CN204718885U - Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system - Google Patents
Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system Download PDFInfo
- Publication number
- CN204718885U CN204718885U CN201520301067.9U CN201520301067U CN204718885U CN 204718885 U CN204718885 U CN 204718885U CN 201520301067 U CN201520301067 U CN 201520301067U CN 204718885 U CN204718885 U CN 204718885U
- Authority
- CN
- China
- Prior art keywords
- fatigue
- tensile
- unit
- test piece
- guide rail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 239000000463 material Substances 0.000 title claims abstract description 63
- 238000009661 fatigue test Methods 0.000 title claims abstract description 27
- 238000012360 testing method Methods 0.000 claims abstract description 78
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 238000006073 displacement reaction Methods 0.000 claims description 22
- 230000002457 bidirectional effect Effects 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 10
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 abstract description 13
- 238000009864 tensile test Methods 0.000 abstract description 11
- 230000007246 mechanism Effects 0.000 abstract description 8
- 230000009471 action Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 238000011065 in-situ storage Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000004154 testing of material Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012999 compression bending Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本实用新型涉及一种材料微观力学性能双轴拉伸-疲劳测试系统,属于精密科学仪器领域。通过对试件施加正交的拉伸载荷,使试件在一个平面上存在两个相互垂直的拉应力,同时在拉伸载荷的基础上还可以对试件施加疲劳载荷,用于研究不同载荷形式及载荷大小情况下材料的微观力学性能。系统由精密加载-传动单元、疲劳单元、力学和变形信号检测单元、试件夹持单元等部分组成。优点在于:测试系统结构新颖紧凑,可以分别实现单轴拉伸测试、双轴拉伸测试、单轴拉伸-疲劳测试、双轴拉伸-疲劳测试,与光学显微镜有良好的兼容性,可动态研究拉伸-疲劳载荷作用情况下材料的微观组织结构与变形损伤机制的相关性规律。
The utility model relates to a biaxial tension-fatigue test system for the micromechanical properties of materials, which belongs to the field of precision scientific instruments. By applying orthogonal tensile loads to the specimens, there are two mutually perpendicular tensile stresses on a plane, and at the same time, fatigue loads can also be applied to the specimens on the basis of tensile loads to study different loads The micromechanical properties of materials under the form and load conditions. The system consists of precision loading-transmission unit, fatigue unit, mechanical and deformation signal detection unit, specimen clamping unit and other parts. The advantages are: the testing system is novel and compact in structure, and can respectively realize uniaxial tensile testing, biaxial tensile testing, uniaxial tensile-fatigue testing, and biaxial tensile-fatigue testing, and has good compatibility with optical microscopes. Dynamically study the correlation law between the microstructure of materials and the mechanism of deformation and damage under the action of tensile-fatigue loads.
Description
技术领域 technical field
本实用新型涉及精密科学仪器领域,特别涉及一种材料微观力学性能双轴拉伸-疲劳测试系统。可作为单轴拉伸、双轴拉伸、单周拉伸-疲劳、双轴拉伸-疲劳材料微观力学性能测试平台使用,其中作为双轴拉伸-疲劳材料微观力学性能测试还可以实现双轴同频疲劳和双轴非同频疲劳等测试。且该系统可在部分光学显微镜下进行上述的各种材料微观力学性能测试,从而实现对被测材料的微观力学行为和变形损伤过程进行实时观察。同时,通过减速器和大减速比的蜗轮蜗杆实现了拉伸过程中的准静态加载技术;通过力学和变形信号检测单元对测试过程中试件承受的拉伸力、试件的拉伸变形等信号的采集,可以拟合被测材料在相应载荷作用下的应力应变历程,能够以此分析材料的微观力学性能;通过处理软件对力学和变形信号检测单元采集的力和变形信号进行分析处理,还可以对测试系统实现闭环控制。 The utility model relates to the field of precision scientific instruments, in particular to a biaxial stretching-fatigue testing system for the microscopic mechanical properties of materials. It can be used as a test platform for uniaxial tension, biaxial tension, single-cycle tension-fatigue, and biaxial tension-fatigue material micromechanical properties, and it can also be used as a biaxial tension-fatigue material micromechanical property test. Axial co-frequency fatigue and biaxial non-coherent frequency fatigue tests. Moreover, the system can perform the above-mentioned micro-mechanical performance tests of various materials under some optical microscopes, so as to realize real-time observation of the micro-mechanical behavior and deformation damage process of the tested materials. At the same time, the quasi-static loading technology in the stretching process is realized through the reducer and the worm gear with a large reduction ratio; through the mechanical and deformation signal detection unit, the tensile force and tensile deformation of the specimen during the test process are measured. The signal collection can fit the stress-strain history of the measured material under the corresponding load, and can analyze the micro-mechanical properties of the material; through the processing software, the force and deformation signals collected by the mechanical and deformation signal detection unit are analyzed and processed. It is also possible to implement closed-loop control of the test system.
背景技术 Background technique
在对材料进行力学性能测试的过程中,通过光学显微镜等仪器对载荷作用下材料发生的微观变形损伤进行全程动态监测,能够更深入地揭示各类材料及其制品的微观力学行为、损伤机理及其材料性能与所受载荷间的相关性规律。 In the process of testing the mechanical properties of materials, the whole process of dynamic monitoring of the microscopic deformation and damage of materials under load can be carried out through optical microscopes and other instruments, which can reveal more deeply the microscopic mechanical behaviors, damage mechanisms and The correlation law between its material properties and the load it receives.
为了测量材料及其制品的弹性模量、硬度、断裂极限、切变模量等重要参数,基于微纳米力学测试,提出了多种测试方法,其中,有关拉伸的测试方法主要包括单轴拉伸、单轴拉伸-疲劳、双轴拉伸等。然而,实际情况下,材料及其制品受到的载荷形式往往是非单一模式的,如拉伸/压缩-弯曲复合载荷模式、拉伸/压缩-疲劳复合载荷模式、剪切-扭转复合载荷模式等,因此,解析复合载荷模式作用下的材料的力学性能及其变性损伤机制对材料学的发展具有不可忽视的现实意义。 In order to measure important parameters such as elastic modulus, hardness, fracture limit, and shear modulus of materials and their products, a variety of testing methods have been proposed based on micro-nano mechanical testing. Among them, the testing methods related to tensile mainly include uniaxial tensile stretching, uniaxial tension-fatigue, biaxial tension, etc. However, in practice, materials and their products are often subjected to non-single-mode loads, such as tension/compression-bending composite load mode, tension/compression-fatigue composite load mode, shear-torsion composite load mode, etc. Therefore, analyzing the mechanical properties of materials and their denatured damage mechanisms under the combined load mode has practical significance that cannot be ignored for the development of materials science.
