CN205377666U - Direct current - direct current converter circuit - Google Patents
Direct current - direct current converter circuit Download PDFInfo
- Publication number
- CN205377666U CN205377666U CN201620059348.2U CN201620059348U CN205377666U CN 205377666 U CN205377666 U CN 205377666U CN 201620059348 U CN201620059348 U CN 201620059348U CN 205377666 U CN205377666 U CN 205377666U
- Authority
- CN
- China
- Prior art keywords
- pmos
- source
- nmos tube
- drain electrode
- outfan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本实用新型属于电子电路技术领域,涉及模拟集成电路,特别涉及直流-直流转换器电路。The utility model belongs to the technical field of electronic circuits and relates to an analog integrated circuit, in particular to a DC-DC converter circuit.
背景技术Background technique
随着半导体技术的快速发展和应用领域的不断扩展,升压电路普遍应用到日常生活中。传统升压电路一般采用电压模式控制,这种模式只存在一条电压反馈通路,而脉宽调制是通过将电压误差信号与一个恒定谐波波形进行比较来完成的。其不但电流限制必须单独执行,而且当电压或负载中的任何变化都必须以输出电压变化来检测,然后再由反馈环路来校正,导致响应速度缓慢。电压模式输出滤波器给控制环路增加了两个极点,因而在补偿设计误差放大器时就需要将主极点低频衰减,或在补偿中增加一个零点来补偿相位损失。由于环路增益会随着输入电压的变化而改变,因而使补偿进一步地复杂化。With the rapid development of semiconductor technology and the continuous expansion of application fields, booster circuits are widely used in daily life. Traditional boost circuits generally use voltage mode control, in which there is only one voltage feedback path, and pulse width modulation is accomplished by comparing the voltage error signal with a constant harmonic waveform. Not only does current limiting have to be performed separately, but any change in voltage or load must be sensed as a change in output voltage and then corrected by a feedback loop, resulting in a slow response. The voltage-mode output filter adds two poles to the control loop, so designing the error amplifier for compensation requires attenuating the dominant pole at low frequencies, or adding a zero in the compensation to compensate for phase loss. Compensation is further complicated by the fact that the loop gain varies with input voltage.
现在有些也采用电流模式控制,电流模式控制是一种固定时钟开启、峰值电流关断的控制方法,虽然其改善了电压模响应慢的缺点,但是仍然存在难以校正的峰值电流与平均电流的误差、易发生亚谐波振荡、对多路输出电源的交互调节性能不好等缺点。Now some also use current mode control. Current mode control is a control method with fixed clock on and peak current off. Although it improves the shortcoming of slow voltage mode response, there is still an error between peak current and average current that is difficult to correct. , prone to sub-harmonic oscillation, and poor interactive adjustment performance for multiple output power supplies.
发明内容Contents of the invention
本实用新型针对上述传统电压模式响应速度慢和峰值电流模式中需要增加谐波补偿、负载调整率差等缺点,提出直流-直流转换器电路,该电路能够有效提升环路响应速度,同时简化了环路补偿结构,特别适合于大功率和响应速度要求快的场合。The utility model aims at the disadvantages of the above-mentioned slow response speed of the traditional voltage mode and the need to increase harmonic compensation and poor load regulation in the peak current mode, and proposes a DC-DC converter circuit, which can effectively improve the loop response speed and simplify The loop compensation structure is especially suitable for occasions requiring high power and fast response speed.
为实现上述目的,本实用新型采用如下技术方案予以解决:In order to achieve the above object, the utility model adopts the following technical solutions to solve it:
一种直流-直流转换器电路,包括同步功率管Q1、主开关管Q2、死区控制驱动器和脉冲宽度调制比较器PWM,其中,同步功率管Q1和地之间并联主开关管Q2,死区控制驱动器的输出端与同步功率管Q1的栅极和主开关管Q2的栅极均连接,所述转换器电路还包括固定TON产生电路、电流采样单元,二极管D1和二极管D2,其中:A DC-DC converter circuit, comprising a synchronous power transistor Q1, a main switch transistor Q2 , a dead zone control driver and a pulse width modulation comparator PWM, wherein the main switch transistor Q2 is connected in parallel between the synchronous power transistor Q1 and the ground, The output terminal of the dead zone control driver is connected to the gate of the synchronous power transistor Q1 and the gate of the main switching transistor Q2 , and the converter circuit also includes a fixed T ON generating circuit, a current sampling unit, a diode D1 and a diode D 2 , where:
二极管D1和二极管D2反接并联在所述同步功率管Q1的源极和漏极;固定TON产生电路包括两个输入端a和b,一个输出端c,电流采样单元包括三个输入端d、e和f,一个输出端g;输入端a连接所述脉冲宽度调制比较器PWM的输出端,输入端b连接时钟控制信号VREF,输出端c连接所述死区控制驱动器的输入端;输入端d、e和f分别连接所述同步功率管Q1的源极、栅极和漏极,输出端g连接所述脉冲宽度调制比较器PWM的同相端。Diode D 1 and diode D 2 are reversely connected in parallel with the source and drain of the synchronous power transistor Q 1 ; the fixed T ON generating circuit includes two input ends a and b, one output end c, and the current sampling unit includes three Input terminals d, e and f, an output terminal g; input terminal a is connected to the output terminal of the pulse width modulation comparator PWM, input terminal b is connected to the clock control signal V REF , and output terminal c is connected to the dead zone control driver Input terminals; input terminals d, e and f are respectively connected to the source, gate and drain of the synchronous power transistor Q1, and the output terminal g is connected to the non-inverting terminal of the pulse width modulation comparator PWM.
