pose data acquired by the calibration controller 203,
A、末端工具4第一次通过第1组对射式光电传感器1-301时,末端工具4的中线与对射式光电传感器1-301的激光射线的交点Y轴坐标为:A. When the end tool 4 passes through the first group of through-beam photoelectric sensors 1-301 for the first time, the Y-axis coordinates of the intersection point between the center line of the end tool 4 and the laser beam of the through-beam photoelectric sensor 1-301 are:
末端工具4第一次通过第3组对射式光电传感器3-303时,末端工具4的中线与对射式光电传感器3-303的激光射线的交点Y轴坐标为:When the end tool 4 passes through the third group of through-beam photoelectric sensors 3-303 for the first time, the Y-axis coordinates of the intersection of the centerline of the end tool 4 and the laser ray of the through-beam photoelectric sensor 3-303 are:
末端工具4第二次通过第1组对射式光电传感器1-301时,末端工具4的中线与对射式光电传感器1-301的激光射线的交点Y轴坐标为:When the end tool 4 passes through the first group of through-beam photoelectric sensors 1-301 for the second time, the Y-axis coordinates of the intersection of the centerline of the end tool 4 and the laser ray of the through-beam photoelectric sensor 1-301 are:
末端工具4第二次通过第3组对射式光电传感器3-303时,末端工具4的中线与对射式光电传感器3-303的激光射线的交点Y轴坐标为:When the end tool 4 passes through the third group of through-beam photoelectric sensors 3-303 for the second time, the Y-axis coordinates of the intersection point between the centerline of the end tool 4 and the laser beam of the through-beam photoelectric sensor 3-303 are:
因此,末端工具4的TCP在Y轴方向上的位置偏差可由下式计算得出:Therefore, the position deviation of the TCP of the end tool 4 in the Y-axis direction can be calculated by the following formula:
B、末端工具4第一次通过第2组对射式光电传感器2-302时,末端工具4的中线与对射式光电传感器2-302的激光射线的交点X轴坐标为:B. When the end tool 4 passes through the second group of through-beam photoelectric sensors 2-302 for the first time, the X-axis coordinates of the intersection of the center line of the end tool 4 and the laser beam of the through-beam photoelectric sensor 2-302 are:
末端工具4第一次通过第3组对射式光电传感器4-304时,末端工具4的中线与对射式光电传感器4-304的激光射线的交点Y轴坐标为:When the end tool 4 passes through the third group of through-beam photoelectric sensors 4-304 for the first time, the Y-axis coordinates of the intersection of the center line of the end tool 4 and the laser beam of the through-beam photoelectric sensor 4-304 are:
末端工具4第二次通过第2组对射式光电传感器2-302时,末端工具4的中线与对射式光电传感器2-302的激光射线的交点X轴坐标为:When the end tool 4 passes through the second group of through-beam photoelectric sensors 2-302 for the second time, the X-axis coordinates of the intersection of the center line of the end tool 4 and the laser ray of the through-beam photoelectric sensor 2-302 are:
末端工具4第二次通过第3组对射式光电传感器4-304时,末端工具4的中线与对射式光电传感器4-304的激光射线的交点Y轴坐标为:When the end tool 4 passes through the third group of through-beam photoelectric sensors 4-304 for the second time, the Y-axis coordinates of the intersection of the centerline of the end tool 4 and the laser ray of the through-beam photoelectric sensor 4-304 are:
因此,计算得到末端工具4的TCP在X轴方向上的位置偏差:Therefore, the position deviation of the TCP of the end tool 4 in the X-axis direction is calculated as follows:
上述步骤S3中角度偏差的计算方法为:The calculation method of the angular deviation in the above step S3 is:
如图7所示:上下两层对射式光电传感器1-301和3-303之间的距离为d,计算末端工具4的Y方向的角度偏差如下式所示:As shown in Figure 7: the distance between the upper and lower layers of opposite-beam photoelectric sensors 1-301 and 3-303 is d, and the angle deviation in the Y direction of the end tool 4 is calculated as follows:
上下两层对射式光电传感器2-302和4-304之间的距离为d,计算末端工具4的X方向的角度偏差如下式所示:The distance between the upper and lower layers of opposite-beam photoelectric sensors 2-302 and 4-304 is d, and the angle deviation in the X direction of the end tool 4 is calculated as follows:
上述步骤S5中工业机器人3TCP在Z轴方向上位置偏差的计算方法为:The calculation method of the position deviation of the industrial robot 3TCP in the Z-axis direction in the above step S5 is:
如图8所示:标定控制器203通过控制柜1控制工业机器人3的末端工具4运动到对射式光电传感器1-301和2-302交点的正上方,沿着Z轴方向匀速直线向下运动,对射式光电传感器1-301和2-302检测到末端工具4到达两射线交点时的位姿数据,与通过人工示教得到的初始值PTCP0之间的差值就是末端工具4的TCP在Z轴方向上的偏差:As shown in Figure 8: the calibration controller 203 controls the end tool 4 of the industrial robot 3 to move directly above the intersection of the through-beam photoelectric sensors 1-301 and 2-302 through the control cabinet 1, and goes straight down along the Z-axis direction at a constant speed Motion, when the through-beam photoelectric sensors 1-301 and 2-302 detect the pose data when the end tool 4 reaches the intersection of the two rays, the difference between the initial value P TCP0 and the initial value P TCP0 obtained through manual teaching is the value of the end tool 4 The deviation of TCP in the Z-axis direction:
TCPΔz=PTCP.Z-PTCP0.Z。TCP Δz =P TCP .ZP TCP0 .Z.