此外,实际工程中的板、壳结构部件所承受的大多是双向载荷,包括单晶金属、混凝土以及部分具有各向异性的复合材料,只是研究其单轴承受拉伸载荷下的力学性能,并不客观。因此,开发双轴拉伸-疲劳测试系统,对研究双向拉伸及疲劳载荷下材料的力学性能及材料 的变形损伤机制具有重要意义。 In addition, most of the plate and shell structural components in actual engineering are subjected to two-way loads, including single crystal metals, concrete, and some anisotropic composite materials. Only the mechanical properties of their single bearings under tensile loads are studied, and not objective. Therefore, the development of a biaxial tension-fatigue test system is of great significance to the study of the mechanical properties of materials under biaxial tension and fatigue loads and the deformation and damage mechanism of materials.
发明内容 Contents of the invention
本实用新型的目的在于提供一种材料微观力学性能双轴拉伸-疲劳测试系统,解决了现有技术存在的上述问题。本实用新型可以分别实现单轴拉伸力学测试、双轴拉伸力学测试、单轴拉伸-疲劳力学测试、双轴拉伸-疲劳力学测试,其中针对双轴拉伸-疲劳力学测试,本系统还可以实现双轴同频疲劳加载和双轴非同频疲劳加载等模式,所述的双轴拉伸-疲劳材料微观力学性能测试系统还可以与部分光学显微镜兼容,对材料微观力学性能测试过程进行实时观察,如对材料的裂纹萌生、裂纹扩展和材料的失效破坏过程进行原位监测;此外,通过力学和变形信号检测单元对测试过程中试件承受的拉伸力、试件的拉伸变形等信号的采集,可以拟合被测材料在相应载荷作用下的应力应变历程,进而对材料在双轴拉伸-疲劳载荷作用下的微观力学行为、变形损伤机制进行深入研究。 The purpose of the utility model is to provide a biaxial tension-fatigue test system for the micromechanical properties of materials, which solves the above-mentioned problems existing in the prior art. The utility model can respectively realize uniaxial tensile mechanical test, biaxial tensile mechanical test, uniaxial tensile-fatigue mechanical test, biaxial tensile-fatigue mechanical test, wherein for biaxial tensile-fatigue mechanical test, this The system can also realize biaxial co-frequency fatigue loading and biaxial non-coherent frequency fatigue loading and other modes. The biaxial tension-fatigue material micro-mechanical performance testing system can also be compatible with some optical microscopes, and the micro-mechanical performance testing of materials Real-time observation of the process, such as in-situ monitoring of crack initiation, crack propagation, and material failure and damage process; in addition, the tensile force and tensile force of the specimen during the test are monitored through the mechanical and deformation signal detection unit. The acquisition of signals such as elongation and deformation can fit the stress-strain history of the measured material under the corresponding load, and then conduct in-depth research on the micro-mechanical behavior and deformation damage mechanism of the material under the action of biaxial tension-fatigue load.
本实用新型的上述目的通过以下技术方案实现: Above-mentioned purpose of the utility model is realized through the following technical solutions:
材料微观力学性能双轴拉伸-疲劳测试系统,包括精密加载-传动单元、疲劳单元、力学和变形信号检测单元、试件夹持单元等;其中,精密加载-传动单元通过螺钉固定在底板5上,疲劳单元通过两个对称的导轨Ⅰa32、滑块Ⅰa31和导轨Ⅰb36、滑块Ⅰb35安装在精密加载-传动单元上,疲劳单元通过四个相同的连杆17分别与试件夹持单元相连,力学和变形信号检测单元安装在试件夹持单元上。 Biaxial tensile-fatigue test system for material micromechanical properties, including precision loading-transmission unit, fatigue unit, mechanical and deformation signal detection unit, specimen clamping unit, etc.; wherein, the precision loading-transmission unit is fixed on the bottom plate 5 by screws Above, the fatigue unit is installed on the precision loading-transmission unit through two symmetrical guide rails Ia32, slider Ia31, guide rail Ib36, and slider Ib35, and the fatigue unit is connected to the specimen clamping unit through four identical connecting rods 17, The mechanical and deformation signal detection unit is installed on the specimen clamping unit.
所述的精密加载-传动单元提供测试系统的预加载力和用于调整试件夹持单元的位置所需要的力,由直流电机1提供动力,经过减速器2、蜗轮25、蜗杆24带动双向滚珠丝杠11转动;所述的直流电机1的输出轴经过联轴器3与蜗杆轴48相连,蜗轮25安装在双向滚珠丝杠11上,蜗轮25、蜗杆24起到降速增扭的作用;所述的双向滚珠丝杠11通过导轨Ⅱa9、滑块Ⅱa8、滑块Ⅱ29和导轨Ⅱb12、滑块Ⅱb13、滑块Ⅱ49e及丝杠支撑座28定固在底板5上,双向滚珠丝杠11上安装了两个相同的丝杠螺母Ⅰ、Ⅱ10、50,分别与两个相同的螺母座Ⅰ、Ⅱ14、30相连;所述的螺母座Ⅰ、Ⅱ14、30分为上下两部分,通过螺钉连接, 以此降低安装难度;所述的螺母座Ⅰ、Ⅱ14、30上分别安装了导轨Ⅰa32、滑块Ⅰa31和导轨Ⅰb36、滑块Ⅰb35,两个滑块Ⅰa、b31、35均安装在下支撑板34上,支撑柱33与上支撑板44通过螺钉相连,上支撑板44固定连接柔性铰链15;所述的丝杠螺母Ⅰ、Ⅱ10、50,螺母座Ⅰ、Ⅱ14、30,导轨Ⅰa、b32、36和滑块Ⅰa、b31、35均为对称布置;所述的导轨Ⅰa、b32、36与水平面成20°夹角,因此,当滑块a、bⅠ31、35分别沿着导轨Ⅰa、b32、36运动时,会带动支撑柱33上下运动而保持其水平位置不变。 The precision loading-transmission unit provides the preloading force of the test system and the force required for adjusting the position of the specimen clamping unit. It is powered by the DC motor 1 and drives the two-way through the reducer 2, the worm wheel 25 and the worm 24. The ball screw 11 rotates; the output shaft of the DC motor 1 is connected to the worm shaft 48 through the coupling 3, the worm wheel 25 is installed on the bidirectional ball screw 11, and the worm wheel 25 and the worm 24 play the role of speed reduction and torque increase The bidirectional ball screw 11 is fixed on the bottom plate 5 through the guide rail IIa9, slider IIa8, slider II29, guide rail IIb12, slider IIb13, slider II49e and screw support seat 28, and the bidirectional ball screw 11 Two identical lead screw nuts I, II10, 50 are installed, respectively connected to two identical nut seats I, II14, 30; said nut seats I, II14, 30 are divided into upper and lower parts, connected by screws, In this way, the difficulty of installation is reduced; the guide rail Ia32, the slider Ia31, the guide rail Ib36, and the slider Ib35 are respectively installed on the nut seats I, II14, and 30, and the two sliders Ia, b31, and 35 are all installed on the lower support plate 34 , the support column 33 is connected with the upper support plate 44 by screws, and the upper support plate 44 is fixedly connected to the flexible hinge 15; the screw nuts I, II 10, 50, nut seats I, II 14, 30, guide rails Ia, b32, 36 and The sliders Ia, b31, 35 are arranged symmetrically; the guide rails Ia, b32, 36 form an angle of 20° with the horizontal plane, therefore, when the sliders a, bI31, 35 move along the guide rails Ia, b32, 36 respectively , will drive the support column 33 to move up and down while keeping its horizontal position unchanged.