进一步地,所述固定TON产生电路包括比较器、反相器、第一与非门、第二与非门、电流源Is101、NMOS管M101和电容C101;其中:Further, the fixed T ON generation circuit includes a comparator, an inverter, a first NAND gate, a second NAND gate, a current source Is 101 , an NMOS transistor M 101 and a capacitor C 101 ; wherein:
电流源Is101的输入端连接内部电源VDD,电流源Is101的输出端连接电容C101和NMOS管M101的漏极,电容C101另一端和NMOS管M101的源极与地相连,NMOS管M101的栅极与QN相连;The input end of the current source Is 101 is connected to the internal power supply V DD , the output end of the current source Is 101 is connected to the capacitor C 101 and the drain of the NMOS transistor M 101 , and the other end of the capacitor C 101 is connected to the source of the NMOS transistor M 101 and ground, The gate of the NMOS transistor M101 is connected to QN;
比较器的反向端与电流源Is101的输出端相连,比较器的反向端与所述时钟控制信号VREF相连,比较器的输出端与第一与非门的输入端和第二与非门的输出端均相连,第一与非门的输出端与QN相连,反相器的输入端与所述脉冲宽度调制比较器PWM的输出端相连,反相器的输出端与第二与非门的输入端和第一与非门的输出端均相连,第二与非门的输出端与所述死区控制驱动器的输入端相连。The inverting terminal of the comparator is connected with the output terminal of the current source Is 101 , the inverting terminal of the comparator is connected with the clock control signal V REF , the output terminal of the comparator is connected with the input terminal of the first NAND gate and the second NAND gate The output terminals of the NOT gates are all connected, the output terminals of the first NAND gate are connected with QN, the input terminals of the inverter are connected with the output terminals of the pulse width modulation comparator PWM, and the output terminals of the inverter are connected with the second AND The input terminals of the NOT gate are connected with the output terminals of the first NAND gate, and the output terminals of the second NAND gate are connected with the input terminals of the dead zone control driver.
进一步地,所述电流采样单元包括电流源IS201、电流源IS202、PMOS管M203、PMOS管M204、PMOS管M205、PMOS管M207、NMOS管M201、NMOS管M202、NMOS管M206、电阻R201和电阻R202;其中:Further, the current sampling unit includes a current source IS201, a current source IS202 , a PMOS transistor M203 , a PMOS transistor M204 , a PMOS transistor M205 , a PMOS transistor M207 , an NMOS transistor M201 , an NMOS transistor M202 , and an NMOS transistor M202 . Tube M 206 , resistor R 201 and resistor R 202 ; where:
电流源IS201的输入端连接内部电源VDD,电流源IS201的输出端连接NMOS管M201的漏极和栅极,NMOS管M201的源极接地,NMOS管M201、NMOS管M202和NMOS管M206构成一排电流镜;The input end of the current source I S201 is connected to the internal power supply V DD , the output end of the current source I S201 is connected to the drain and gate of the NMOS transistor M 201 , the source of the NMOS transistor M 201 is grounded, the NMOS transistor M 201 and the NMOS transistor M 202 Form a row of current mirrors with the NMOS tube M 206 ;
PMOS管M203的源极连接所述同步功率管Q1的漏极,PMOS管M203的漏极与NMOS管M202的漏极和PMOS管M207的栅极均相连,PMOS管M203的栅极与PMOS管M205的漏极和栅极均相连;PMOS管M204的源极与所述同步功率管Q1的源极相连,PMOS管M204的栅极与所述同步功率管Q1的栅极相连,PMOS管M204的漏极与PMOS管M205的源极和PMOS管M207的源极均相连;PMOS管M205的漏极和NMOS管M206的漏极相连,PMOS管M207的漏极通过电阻R201接地;The source of the PMOS transistor M203 is connected to the drain of the synchronous power transistor Q1, the drain of the PMOS transistor M203 is connected to the drain of the NMOS transistor M202 and the gate of the PMOS transistor M207 , and the gate of the PMOS transistor M203 The gate is connected to the drain and gate of the PMOS transistor M 205 ; the source of the PMOS transistor M 204 is connected to the source of the synchronous power transistor Q1, and the gate of the PMOS transistor M 204 is connected to the synchronous power transistor Q 1 , the drain of the PMOS transistor M204 is connected to the source of the PMOS transistor M205 and the source of the PMOS transistor M207 ; the drain of the PMOS transistor M205 is connected to the drain of the NMOS transistor M206 , and the PMOS The drain of the tube M 207 is grounded through the resistor R 201 ;
电流源IS202的输入端连接内部电源VDD,电流源IS202的输出端连接电阻R202和所述脉冲宽度调制比较器PWM的同相端,电阻R202与PMOS管M207的漏极相连。The input terminal of the current source IS202 is connected to the internal power supply VDD , the output terminal of the current source IS202 is connected to the resistor R202 and the non-inverting terminal of the pulse width modulation comparator PWM, and the resistor R202 is connected to the drain of the PMOS transistor M207 .