在工业机器人3执行作业任务的过程中,通过机器人控制柜1对工业机器人3的末端工具4的坐标进行偏差补偿。During the process of the industrial robot 3 executing the task, the robot control cabinet 1 performs deviation compensation on the coordinates of the end tool 4 of the industrial robot 3 .
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the above-mentioned embodiments do not limit the present invention in any form, and all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620482685.2U CN205734940U (en) | 2016-05-25 | 2016-05-25 | A kind of online fast calibration device of TCP being applied to industrial robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620482685.2U CN205734940U (en) | 2016-05-25 | 2016-05-25 | A kind of online fast calibration device of TCP being applied to industrial robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205734940U true CN205734940U (en) | 2016-11-30 |
Family
ID=57362880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201620482685.2U Withdrawn - After Issue CN205734940U (en) | 2016-05-25 | 2016-05-25 | A kind of online fast calibration device of TCP being applied to industrial robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205734940U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105945948A (en) * | 2016-05-25 | 2016-09-21 | 南京工程学院 | TCP online quick calibration method and device applied to industrial robot |
WO2018120140A1 (en) * | 2016-12-30 | 2018-07-05 | 深圳配天智能技术研究院有限公司 | Location marking device |
WO2019114630A1 (en) * | 2017-12-13 | 2019-06-20 | 北京柏惠维康科技有限公司 | Method and device for obtaining coordinates of tcp of robot |
CN110146044A (en) * | 2019-06-14 | 2019-08-20 | 上海航天设备制造总厂有限公司 | A TCP precision measurement and calibration method |
CN110861091A (en) * | 2019-12-04 | 2020-03-06 | 武汉工程大学 | Calibration method of cusp-type rotary tool for industrial robot based on crossed laser beams |
US11162787B2 (en) | 2018-12-20 | 2021-11-02 | Industrial Technology Research Institute | Measuring program compiling device and measuring program compiling method |
US11289303B2 (en) | 2020-01-21 | 2022-03-29 | Industrial Technology Research Institute | Calibrating method and calibrating system |
-
2016
- 2016-05-25 CN CN201620482685.2U patent/CN205734940U/en not_active Withdrawn - After Issue
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105945948A (en) * | 2016-05-25 | 2016-09-21 | 南京工程学院 | TCP online quick calibration method and device applied to industrial robot |
WO2018120140A1 (en) * | 2016-12-30 | 2018-07-05 | 深圳配天智能技术研究院有限公司 | Location marking device |
WO2019114630A1 (en) * | 2017-12-13 | 2019-06-20 | 北京柏惠维康科技有限公司 | Method and device for obtaining coordinates of tcp of robot |
US11162787B2 (en) | 2018-12-20 | 2021-11-02 | Industrial Technology Research Institute | Measuring program compiling device and measuring program compiling method |
CN110146044A (en) * | 2019-06-14 | 2019-08-20 | 上海航天设备制造总厂有限公司 | A TCP precision measurement and calibration method |
CN110146044B (en) * | 2019-06-14 | 2021-12-28 | 上海航天设备制造总厂有限公司 | TCP precision measurement and calibration method |
CN110861091A (en) * | 2019-12-04 | 2020-03-06 | 武汉工程大学 | Calibration method of cusp-type rotary tool for industrial robot based on crossed laser beams |
US11289303B2 (en) | 2020-01-21 | 2022-03-29 | Industrial Technology Research Institute | Calibrating method and calibrating system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105945948B (en) | A kind of online quick calibrating methods of TCP applied to industrial robot and device | |
CN205734940U (en) | A kind of online fast calibration device of TCP being applied to industrial robot | |
CN109514549B (en) | TCP (transmission control protocol) online rapid calibration method and device capable of realizing six degrees of freedom | |
CN108748159B (en) | Self-calibration method for tool coordinate system of mechanical arm | |
CN107081787B (en) | Motion characteristic detection method based on built-in sensor signal of industrial robot | |
CN110193829B (en) | Robot precision control method for coupling kinematics and rigidity parameter identification | |
CN110202582B (en) | Robot calibration method based on three-coordinate platform | |
CN102814512A (en) | On-line measuring method for radials profile of compressor disc-like part of engine | |
CN104729407B (en) | The automatic determination method of relation between robot basis coordinates system and world coordinate system | |
CN106182018A (en) | A kind of grinding and polishing industrial robot off-line programing method based on workpiece three-dimensional graph | |
CN112873199A (en) | Robot absolute positioning precision calibration method based on kinematics and spatial interpolation | |
CN103659467B (en) | The scaling method of the axial pretravel of touch trigger probe | |
CN105865341B (en) | Industrial robot spatial pose repetitive positioning accuracy measuring device and method | |
CN103017726B (en) | Robot pose error measuring system and method in Cartesian coordinate mode | |
CN206925649U (en) | Digit Control Machine Tool and its measuring system | |
CN108655827A (en) | Five-axle number control machine tool space error discrimination method | |
CN103512511A (en) | Large face automatic measurement method based on laser tracker | |
CN103454966B (en) | A kind of parallel coordinate measuring machine controller | |
CN113636348A (en) | Glass transfer system for building installation | |
CN102279584A (en) | Overhead crossbeam three-dimensional small deformation calculation method based on triaxial acceleration transducer | |
CN104061888A (en) | Robot three-dimensional laser machining head TCP coordinate correcting method and device | |
CN106546184A (en) | Large complicated carved three-dimensional appearance robot flexibility measuring system | |
CN202656009U (en) | Part processing accuracy online detection system facing numerically controlled lathe | |
Liu et al. | Development and sensitivity analysis of a portable calibration system for joint offset of industrial robot | |
CN115709464A (en) | Micro-assembly action executing mechanism and precision compensation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20161130 Effective date of abandoning: 20180323 |