所述的疲劳单元包括柔性铰链15、四个相同的压电叠堆16以及四个相同的连杆17,其中柔性铰链15为对称结构,通过螺钉安装在下支撑板上44;所述的四个相同的压电叠堆16分别安装在柔性铰链15内,并通过铜片预紧;所述的连杆17一端通过销轴Ⅰ42与柔性铰链15相连,另一端通过销轴Ⅱ45与传感器固定座19相连,传感器固定座19通过螺钉安装在滑块Ⅳ38上。 The fatigue unit includes a flexible hinge 15, four identical piezoelectric stacks 16 and four identical connecting rods 17, wherein the flexible hinge 15 has a symmetrical structure and is mounted on the lower support plate 44 by screws; the four The same piezoelectric stacks 16 are respectively installed in the flexible hinge 15, and are pre-tensioned by copper sheets; one end of the connecting rod 17 is connected to the flexible hinge 15 through the pin shaft I42, and the other end is connected to the sensor holder 19 through the pin shaft II45. Connected, the sensor holder 19 is installed on the slider Ⅳ 38 by screws.
所述的力学和变形信号检测单元包括四个相同的拉力传感器21和两个位移传感器Ⅰ、Ⅱ41、18,拉力传感器21通过螺纹连接于夹具体Ⅰ43和传感器固定座19之间;位移传感器Ⅱ18安装在两个相对的夹具体Ⅰ、Ⅱ43、51之间,位移传感器Ⅰ41和位移传感器Ⅱ18垂直布置;试件40承受的拉力和与其对应的拉力传感器的轴线在一条直线上。 The mechanical and deformation signal detection unit includes four identical tension sensors 21 and two displacement sensors I, II 41, 18, and the tension sensors 21 are connected between the clamp body I 43 and the sensor holder 19 through threads; the displacement sensor II 18 is installed Between the two opposite clamp bodies I, II43, 51, the displacement sensor I41 and the displacement sensor II18 are vertically arranged; the tensile force borne by the test piece 40 is on a straight line with the axis of the corresponding tensile sensor.
所述的试件夹持单元由四个夹具体Ⅰ43和与之一一对应的压板39组成,试件安放在夹具体Ⅰ43与压板39之间,夹具体Ⅰ43和压板39之间通过螺钉连接,并通过旋紧螺钉对试件40进行夹紧;所述的夹具体Ⅰ43安装在滑块Ⅳ38上,滑块Ⅱc20和滑块Ⅳ38安装在同一个导轨Ⅲa37上;导轨Ⅲb、c、d52、53、54与导轨Ⅲa37相同;所述的夹具体Ⅰ43和压板39上加工有滚花,以保证夹持的可靠性。 The specimen clamping unit is composed of four clamping bodies I43 and one-to-one corresponding pressing plates 39, the test piece is placed between the clamping bodies I43 and the pressing plates 39, and the clamping bodies I43 and the pressing plates 39 are connected by screws, And clamp the test piece 40 by tightening the screws; the clamp body I43 is installed on the slider IV38, and the slider IIc20 and the slider IV38 are installed on the same guide rail IIIa37; guide rails IIIb, c, d52, 53, 54 is the same as the guide rail IIIa37; knurling is processed on the clamp body I43 and the pressure plate 39 to ensure the reliability of clamping.
本实用新型的测试系统可以在光学显微镜的动态监测下进行材料微观力学性能原位测试。根据原位观测目的不同,可以选择光学显微镜来监测试件在载荷作用下裂纹的萌生、扩展、至断裂过程;可以选择拉曼光谱仪对试件表面进行微区检测,进行拉伸/疲劳载荷作用下材料的相结构研究、晶粒及晶界变化、裂纹萌生等;也可以选择X射线衍射仪对试件进行物相分析、确定晶粒度和应力分布、研究材料的特殊性质与其原子排布、晶相变化间的关 系等;部分观测设备可以配合使用,如光学显微镜和拉曼光谱仪等。 The testing system of the utility model can perform in-situ testing of the microscopic mechanical properties of materials under the dynamic monitoring of an optical microscope. Depending on the purpose of in-situ observation, an optical microscope can be selected to monitor the crack initiation, propagation, and fracture process of the test piece under load; a Raman spectrometer can be selected to detect the micro-area on the surface of the test piece and perform tensile/fatigue loading Phase structure research, grain and grain boundary changes, crack initiation, etc.; X-ray diffractometer can also be used to analyze the phase of the specimen, determine the grain size and stress distribution, and study the special properties of the material and its atomic arrangement. , the relationship between crystal phase changes, etc.; some observation equipment can be used together, such as optical microscopes and Raman spectrometers.