进一步地,所述电流采样单元包括电流源IS301、电流源IS302、PMOS管M302、PMOS管M303、PMOS管M307、PMOS管M308、NMOS管M301、NMOS管M304、NMOS管M305、NMOS管M306、电阻R301、电阻R302、电阻R303和电容C301;其中:Further, the current sampling unit includes a current source IS301, a current source IS302 , a PMOS transistor M302 , a PMOS transistor M303 , a PMOS transistor M307 , a PMOS transistor M308 , an NMOS transistor M301, an NMOS transistor M304 , and an NMOS transistor M304 . Tube M 305 , NMOS tube M 306 , resistor R 301 , resistor R 302 , resistor R 303 and capacitor C 301 ; where:
电流源IS301的输入端连接内部电源VDD,电流源IS301的输出端连接NMOS管M301的漏极和栅极,NMOS管M301的源极接地,NMOS管M301和NMOS管M306构成电流镜;The input end of the current source IS301 is connected to the internal power supply V DD , the output end of the current source IS301 is connected to the drain and gate of the NMOS transistor M301 , the source of the NMOS transistor M301 is grounded, and the NMOS transistor M301 and the NMOS transistor M306 constitute a current mirror;
PMOS管M302的源极和PMOS管M303的源极均连接内部电源VDD,PMOS管M302的栅极和漏极均与PMOS管M303的栅极相连,PMOS管M302的漏极与NMOS管M304的漏极相连;PMOS管M303的漏极与NMOS管M305的漏极相连;NMOS管M304的源极和NMOS管M305的源极均与NMOS管M306的漏极相连,NMOS管M304的栅极与所述同步功率管Q1的漏极相连,NMOS管M305的栅极与PMOS管M307的漏极和PMOS管M308的源极均相连;The source of the PMOS transistor M302 and the source of the PMOS transistor M303 are both connected to the internal power supply V DD , the gate and drain of the PMOS transistor M302 are connected to the gate of the PMOS transistor M303 , and the drain of the PMOS transistor M302 connected to the drain of the NMOS transistor M304 ; the drain of the PMOS transistor M303 is connected to the drain of the NMOS transistor M305 ; the source of the NMOS transistor M304 and the source of the NMOS transistor M305 are both connected to the drain of the NMOS transistor M306 The gate of the NMOS transistor M304 is connected to the drain of the synchronous power transistor Q1, the gate of the NMOS transistor M305 is connected to the drain of the PMOS transistor M307 and the source of the PMOS transistor M308 ;
电阻R301和电容C301串联在内部电源VDD和PMOS管M303的漏极之间;PMOS管M307的源极与所述同步功率管Q1的源极相连,PMOS管M307的栅极与所述同步功率管Q1的栅极相连;PMOS管M308的栅极与PMOS管M303的漏极相连,PMOS管M308的漏极通过电阻R302接地;The resistor R 301 and the capacitor C 301 are connected in series between the internal power supply V DD and the drain of the PMOS transistor M 303 ; the source of the PMOS transistor M 307 is connected to the source of the synchronous power transistor Q 1 , and the gate of the PMOS transistor M 307 The pole is connected with the gate of the synchronous power transistor Q1 ; the gate of the PMOS transistor M308 is connected with the drain of the PMOS transistor M303 , and the drain of the PMOS transistor M308 is grounded through the resistor R302 ;
电流源IS302的输入端接内部电源VDD,电流源IS302的输出端连接电阻R303和所述脉冲宽度调制比较器PWM的同相端,电阻R303与PMOS管M308的漏极相连。The input terminal of the current source IS302 is connected to the internal power supply V DD , the output terminal of the current source IS302 is connected to the resistor R303 and the non-inverting terminal of the pulse width modulation comparator PWM, and the resistor R303 is connected to the drain of the PMOS transistor M308 .
与现有技术相比,本实用新型具有以下技术效果:Compared with the prior art, the utility model has the following technical effects:
1.本实用新型采用固定TON模式,在负载发生变化时,能够以最快的速度作出反馈并响应输出的变化,有效地提升了环路的响应速度。1. The utility model adopts the fixed TON mode. When the load changes, it can make feedback and respond to the change of the output at the fastest speed, which effectively improves the response speed of the loop.
2.本实用新型采用了谷值电流型TON模式,该模式无需谐波补偿电路,具有环路控制简化、可靠性高的优点。2. The utility model adopts the valley current type TON mode, which does not need a harmonic compensation circuit, and has the advantages of simplified loop control and high reliability.
附图说明Description of drawings
图1是传统的升压电路的系统框图;Fig. 1 is a system block diagram of a conventional boost circuit;
图2是本实用新型的结构框图;Fig. 2 is a block diagram of the utility model;
图3是实施例1中的固定TON产生电路的原理图;Fig. 3 is the schematic diagram of the fixed T ON generating circuit in embodiment 1;
图4是实施例1中的电流采样单元的原理图;Fig. 4 is the schematic diagram of the current sampling unit in embodiment 1;
图5是实施例2中的电流采样单元的原理图。FIG. 5 is a schematic diagram of the current sampling unit in Embodiment 2.
图中标号代表:1—固定TON产生电路,101—比较器,102—反相器,103—第一与非门,104—第二与非门,2—电流采样单元。The symbols in the figure represent: 1—fixed T ON generating circuit, 101—comparator, 102—inverter, 103—first NAND gate, 104—second NAND gate, 2—current sampling unit.
下面结合附图和实施例对本实用新型的方案做进一步详细地解释和说明。Below in conjunction with accompanying drawing and embodiment, the scheme of the utility model is further explained and described in detail.
具体实施方式detailed description
实施例1:Example 1:
遵从上述技术方案,参见图2,本实施例的直流-直流转换器电路,包括同步功率管Q1、主开关管Q2、死区控制驱动器和脉冲宽度调制比较器PWM,其中,同步功率管Q1和地之间并联主开关管Q2,死区控制驱动器的输出端与同步功率管Q1的栅极和主开关管Q2的栅极均连接,所述转换器电路还包括固定TON产生电路1、电流采样单元2,二极管D1和二极管D2,其中:According to the above technical solution, referring to FIG. 2, the DC-DC converter circuit of this embodiment includes a synchronous power transistor Q1, a main switch transistor Q2 , a dead zone control driver and a pulse width modulation comparator PWM, wherein the synchronous power transistor Q1 The main switching tube Q2 is connected in parallel with the ground, the output terminal of the dead zone control driver is connected to the grid of the synchronous power tube Q1 and the grid of the main switching tube Q2 , and the converter circuit also includes a fixed T ON generating circuit 1. Current sampling unit 2, diode D 1 and diode D 2 , wherein:
二极管D1和二极管D2反接并联在所述同步功率管Q1的源极和漏极;固定TON产生电路1包括两个输入端a和b,一个输出端c,电流采样单元2包括三个输入端d、e和f,一个输出端g;输入端a连接所述脉冲宽度调制比较器PWM的输出端,脉冲宽度调制比较器PWM的输出端输出脉宽调制信号VPWM,输入端b连接时钟控制信号VREF,输出端c连接所述死区控制驱动器的输入端,输出端c输出驱动控制信号VDH;输入端d、e和f分别连接所述同步功率管Q1的源极、栅极和漏极,输入端d、e和f分别输入的是源极开关节点电压VSW、栅极控制信号VGATE和漏极输出电压VOUT,输出端g连接所述脉冲宽度调制比较器PWM的同相端,输出端g输出的是采样电流的电压信号VLOAD。Diode D 1 and diode D 2 are reversely connected in parallel with the source and drain of the synchronous power transistor Q 1 ; the fixed T ON generation circuit 1 includes two input ends a and b, one output end c, and the current sampling unit 2 includes Three input terminals d, e and f, and one output terminal g; the input terminal a is connected to the output terminal of the pulse width modulation comparator PWM, and the output terminal of the pulse width modulation comparator PWM outputs a pulse width modulation signal V PWM , and the input terminal b is connected to the clock control signal V REF , the output terminal c is connected to the input terminal of the dead zone control driver, and the output terminal c outputs the driving control signal V DH ; the input terminals d, e and f are respectively connected to the source of the synchronous power transistor Q1 pole, gate and drain, the input terminals d, e and f respectively input the source switching node voltage V SW , the gate control signal V GATE and the drain output voltage V OUT , and the output terminal g is connected to the pulse width modulation The non-inverting terminal of the comparator PWM, the output terminal g outputs the voltage signal V LOAD of the sampling current.
本实施例的转换器电路还包括直流电源、电容C1、电感L1、电容C2、采样电阻RSNS1、采样电阻RSNS2、补偿网络和误差放大器EA,其中,输入的直流电源并联电容C1后得到输入电压VIN,电感L1串联在电容C1与同步功率管Q1之间;同步功率管Q1的源极与地之间并联主开关管Q2,同步功率管Q1的漏极与地之间并联电容C2;输出电压VOUT经采样电阻RSNS1和RSNS2分压后形成的电压VFB连接误差放大器EA的反相端,误差放大器EA的同相端连接基准信号VR,误差放大器EA的输出连接到补偿网络;The converter circuit of this embodiment also includes a DC power supply, a capacitor C 1 , an inductor L 1 , a capacitor C 2 , a sampling resistor R SNS1 , a sampling resistor RSNS2 , a compensation network, and an error amplifier EA, wherein the input DC power supply is connected in parallel with a capacitor C 1 to get the input voltage V IN , the inductance L 1 is connected in series between the capacitor C 1 and the synchronous power transistor Q 1 ; the main switch Q 2 is connected in parallel between the source of the synchronous power transistor Q 1 and the ground, and the A capacitor C 2 is connected in parallel between the drain and the ground; the voltage V FB formed after the output voltage V OUT is divided by the sampling resistors R SNS1 and R SNS2 is connected to the inverting terminal of the error amplifier EA, and the non-inverting terminal of the error amplifier EA is connected to the reference signal V R , the output of the error amplifier EA is connected to the compensation network;
两个反接的二极管D1和D2并联在同步功率管Q1的源极和漏极,同步功率管Q1的源极开关节点电压VSW、漏极输出电压VOUT和栅极控制信号VGATE连接到电流采样单元输入端;脉冲宽度调制比较器PWM的反相端连接补偿网络的输出端,脉冲宽度调制比较器PWM的同相端连接输出端g,脉冲宽度调制比较器PWM的输出端输出脉宽调制信号VPWM输入到固定TON产生电路的输入端a。Two reversely connected diodes D 1 and D 2 are connected in parallel to the source and drain of the synchronous power transistor Q 1 , the source switching node voltage V SW , the drain output voltage V OUT and the gate control signal of the synchronous power transistor Q 1 V GATE is connected to the input terminal of the current sampling unit; the inverting terminal of the pulse width modulation comparator PWM is connected to the output terminal of the compensation network, the non-inverting terminal of the pulse width modulation comparator PWM is connected to the output terminal g, and the output terminal of the pulse width modulation comparator PWM The output pulse width modulation signal V PWM is input to the input terminal a of the fixed T ON generating circuit.