所述的导轨Ⅲa、b37、52安装在顶板Ⅰ22上,导轨Ⅲc、d53、54安装在顶板Ⅱ23上,立柱6通过螺纹与顶板Ⅱ23和底板5连接;顶板Ⅰ22的连接方式与顶板Ⅱ23的连接方式相同;立柱6将顶板Ⅱ23受到的拉力传导到底板5上。 The guide rails IIIa, b37, and 52 are installed on the top plate I22, the guide rails IIIc, d53, and 54 are installed on the top plate II23, and the column 6 is connected with the top plate II23 and the bottom plate 5 through threads; the connection mode of the top plate I22 is connected with the connection mode of the top plate II23 The same; the column 6 conducts the tension on the top plate II 23 to the bottom plate 5 .
所述的四个相同的压电叠堆16,其中同一个拉伸轴向上的两个压电叠堆输出一致,以保持试件的十字中心在测试过程中位置固定。 Among the four identical piezoelectric stacks 16, the output of the two piezoelectric stacks on the same tensile axis is consistent, so as to keep the cross center of the test piece fixed during the test.
试件的四个拉伸-疲劳端处在一个平面上,四个端部的拉伸载荷由一个加载单元统一进行加载,疲劳载荷的施加则相互独立,即可以对四个拉伸-疲劳端分别施加疲劳载荷。测试过程中,由于装置结构的对称性,试件中心基本保持位置不变,有利于实现原位观测。可以在试件的十字中心,即试件的主要观测区预制压痕等缺陷,便于探究在不同载荷形式及载荷大小情况下,材料的微观力学性能及其变形、损伤机制。 The four tensile-fatigue ends of the specimen are on a plane, and the tensile loads of the four ends are uniformly loaded by a loading unit, and the application of fatigue loads is independent of each other, that is, the four tensile-fatigue ends can be Fatigue loads are applied separately. During the test, due to the symmetry of the device structure, the center of the test piece remained basically unchanged, which was conducive to the realization of in-situ observation. Defects such as indentations can be prefabricated at the cross center of the test piece, that is, the main observation area of the test piece, so as to facilitate the exploration of the microscopic mechanical properties of the material and its deformation and damage mechanisms under different load forms and load sizes.
本实用新型通过对试件四个拉伸端同时施加拉伸载荷,使试件的十字中心在一个平面上存在两个相互垂直的拉应力,同时在拉伸载荷的基础上还可以对试件的四个拉伸端分别施加疲劳载荷,用于研究不同载荷形式及载荷大小情况下材料的微观力学性能;基于测试系统结构的对称性,即四个拉伸端完全对称,且共用一个加载单元进行预加载,使得试件夹持单元拉动试件等速反向运动的同时,试件的十字中心保持静止,便于使用光学显微镜对材料测试过程进行动态监测;此外,双轴拉伸的四个拉伸端各使用一个压电叠堆进行疲劳加载,即各个拉伸端的疲劳加载相互独立,使疲劳加载方案选择多样性。 The utility model applies tensile load to the four tensile ends of the test piece at the same time, so that there are two mutually perpendicular tensile stresses in the cross center of the test piece on a plane, and at the same time, the test piece can also be adjusted on the basis of the tensile load. Fatigue loads are applied to the four tensile ends of the tester to study the micromechanical properties of materials under different load forms and load sizes; based on the symmetry of the test system structure, the four tensile ends are completely symmetrical and share a loading unit Preloading is carried out so that the cross center of the specimen remains stationary while the specimen clamping unit pulls the specimen to move in the opposite direction at the same speed, which is convenient for dynamic monitoring of the material testing process using an optical microscope; in addition, the four biaxial stretching Each stretching end uses a piezoelectric stack for fatigue loading, that is, the fatigue loading of each stretching end is independent of each other, which makes the selection of fatigue loading schemes more diverse.
本实用新型的有益效果在于:测试系统结构新颖、紧凑,质量轻巧,可以在光学显微镜的动态监测下进行材料微观力学性能原位测试,可以进行单轴拉伸测试、双轴拉伸测试、单轴拉伸-疲劳测试、双轴拉伸-疲劳测试,且针对双轴拉伸-疲劳测试还可以实现双轴同频和非同频两种低周疲劳测试,能够对材料及其制品在双向拉伸-疲劳加载模式作用下的微观力学性能及变性损伤机制做出准确评价;该测试系统可以借助于部分光学显微镜,对测试过程进行实时观察,实现原位观测。充分利用了该测试系统结构的对称性,并且只通过一个加载单元进行预加载,保证了测试过程中同轴两个拉伸端的对称和同步性,还保证了测试测试过程 中试件十字中心的稳定性。综上所述,本实用新型不但具有良好的应用、开发前景,而且对原位测试技术及装置的发展、材料微观力学性能研究的进步有着重要意义。 The beneficial effect of the utility model lies in that the testing system is novel and compact in structure and light in weight, and can perform in-situ testing of the microscopic mechanical properties of materials under the dynamic monitoring of an optical microscope, and can perform uniaxial tensile testing, biaxial tensile testing, and single-axis tensile testing. Axial tension-fatigue test, biaxial tension-fatigue test, and for biaxial tension-fatigue test, two low-cycle fatigue tests of biaxial co-frequency and non-coherent frequency can be realized, which can test materials and their products in two directions The micromechanical properties and degenerative damage mechanism under the tension-fatigue loading mode can be accurately evaluated; the test system can use some optical microscopes to observe the test process in real time and realize in-situ observation. The symmetry of the test system structure is fully utilized, and only one loading unit is used for preloading, which ensures the symmetry and synchronization of the two coaxial tensile ends during the test, and also ensures the cross center of the specimen during the test. stability. In summary, the utility model not only has good application and development prospects, but also has great significance for the development of in-situ testing technology and devices, and the progress of research on the microscopic mechanical properties of materials.
附图说明 Description of drawings
此处所说明的附图用来提供对本实用新型的进一步理解,构成本申请的一部分,本实用新型的示意性实例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。 The accompanying drawings described here are used to provide a further understanding of the utility model and constitute a part of the application. The schematic examples and descriptions of the utility model are used to explain the utility model and do not constitute improper limitations to the utility model.