所述的固定TON产生电路1,通过脉冲宽度调制比较器PWM产生的结果VPWM与通过时钟控制信号VREF产生时钟信号进行比较,用于控制产生同步功率管Q1和主开关管Q2的驱动信号VDH;所述电流采样单元2,用于采样同步功率管Q1的漏极电压VOUT与源极开关节点电压VSW之间的压差,并将采样电流的电压信号VLOAD输送至脉冲宽度调制比较器PWM里。The fixed T ON generation circuit 1 compares the result V PWM generated by the pulse width modulation comparator PWM with the clock signal generated by the clock control signal V REF , and is used to control the generation of synchronous power transistor Q1 and main switch transistor Q2 The driving signal V DH ; the current sampling unit 2 is used to sample the voltage difference between the drain voltage V OUT of the synchronous power transistor Q 1 and the source switching node voltage V SW , and the voltage signal V LOAD of the sampling current Send to the pulse width modulation comparator PWM.
当主开关管Q2导通,直流电源流向电感L1,同步功率管Q1防止电容C2对地放电,电感L1上的电流以一定的比率线性增加,随着电感L1电流增加,电感L1里储存了一些能量;当主开关管Q2关断时,由于电感L1的电流保持特性,流经电感L1的电流不会马上变为零,而是缓慢的由充电完毕时的值变为零,而原来的电路已断开,于是电感L1开始给电容C2充电,电容C2两端输出电压VOUT升高,此时输出电压VOUT已经高于输入电压VIN了。When the main switch Q 2 is turned on, the DC power flows to the inductor L 1 , the synchronous power tube Q 1 prevents the discharge of the capacitor C 2 to the ground, and the current on the inductor L 1 increases linearly at a certain rate. As the current of the inductor L 1 increases, the inductor L 1 Some energy is stored in L1 ; when the main switch tube Q2 is turned off, due to the current retention characteristics of the inductor L1, the current flowing through the inductor L1 will not immediately become zero, but slowly change from the value at the end of charging becomes zero, and the original circuit has been disconnected, so the inductor L 1 starts to charge the capacitor C 2 , and the output voltage V OUT at both ends of the capacitor C 2 rises, and the output voltage V OUT is already higher than the input voltage V IN at this time.
具体地,参见图3,所述固定TON产生电路1包括比较器101、反相器102、第一与非门103、第二与非门104、电流源Is101、NMOS管M101和电容C101;其中:Specifically, referring to FIG. 3, the fixed T ON generation circuit 1 includes a comparator 101, an inverter 102, a first NAND gate 103, a second NAND gate 104, a current source Is 101 , an NMOS transistor M 101 and a capacitor C 101 ; where:
电流源Is101的输入端连接内部电源VDD,电流源Is101的输出端连接电容C101和NMOS管M101的漏极,电容C101另一端和NMOS管M101的源极与地相连,NMOS管M101的栅极与QN相连;The input end of the current source Is 101 is connected to the internal power supply V DD , the output end of the current source Is 101 is connected to the capacitor C 101 and the drain of the NMOS transistor M 101 , and the other end of the capacitor C 101 is connected to the source of the NMOS transistor M 101 and ground, The gate of the NMOS transistor M101 is connected to QN;
比较器101的反向端与电流源Is101的输出端相连,比较器101的反向端与所述时钟控制信号VREF相连,比较器101的输出端与第一与非门103的输入端和第二与非门104的输出端均相连,第一与非门103的输出端与QN相连,反相器102的输入端与所述脉冲宽度调制比较器PWM的输出端相连,反相器102的输出端与第二与非门104的输入端和第一与非门103的输出端均相连,第二与非门104的输出端与所述死区控制驱动器的输入端相连。The inverting terminal of the comparator 101 is connected with the output terminal of the current source Is 101 , the inverting terminal of the comparator 101 is connected with the clock control signal V REF , the output terminal of the comparator 101 is connected with the input terminal of the first NAND gate 103 The output ends of the second NAND gate 104 are connected, the output end of the first NAND gate 103 is connected with QN, the input end of the inverter 102 is connected with the output end of the pulse width modulation comparator PWM, and the inverter The output terminal of 102 is connected to the input terminal of the second NAND gate 104 and the output terminal of the first NAND gate 103 , and the output terminal of the second NAND gate 104 is connected to the input terminal of the dead zone control driver.
此时,电流源IS101、比较器101、电容C101和NMOS管M101构成one-shot电路,首先电流源IS101给电容C101充电,当电压与时钟控制信号VREF相等时,此时比较器101的输出将由第一与非门103、第二与非门104构成的RS触发器的QN置为高电平(即比较器101的输出为RS触发器的清零端),开始给电容C101放电,从而产生固定导通时间TON,即产生驱动控制信号VDH。At this time, current source IS101 , comparator 101 , capacitor C101 and NMOS transistor M101 form a one-shot circuit. First, current source IS101 charges capacitor C101 . When the voltage is equal to the clock control signal V REF , then The output of comparator 101 sets the QN of the RS flip-flop formed by the first NAND gate 103 and the second NAND gate 104 to high level (that is, the output of comparator 101 is the clearing terminal of RS flip-flop), and starts to give The capacitor C 101 is discharged to generate a constant on-time T ON , that is, to generate a driving control signal V DH .
而导通时间TON由时钟控制信号VREF、电流源IS101和电容C101的值决定,即:The on-time T ON is determined by the clock control signal V REF , the value of the current source IS101 and the value of the capacitor C101 , namely:
而导通时间TON和开关时间T决定占空比D,从而决定升压结果:The conduction time T ON and the switching time T determine the duty cycle D, thereby determining the boost result:
当脉宽调制信号VPWM为高时,说明此时输出电压VOUT已经达到要求,所以应该关闭升压动作,所以反相器102输出端为RS触发器的置位端。When the pulse width modulation signal V PWM is high, it means that the output voltage V OUT has reached the requirement at this time, so the boosting action should be turned off, so the output terminal of the inverter 102 is the set terminal of the RS flip-flop.
具体地,参见图4,所述电流采样单元2包括电流源IS201、电流源IS202、PMOS管M203、PMOS管M204、PMOS管M205、PMOS管M207、NMOS管M201、NMOS管M202、NMOS管M206、电阻R201和电阻R202;其中:Specifically, referring to FIG. 4 , the current sampling unit 2 includes a current source IS201, a current source IS202 , a PMOS transistor M203 , a PMOS transistor M204 , a PMOS transistor M205 , a PMOS transistor M207 , an NMOS transistor M201 , and an NMOS transistor M201 . Tube M 202 , NMOS tube M 206 , resistor R 201 and resistor R 202 ; where:
电流源IS201的输入端连接内部电源VDD,电流源IS201的输出端连接NMOS管M201的漏极和栅极,NMOS管M201的源极接地,NMOS管M201、NMOS管M202和NMOS管M206构成一排电流镜;The input end of the current source I S201 is connected to the internal power supply V DD , the output end of the current source I S201 is connected to the drain and gate of the NMOS transistor M 201 , the source of the NMOS transistor M 201 is grounded, the NMOS transistor M 201 and the NMOS transistor M 202 Form a row of current mirrors with the NMOS tube M 206 ;
PMOS管M203的源极连接所述同步功率管Q1的漏极,PMOS管M203的漏极与NMOS管M202的漏极和PMOS管M207的栅极均相连,PMOS管M203的栅极与PMOS管M205的漏极和栅极均相连;PMOS管M204的源极与所述同步功率管Q1的源极相连,PMOS管M204的栅极与所述同步功率管Q1的栅极相连,PMOS管M204的漏极与PMOS管M205的源极和PMOS管M207的源极均相连;PMOS管M205的漏极和NMOS管M206的漏极相连,PMOS管M207的漏极通过电阻R201接地;The source of the PMOS transistor M203 is connected to the drain of the synchronous power transistor Q1, the drain of the PMOS transistor M203 is connected to the drain of the NMOS transistor M202 and the gate of the PMOS transistor M207 , and the gate of the PMOS transistor M203 The gate is connected to the drain and gate of the PMOS transistor M 205 ; the source of the PMOS transistor M 204 is connected to the source of the synchronous power transistor Q1, and the gate of the PMOS transistor M 204 is connected to the synchronous power transistor Q 1 , the drain of the PMOS transistor M204 is connected to the source of the PMOS transistor M205 and the source of the PMOS transistor M207 ; the drain of the PMOS transistor M205 is connected to the drain of the NMOS transistor M206 , and the PMOS The drain of the tube M 207 is grounded through the resistor R 201 ;
电流源IS202的输入端连接内部电源VDD,电流源IS202的输出端连接电阻R202和所述脉冲宽度调制比较器PWM的同相端,电阻R202与PMOS管M207的漏极相连。The input terminal of the current source IS202 is connected to the internal power supply VDD , the output terminal of the current source IS202 is connected to the resistor R202 and the non-inverting terminal of the pulse width modulation comparator PWM, and the resistor R202 is connected to the drain of the PMOS transistor M207 .
其中采样电流ILOAD通过PMOS管M204采样来实现的。采样电流ILOAD与同步功率管Q1的工作电流IQ1之间的关系是由同步功率管Q1和PMOS管M204的导通阻抗决定的,具体关系是:The sampling current I LOAD is realized by sampling the PMOS transistor M 204 . The relationship between the sampling current I LOAD and the operating current I Q1 of the synchronous power transistor Q1 is determined by the conduction impedance of the synchronous power transistor Q1 and the PMOS transistor M204 , and the specific relationship is:
其中,W/L为MOS管的宽长比,其中μp为空穴迁移率、COX为单位面积的栅氧化层电容、VGS为栅源电压、VTH为阈值电压。Among them, W/L is the width-to-length ratio of the MOS transistor, where μ p is the hole mobility, C OX is the gate oxide capacitance per unit area, V GS is the gate-source voltage, and V TH is the threshold voltage.
由上式可以看出采样电流ILOAD只与同步功率管Q1和PMOS管M204的尺寸有关,与温度等其他参数无关。上式中采样电流ILOAD与采样电流的电压信号VLOAD之间的关系是:It can be seen from the above formula that the sampling current I LOAD is only related to the size of the synchronous power transistor Q 1 and the PMOS transistor M 204 , and has nothing to do with other parameters such as temperature. In the above formula, the relationship between the sampling current I LOAD and the voltage signal V LOAD of the sampling current is:
VLOAD=(ILOAD+IS202)×R201+IS202×R202(5)V LOAD =(I LOAD +I S202 )×R 201 +I S202 ×R 202 (5)
其中增加电流源IS202的目的是产生一个直流偏置电压,为脉冲宽度调制比较器PWM提供合适的工作点。Among them, the purpose of adding the current source IS202 is to generate a DC bias voltage to provide a suitable working point for the pulse width modulation comparator PWM.