图1为本实用新型的测试系统的整体结构示意图; Fig. 1 is the overall structure schematic diagram of the testing system of the present utility model;
图2为本实用新型的控制原理框图; Fig. 2 is the control principle block diagram of the utility model;
图3为本实用新型的精密加载-传动单元结构示意图; Fig. 3 is the structure schematic diagram of precision loading-transmission unit of the present utility model;
图4为本实用新型的疲劳单元、试件夹持单元和力学和变形信号检测单元结构示意图; Fig. 4 is a structural schematic diagram of the fatigue unit, the specimen clamping unit and the mechanics and deformation signal detection unit of the present invention;
图5为本实用新型的疲劳单元和试件夹持单元结构示意图; Fig. 5 is a structural schematic diagram of the fatigue unit and the specimen clamping unit of the present invention;
图6为本实用新型的力学和变形信号检测单元结构示意图; Fig. 6 is a structural schematic diagram of a mechanical and deformation signal detection unit of the present invention;
图7为本实用新型的原位观测原理示意图(实线表示测试前观测区A及显微镜镜头的位置,测试过程中,观测区A逐渐变化到了虚线位置,同时,镜头跟随试件观测区的运动进行调整,保证对材料发生的微观变形损伤进行全程动态监测)。 Figure 7 is a schematic diagram of the in-situ observation principle of the present invention (the solid line represents the position of the observation area A and the microscope lens before the test, during the test, the observation area A gradually changes to the dotted line position, and at the same time, the lens follows the movement of the specimen observation area Make adjustments to ensure the whole dynamic monitoring of the microscopic deformation damage of the material).
图中:图中:1、直流电机;2、减速器;3、联轴器;4、电机座;5、底板;6、立柱;7、立柱台;8、滑块Ⅱa;9、导轨Ⅱa;10、丝杠螺母Ⅰ;11、双向滚珠丝杠;12、导轨Ⅱb;13、滑块Ⅱb;14、螺母座Ⅰ;15、柔性铰链;16、压电叠堆;17、连杆;18位移传感器Ⅱ;19、传感器固定座;20、滑块Ⅱc;21、拉力传感器;22、顶板Ⅰ;23、顶板Ⅱ;24、蜗杆;25、蜗轮;26、轴承;27、轴承座;28、丝杠支撑座;29、滑块Ⅱd;30、螺母座Ⅱ;31、滑块Ⅰa;32、导轨Ⅰa;33、支撑柱;34、下支撑板;35、滑块Ⅰb;36、导轨Ⅰb;37、导轨Ⅲa;38、滑块Ⅳ;39、压板;40、试件;41、位移传感器Ⅰ;42、销轴Ⅰ;43、夹具体Ⅰ;44、上支撑板;45、销轴Ⅱ;46、固定板;47、止板;48、蜗杆轴;49、滑块Ⅱe;50、丝杠螺母Ⅱ;51、夹具体Ⅱ;52、导轨Ⅲb;53、导轨Ⅲc;54、导轨Ⅲd;55、夹紧片。 In the figure: In the figure: 1. DC motor; 2. Reducer; 3. Coupling; 4. Motor seat; 5. Base plate; 6. Column; 7. Column platform; 8. Slider Ⅱa; ;10. Lead screw nut Ⅰ; 11. Two-way ball screw; 12. Guide rail Ⅱb; 13. Slider Ⅱb; 14. Nut seat Ⅰ; 15. Flexible hinge; 16. Piezoelectric stack; 17. Connecting rod; 18 Displacement sensor II; 19, sensor fixing seat; 20, slider IIc; 21, tension sensor; 22, top plate I; 23, top plate II; 24, worm; 25, worm wheel; 26, bearing; 27, bearing seat; 28, Screw support seat; 29, slider IId; 30, nut seat II; 31, slider Ia; 32, guide rail Ia; 33, support column; 34, lower support plate; 35, slider Ib; 36, guide rail Ib; 37. Guide rail Ⅲa; 38. Slider Ⅳ; 39. Press plate; 40. Test piece; 41. Displacement sensor Ⅰ; 42. Pin shaft Ⅰ; 43. Clamp body Ⅰ; 44. Upper support plate; 45. Pin shaft Ⅱ; 46. Fixed plate; 47. Stop plate; 48. Worm shaft; 49. Slider IIe; 50. Screw nut II; 51. Clamp body II; 52. Guide rail IIIb; 53. Guide rail IIIc; 54. Guide rail IIId; , Clamping film.
具体实施方式 Detailed ways
下面结合附图进一步说明本实用新型的详细内容及其具体实施方式。 Further illustrate the detailed content of the utility model and its specific implementation below in conjunction with accompanying drawing.
参见图1至图7所示,本实用新型的材料微观力学性能双轴拉伸-疲劳测试系统包括精密加载-传动单元、疲劳单元、力学和变形信号检测单元、试件夹持单元等,其中,精密加载-传动单元通过螺钉固定在底板5上,疲劳单元通过两个对称的导轨Ⅰa32、滑块Ⅰa31和导轨Ⅰb36、滑块Ⅰb35安装在精密加载-传动单元上,疲劳单元通过四个相同的连杆17分别与试件夹持单元相连,力学和变形信号检测单元安装在试件夹持单元上;利用测试系统结构的对称性,使得试件夹持单元拉动试件反向运动的同时,试件的十字中心保持静止,便于使用光学显微镜进行原位观测;测试系统可以分别实现单轴拉伸测试、双轴拉伸测试、单轴拉伸-疲劳测试、双轴拉伸-疲劳测试,与光学显微镜有良好的兼容性,可动态研究拉伸-疲劳载荷作用情况下材料的微观组织结构与变形损伤机制的相关性规律。 Referring to Fig. 1 to Fig. 7, the biaxial tension-fatigue test system for material micromechanical properties of the present invention includes a precision loading-transmission unit, a fatigue unit, a mechanical and deformation signal detection unit, a specimen clamping unit, etc., wherein , the precision loading-transmission unit is fixed on the bottom plate 5 by screws, the fatigue unit is installed on the precision loading-transmission unit through two symmetrical guide rails Ia32, slider Ia31, guide rail Ib36, and slider Ib35, and the fatigue unit is installed on the precision loading-transmission unit through four identical The connecting rods 17 are respectively connected with the specimen clamping unit, and the mechanical and deformation signal detection unit is installed on the specimen clamping unit; using the symmetry of the test system structure, the specimen clamping unit pulls the specimen to move in the opposite direction, The cross center of the specimen remains static, which is convenient for in-situ observation with an optical microscope; the test system can respectively realize uniaxial tensile test, biaxial tensile test, uniaxial tensile-fatigue test, biaxial tensile-fatigue test, It has good compatibility with the optical microscope, and can dynamically study the correlation law between the microstructure of the material and the deformation damage mechanism under the action of tensile-fatigue load.