实施例2:Example 2:
本实施例的TON产生电路1与实施例1中的相同。The T ON generating circuit 1 of this embodiment is the same as that in Embodiment 1.
参照图5,本实施例的所述电流采样单元2包括电流源IS301、电流源IS302、PMOS管M302、PMOS管M303、PMOS管M307、PMOS管M308、NMOS管M301、NMOS管M304、NMOS管M305、NMOS管M306、电阻R301、电阻R302、电阻R303和电容C301;其中:Referring to FIG. 5 , the current sampling unit 2 of this embodiment includes a current source I S301 , a current source I S302 , a PMOS transistor M 302 , a PMOS transistor M 303 , a PMOS transistor M 307 , a PMOS transistor M 308 , an NMOS transistor M 301 , NMOS transistor M 304 , NMOS transistor M 305 , NMOS transistor M 306 , resistor R 301 , resistor R 302 , resistor R 303 and capacitor C 301 ; where:
电流源IS301的输入端连接内部电源VDD,电流源IS301的输出端连接NMOS管M301的漏极和栅极,NMOS管M301的源极接地,NMOS管M301和NMOS管M306构成电流镜;The input end of the current source IS301 is connected to the internal power supply V DD , the output end of the current source IS301 is connected to the drain and gate of the NMOS transistor M301 , the source of the NMOS transistor M301 is grounded, and the NMOS transistor M301 and the NMOS transistor M306 constitute a current mirror;
PMOS管M302的源极和PMOS管M303的源极均连接内部电源VDD,PMOS管M302的栅极和漏极均与PMOS管M303的栅极相连,PMOS管M302的漏极与NMOS管M304的漏极相连;PMOS管M303的漏极与NMOS管M305的漏极相连;NMOS管M304的源极和NMOS管M305的源极均与NMOS管M306的漏极相连,NMOS管M304的栅极与所述同步功率管Q1的漏极相连,NMOS管M305的栅极与PMOS管M307的漏极和PMOS管M308的源极均相连;The source of the PMOS transistor M302 and the source of the PMOS transistor M303 are both connected to the internal power supply V DD , the gate and drain of the PMOS transistor M302 are connected to the gate of the PMOS transistor M303 , and the drain of the PMOS transistor M302 connected to the drain of the NMOS transistor M304 ; the drain of the PMOS transistor M303 is connected to the drain of the NMOS transistor M305 ; the source of the NMOS transistor M304 and the source of the NMOS transistor M305 are both connected to the drain of the NMOS transistor M306 The gate of the NMOS transistor M304 is connected to the drain of the synchronous power transistor Q1, the gate of the NMOS transistor M305 is connected to the drain of the PMOS transistor M307 and the source of the PMOS transistor M308 ;
电阻R301和电容C301串联在内部电源VDD和PMOS管M303的漏极之间;PMOS管M307的源极与所述同步功率管Q1的源极相连,PMOS管M307的栅极与所述同步功率管Q1的栅极相连;PMOS管M308的栅极与PMOS管M303的漏极相连,PMOS管M308的漏极通过电阻R302接地;The resistor R 301 and the capacitor C 301 are connected in series between the internal power supply V DD and the drain of the PMOS transistor M 303 ; the source of the PMOS transistor M 307 is connected to the source of the synchronous power transistor Q 1 , and the gate of the PMOS transistor M 307 The pole is connected with the gate of the synchronous power transistor Q1 ; the gate of the PMOS transistor M308 is connected with the drain of the PMOS transistor M303 , and the drain of the PMOS transistor M308 is grounded through the resistor R302 ;
电流源IS302的输入端接内部电源VDD,电流源IS302的输出端连接电阻R303和所述脉冲宽度调制比较器PWM的同相端,电阻R303与PMOS管M308的漏极相连。The input terminal of the current source IS302 is connected to the internal power supply V DD , the output terminal of the current source IS302 is connected to the resistor R303 and the non-inverting terminal of the pulse width modulation comparator PWM, and the resistor R303 is connected to the drain of the PMOS transistor M308 .
其中采样电流ILOAD通过PMOS管M307采样来实现的。采样电流ILOAD与同步功率管Q1的工作电流IQ1之间的关系是由同步功率管Q1和PMOS管M307的导通阻抗决定的,具体关系是:The sampling current I LOAD is realized by sampling the PMOS transistor M 307 . The relationship between the sampling current I LOAD and the operating current I Q1 of the synchronous power transistor Q1 is determined by the conduction impedance of the synchronous power transistor Q1 and the PMOS transistor M307 , and the specific relationship is:
由上式可以看出采样电流ILOAD只与Q1和PMOS管M307的尺寸有关,与温度等其他参数无关。式中采样电流ILOAD与采样电流的电压信号VLOAD之间的关系是:It can be seen from the above formula that the sampling current I LOAD is only related to the size of Q 1 and the PMOS transistor M 307 , and has nothing to do with other parameters such as temperature. In the formula, the relationship between the sampling current I LOAD and the voltage signal V LOAD of the sampling current is:
VLOAD=(ILOAD+IS302)×R302+IS302×R303(7)V LOAD =(I LOAD +I S302 )×R 302 +I S302 ×R 303 (7)
其中增加电流源IS302的目的是产生一个直流偏置电压,为脉冲宽度调制比较器PWM提供合适的工作点。Among them, the purpose of adding the current source IS302 is to generate a DC bias voltage to provide a suitable working point for the pulse width modulation comparator PWM.