参见图3所示,所述的精密加载-传动单元提供原位测试系统的预加载力和用于调整试件夹持单元的位置所需要的力,由固定在电机座4上的直流电机1提供动力,经过减速器2、蜗轮25、蜗杆24带动双向滚珠丝杠11转动;所述的直流电机1的输出轴经过联轴器3与蜗杆轴48相连,蜗轮25安装在双向滚珠丝杠11上,蜗轮25、蜗杆24起到降速增扭的作用;所述的双向滚珠丝杠11通过导轨Ⅱa9、滑块Ⅱa8、滑块Ⅱd29和导轨Ⅱb12、滑块Ⅱb13、滑块Ⅱe49,以及丝杠支撑座固28定在底板5上,双向滚珠丝杠11上安装了两个相同的丝杠螺母Ⅰ、Ⅱ10、50,分别与两个相同的螺母座Ⅰ、Ⅱ14、30相连;所述的螺母座Ⅰ、Ⅱ14、30分为上下两部分,通过螺钉连接,以此降低安装难度;所述的螺母座Ⅰ、Ⅱ14、30上分别安装了导轨Ⅰa32、滑块Ⅰa31和导轨Ⅰb36、滑块Ⅰb35,两个滑块Ⅰa、b31、35均安装在下支撑板34上,支撑柱33与上支撑板44通过螺钉相连,上支撑板44用于固定、连接柔性铰链15;所述的丝杠螺母Ⅰ、Ⅱ10、50,螺母座Ⅰ、Ⅱ14、30,导轨Ⅰa、b32、36和滑块a、bⅠ31、35均为对称布置;所述的导轨Ⅰa32、导轨Ⅰb36与水平面成20°夹角,因此,当滑块Ⅰa、31、35分别沿着导轨Ⅰa、a32、36运动时,会带动支撑柱33上下运动而保持其水平位置不变。 Referring to Fig. 3, the described precision loading-transmission unit provides the preloading force of the in-situ testing system and the force required for adjusting the position of the specimen clamping unit, and is fixed on the motor base 4 by the DC motor 1 Power is provided, and the two-way ball screw 11 is driven to rotate through the reducer 2, the worm wheel 25, and the worm 24; Above, the worm wheel 25 and the worm 24 play the role of reducing speed and increasing torque; the bidirectional ball screw 11 passes through guide rail IIa9, slider IIa8, slider IId29, guide rail IIb12, slider IIb13, slider IIe49, and screw The support seat 28 is fixed on the bottom plate 5, and two identical screw nuts I, II 10, 50 are installed on the bidirectional ball screw 11, which are respectively connected with two identical nut seats I, II 14, 30; the nuts Seats I, II14, 30 are divided into upper and lower parts, which are connected by screws to reduce the difficulty of installation; the nut seats I, II14, 30 are respectively installed with guide rail Ia32, slider Ia31, guide rail Ib36, slider Ib35, The two sliders Ia, b31, 35 are installed on the lower support plate 34, the support column 33 is connected with the upper support plate 44 by screws, and the upper support plate 44 is used to fix and connect the flexible hinge 15; the screw nut I, Ⅱ10, 50, nut seats Ⅰ, Ⅱ14, 30, guide rails Ⅰa, b32, 36 and sliders a, bⅠ31, 35 are arranged symmetrically; said guide rail Ⅰa32, guide rail Ⅰb36 form an included angle of 20° with the horizontal plane, therefore, when When the sliders Ia, 31, 35 move along the guide rails Ia, a32, 36 respectively, they will drive the support column 33 to move up and down while keeping its horizontal position unchanged.
参见图4及图5所示,所述的疲劳单元包括柔性铰链15、四个相同的压电叠堆16以及 四个相同的连杆17,其中柔性铰链15为对称结构,通过螺钉安装在下支撑板上44;所述的四个相同的压电叠堆16分别安装在柔性铰链15内,并通过铜片预紧;所述的连杆17一端通过销轴Ⅰ42与柔性铰链15相连,另一端通过销轴Ⅱ45与传感器固定座19相连,传感器固定座19通过螺钉安装在滑块Ⅳ38上。 4 and 5, the fatigue unit includes a flexible hinge 15, four identical piezoelectric stacks 16 and four identical connecting rods 17, wherein the flexible hinge 15 is a symmetrical structure, and is installed on the lower support by screws. 44 on the board; the four identical piezoelectric stacks 16 are installed in the flexible hinge 15 respectively, and are preloaded by copper sheets; one end of the connecting rod 17 is connected with the flexible hinge 15 through the pin I42, and the other end The sensor fixing seat 19 is connected with the sensor fixing seat 19 through the pin shaft II45, and the sensor fixing seat 19 is installed on the slider IV38 through screws.
所述的试件夹持单元由四个夹具体Ⅰ43和与之一一对应的压板39组成,试件安放在夹具体Ⅰ43与压板39之间,夹具体Ⅰ43和压板39之间通过螺钉连接,并通过旋紧螺钉对试件40进行夹紧;所述的夹具体Ⅰ43安装在滑块Ⅳ38上,滑块Ⅱc20和滑块Ⅳ38安装在同一个导轨Ⅲa37上;所述的夹具体Ⅰ43和压板39上加工有滚花,以保证夹持的可靠性。 The specimen clamping unit is composed of four clamping bodies I43 and one-to-one corresponding pressing plates 39, the test piece is placed between the clamping bodies I43 and the pressing plates 39, and the clamping bodies I43 and the pressing plates 39 are connected by screws, And clamp the test piece 40 by tightening the screws; the clamp body I43 is installed on the slider IV38, and the slider IIc20 and the slider IV38 are installed on the same guide rail IIIa37; the clamp body I43 and the pressure plate 39 There is knurling on the upper processing to ensure the reliability of clamping.
参见图6所示,所述的力学和变形信号检测单元包括四个相同的拉力传感器21和两个位移传感器Ⅰ、Ⅱ41、18,拉力传感器21通过螺纹连接于夹具体Ⅰ43和传感器固定座19之间;位移传感器Ⅱ18安装在两个相对的夹具体Ⅰ43和夹具体Ⅱ51之间,位移传感器41和位移传感器Ⅱ18垂直布置。 Referring to Fig. 6, the described mechanical and deformation signal detection unit includes four identical tension sensors 21 and two displacement sensors I, II 41, 18, and the tension sensors 21 are connected between the clamp body I 43 and the sensor holder 19 by threads Between; the displacement sensor II18 is installed between the two opposite clamp body I43 and the clamp body II51, and the displacement sensor 41 and the displacement sensor II18 are vertically arranged.
所述的导轨Ⅲa37、导轨Ⅲb52安装在顶板Ⅰ22上,导轨Ⅲc53、导轨Ⅲd54安装在顶板Ⅱ23上,立柱6一端通过螺纹与顶板Ⅱ23连接,另一端通过立柱台7与底板5连接;顶板Ⅰ22的连接方式与顶板Ⅱ23的连接方式相同;立柱6将顶板Ⅱ23受到的拉力传导到底板5上。 The guide rail IIIa37 and guide rail IIIb52 are installed on the top plate I22, the guide rail IIIc53 and guide rail IIId54 are installed on the top plate II23, one end of the column 6 is connected to the top plate II23 through threads, and the other end is connected to the bottom plate 5 through the column platform 7; the connection of the top plate I22 The connection method is the same as that of the top plate II 23; the column 6 conducts the tension on the top plate II 23 to the bottom plate 5.
所述的蜗杆轴48一端与联轴器3连接,另一端通过轴承26安装在轴承座27上。 One end of the worm shaft 48 is connected with the shaft coupling 3 , and the other end is installed on the bearing seat 27 through the bearing 26 .
所述的位移传感器Ⅱ18通过固定板46和夹紧片55安装在夹具体Ⅰ43上,传感器的端部与止板47始终保持接触,止板47安装在夹具体Ⅱ51上,测试前位移传感器Ⅱ18处在压缩状态,测试过程中,随着夹具体Ⅰ43和夹具体Ⅱ51之间距离的增加,位移传感器Ⅱ18慢慢伸长;位移传感器Ⅰ41的安装及测量方式与位移传感器Ⅱ18相同。 The displacement sensor II18 is installed on the clamp body I43 through the fixed plate 46 and the clamping piece 55. The end of the sensor is always in contact with the stop plate 47, and the stop plate 47 is installed on the clamp body II51. Before testing, the displacement sensor II18 In the compressed state, during the test, as the distance between clamp body I43 and clamp body II51 increases, the displacement sensor II18 slowly elongates; the installation and measurement methods of the displacement sensor I41 are the same as those of the displacement sensor II18.
所述的四个相同的压电叠堆16,要求同一个拉伸轴向上的两个压电叠堆输出一致,以保持试件的十字中心在测试过程中原位不动,便于原位观测。 The four identical piezoelectric stacks 16 require that the output of the two piezoelectric stacks on the same tensile axis be consistent, so as to keep the cross center of the specimen in place during the test and facilitate in-situ observation .
所述的双向拉伸的四个方向对应的压电叠堆16、连杆17、力传感器21、夹具体Ⅰ43等完全相同,保证双向拉伸时试件40的十字中心不发生水平运动,便于通过显微镜对测试过程进行原位观测。 The piezoelectric stack 16, connecting rod 17, force sensor 21, clamp body I43, etc. corresponding to the four directions of biaxial stretching are identical, so as to ensure that the cross center of the test piece 40 does not move horizontally during biaxial stretching, which is convenient In situ observation of the testing process by microscope.
所述的四个相同的力传感器21与试件40承受的拉力在一条直线上,保证了力传感器测量结果的准确性。 The four identical force sensors 21 and the tensile force borne by the test piece 40 are in a straight line, which ensures the accuracy of the measurement results of the force sensors.
参见图1至图7,发明的测试系统安装前,需要对测试系统中使用的四个相同的力传感器21和两个位移传感器Ⅱ、Ⅰ18、41进行标定与校正,再对测试系统进行安装、调试。进行材料力学性能测试前,需要对试件夹持单元进行复位操作,要求将试件夹持单元调整到合适的位置以便对试件进行定位和夹紧,且复位后要求位移传感器Ⅱ、Ⅰ18、41均处在受压状态,且保证其允许的伸长量大于试件的拉伸长度。 Referring to Figures 1 to 7, before the inventive test system is installed, it is necessary to calibrate and correct four identical force sensors 21 and two displacement sensors II, I18, and 41 used in the test system, and then install, debugging. Before testing the mechanical properties of materials, it is necessary to reset the clamping unit of the specimen, and it is required to adjust the clamping unit of the specimen to a suitable position in order to position and clamp the specimen, and after reset, displacement sensors II, I18, 41 are all under compression, and the allowable elongation is guaranteed to be greater than the tensile length of the specimen.
根据实验目的需要,选择合适的测量方法,即单轴拉伸测试、双轴拉伸测试、单轴拉伸-疲劳测试或者双轴拉伸-疲劳测试,其中涉及的疲劳测试主要指低周疲劳测试,并在试件被拉伸的基础上进行,即试件预有一定变形或一定载荷条件下进行中低频拉伸测试。因此以所发明的测试系统所进行的测试研究主要分析的是材料弹性模量E、屈服强度σS、强度极限σb、断后延伸率A、断面收缩率Z等力学性能参数。其中, According to the purpose of the experiment, choose the appropriate measurement method, that is, uniaxial tensile test, biaxial tensile test, uniaxial tensile-fatigue test or biaxial tensile-fatigue test, and the fatigue test involved mainly refers to low cycle fatigue. The test is carried out on the basis that the specimen is stretched, that is, the specimen is pre-deformed or under a certain load condition for medium and low frequency tensile tests. Therefore, the test research conducted with the invented test system mainly analyzes the mechanical performance parameters such as material elastic modulus E, yield strength σ S , strength limit σ b , elongation after fracture A, and reduction of area Z. in,
弹性模量
屈服强度
强度极限
断后延伸率
断面收缩率
其中,σ:材料的应力,ε:材料的应变,FeL:下屈服点对应的材料载荷,Fb:材料的最大载荷,S0:材料原始截面积,Su:材料断后截面积,L0:材料原始标距,Lu:材料断后标距。 Among them, σ: stress of material, ε: strain of material, F eL : material load corresponding to lower yield point, F b : maximum load of material, S 0 : original cross-sectional area of material, Su : cross-sectional area of material after fracture, L 0 : The original gauge length of the material, Lu : The gauge length after the material breaks.