其中PMOS管M302、M303和NMOS管M304、M305与PMOS管M302构成两级的电流采样放大器,而电阻R301和电容C301起电流采样放大器环路补偿的作用。The PMOS transistors M 302 , M 303 , the NMOS transistors M 304 , M 305 and the PMOS transistor M 302 form a two-stage current sampling amplifier, and the resistor R 301 and capacitor C 301 function as loop compensation for the current sampling amplifier.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620059348.2U CN205377666U (en) | 2016-01-21 | 2016-01-21 | Direct current - direct current converter circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620059348.2U CN205377666U (en) | 2016-01-21 | 2016-01-21 | Direct current - direct current converter circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205377666U true CN205377666U (en) | 2016-07-06 |
Family
ID=56273971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201620059348.2U Expired - Fee Related CN205377666U (en) | 2016-01-21 | 2016-01-21 | Direct current - direct current converter circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205377666U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105553258A (en) * | 2016-01-21 | 2016-05-04 | 长安大学 | Synchronous step-up DC (Direct Current)-DC converter circuit with fixed on-time mode |
CN110350910A (en) * | 2019-06-06 | 2019-10-18 | 长安大学 | One kind being used for FT trimming circuit based on EPROM and Pin multiplexing |
CN111490679A (en) * | 2020-05-28 | 2020-08-04 | 上海灿瑞科技股份有限公司 | Boost DC-DC control circuit |
CN113193731A (en) * | 2021-04-22 | 2021-07-30 | 广州金升阳科技有限公司 | Current sampling compensation circuit of switching power supply |
CN113556039A (en) * | 2021-07-22 | 2021-10-26 | 无锡职业技术学院 | A control system and method for a multiphase DC-DC converter |
-
2016
- 2016-01-21 CN CN201620059348.2U patent/CN205377666U/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105553258A (en) * | 2016-01-21 | 2016-05-04 | 长安大学 | Synchronous step-up DC (Direct Current)-DC converter circuit with fixed on-time mode |
CN105553258B (en) * | 2016-01-21 | 2018-05-18 | 长安大学 | The synchronous boost type DC-DC converter circuit of fixed ON time pattern |
CN110350910A (en) * | 2019-06-06 | 2019-10-18 | 长安大学 | One kind being used for FT trimming circuit based on EPROM and Pin multiplexing |
CN110350910B (en) * | 2019-06-06 | 2023-02-28 | 长安大学 | A circuit based on EPROM and Pin multiplexing for FT trimming |
CN111490679A (en) * | 2020-05-28 | 2020-08-04 | 上海灿瑞科技股份有限公司 | Boost DC-DC control circuit |
CN113193731A (en) * | 2021-04-22 | 2021-07-30 | 广州金升阳科技有限公司 | Current sampling compensation circuit of switching power supply |
CN113193731B (en) * | 2021-04-22 | 2023-11-17 | 广州金升阳科技有限公司 | Current sampling compensation circuit of switching power supply |
CN113556039A (en) * | 2021-07-22 | 2021-10-26 | 无锡职业技术学院 | A control system and method for a multiphase DC-DC converter |
CN113556039B (en) * | 2021-07-22 | 2022-08-30 | 无锡职业技术学院 | Control system and method of multiphase DC-DC converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105553258B (en) | The synchronous boost type DC-DC converter circuit of fixed ON time pattern | |
CN102868297B (en) | Deadline-fixed PFM (pulse frequency modulation) mode switching power supply controller | |
CN205377666U (en) | Direct current - direct current converter circuit | |
CN103248221B (en) | Step-down controller | |
CN102299626A (en) | Method and device for converting direct current into direct current | |
CN102946185B (en) | Improve the control circuit of switch power source output voltage transient response | |
CN103560668B (en) | The method that secondary switch 100% duty ratio exports is realized in single inductance dual-output converter | |
CN103475223A (en) | Step-down converter | |
CN103427636B (en) | Transient response for Switching Power Supply strengthens control circuit | |
CN104617769A (en) | Power converters and compensation circuits thereof | |
CN102594136A (en) | DC to DC converter | |
CN112886814A (en) | Buck converter circuit with variable conduction time | |
CN114257066B (en) | Switching converter and its control circuit | |
CN112799456B (en) | Voltage conversion circuit and method and buck-boost conversion circuit | |
CN113422512A (en) | Four-switch control circuit | |
CN106787737A (en) | A kind of two-way DC converter | |
CN207460000U (en) | A kind of two-mode field circuit of PWM/PFM | |
CN117833663A (en) | Switching converter and zero-crossing detection circuit thereof | |
CN101976949A (en) | Anti-interference rapid current sampling circuit based on difference structure | |
CN203014698U (en) | Constant current control circuit with high power factor | |
CN116317553A (en) | A Valley Current Limit Generation Circuit of ACOT Controlled Buck Converter | |
CN205544931U (en) | System for substrate bias circuit, voltage multiplier and contain said voltage multiplier | |
CN107546982A (en) | A kind of two-mode field circuit of PWM/PFM | |
CN110299843B (en) | Composite DCDC circuit | |
CN106374746A (en) | A non-isolated three-level Buck converter and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160706 Termination date: 20180121 |
|
CF01 | Termination of patent right due to non-payment of annual fee |