材料的力学性能主要体现在材料在载荷作用下的变形和破坏性能等。而材料的弹性模量、断裂极限、疲劳强度等参数是材料力学性能测试中最主要的测试对象,通过拉伸测试能够测量材料的弹性模量、屈服强度、强度极限、断后伸长率和断面收缩率,从而衡量材料在 承受拉伸载荷时的力学性能。通过载荷-位移曲线研究材料在双向拉伸载荷作用下的屈服、破坏过程。而循环加载力所产生的交变应力会对材料局部产生永久性损伤,并诱发裂纹的萌生、扩展、失稳。通过拉伸-疲劳测试可以测量疲劳载荷对材料力学性能的影响。 The mechanical properties of materials are mainly reflected in the deformation and failure properties of materials under load. The elastic modulus, fracture limit, fatigue strength and other parameters of the material are the most important test objects in the mechanical performance test of the material. The elastic modulus, yield strength, strength limit, elongation after fracture and section of the material can be measured through tensile testing. Shrinkage, which measures the mechanical properties of materials when subjected to tensile loads. The yield and failure process of the material under the action of bidirectional tensile load is studied through the load-displacement curve. The alternating stress generated by the cyclic loading force will cause permanent damage to the local material, and induce the initiation, expansion and instability of cracks. The effect of fatigue loading on the mechanical properties of materials can be measured by tensile-fatigue testing.
在测试的整个过程中,为了实时监测被测试件的裂纹萌生、扩展、失稳情况,测试前需要将试件进行抛光、腐蚀处理,由光学显微镜成像系统进行动态监测,并可同时记录图像,结合调试软件亦可实时获取表征材料力学性能的工程应力应变曲线及其他力学参数。 In the whole process of testing, in order to monitor the crack initiation, propagation and instability of the tested piece in real time, the test piece needs to be polished and corroded before the test, and the optical microscope imaging system is used for dynamic monitoring, and the image can be recorded at the same time. Combined with the debugging software, the engineering stress-strain curve and other mechanical parameters that characterize the mechanical properties of the material can also be obtained in real time.
以上所述仅为本实用新型的优选实例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡对本实用新型所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。 The above descriptions are only preferred examples of the utility model, and are not intended to limit the utility model. For those skilled in the art, the utility model can have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made to the utility model shall be included in the protection scope of the utility model.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520301067.9U CN204718885U (en) | 2015-05-12 | 2015-05-12 | Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520301067.9U CN204718885U (en) | 2015-05-12 | 2015-05-12 | Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204718885U true CN204718885U (en) | 2015-10-21 |
Family
ID=54317876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520301067.9U Withdrawn - After Issue CN204718885U (en) | 2015-05-12 | 2015-05-12 | Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204718885U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104913974A (en) * | 2015-05-12 | 2015-09-16 | 吉林大学 | Material micro-mechanical property biaxial tension-fatigue test system and test method thereof |
CN105928783A (en) * | 2016-06-27 | 2016-09-07 | 西南交通大学 | Multiaxial fatigue performance test fixture for round bar specimen |
CN106018077A (en) * | 2016-06-27 | 2016-10-12 | 西南交通大学 | Test fixture for multi-axial fatigue crack propagation performance of CT samples |
CN108287107A (en) * | 2018-03-20 | 2018-07-17 | 国网山东省电力公司济宁供电公司 | A kind of hot elongation test holder and its application method |
CN109580355A (en) * | 2019-01-08 | 2019-04-05 | 韩永胜 | Biaxial stretch-formed mechanics performance testing apparatus and micro mechanical property test equipment in situ |
CN110095216A (en) * | 2019-05-31 | 2019-08-06 | 南京工程学院 | A kind of two dimension prestress application device and its working method |
CN112630029A (en) * | 2020-12-15 | 2021-04-09 | 陕西航天技术应用研究院有限公司 | Meshed fabric mechanical property testing device |
-
2015
- 2015-05-12 CN CN201520301067.9U patent/CN204718885U/en not_active Withdrawn - After Issue
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104913974A (en) * | 2015-05-12 | 2015-09-16 | 吉林大学 | Material micro-mechanical property biaxial tension-fatigue test system and test method thereof |
CN104913974B (en) * | 2015-05-12 | 2017-12-22 | 吉林大学 | The biaxial stretch-formed fatigue test system of material Micro Mechanical Properties and its method of testing |
CN105928783A (en) * | 2016-06-27 | 2016-09-07 | 西南交通大学 | Multiaxial fatigue performance test fixture for round bar specimen |
CN106018077A (en) * | 2016-06-27 | 2016-10-12 | 西南交通大学 | Test fixture for multi-axial fatigue crack propagation performance of CT samples |
CN108287107A (en) * | 2018-03-20 | 2018-07-17 | 国网山东省电力公司济宁供电公司 | A kind of hot elongation test holder and its application method |
CN109580355A (en) * | 2019-01-08 | 2019-04-05 | 韩永胜 | Biaxial stretch-formed mechanics performance testing apparatus and micro mechanical property test equipment in situ |
CN110095216A (en) * | 2019-05-31 | 2019-08-06 | 南京工程学院 | A kind of two dimension prestress application device and its working method |
CN112630029A (en) * | 2020-12-15 | 2021-04-09 | 陕西航天技术应用研究院有限公司 | Meshed fabric mechanical property testing device |
CN112630029B (en) * | 2020-12-15 | 2024-01-19 | 陕西航天技术应用研究院有限公司 | Net-shaped fabric mechanical property testing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104913974B (en) | The biaxial stretch-formed fatigue test system of material Micro Mechanical Properties and its method of testing | |
CN204718885U (en) | Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system | |
CN103335898B (en) | In-situ testing device for micro-mechanical properties of materials under tension-shear combined loading mode | |
CN103487315B (en) | A kind of material mechanical performance proving installation | |
CN106680079B (en) | Piezoelectric stack direct-drive macro-micro combined biaxial tensile-fatigue testing system | |
CN102359912B (en) | Mechanical testing platform for in-situ tension/compression materials under scanning electronic microscope based on quasi-static loading | |
CN103353431B (en) | In-situ indentation mechanical testing device based on tensile compression and fatigue combined load mode | |
CN102331370B (en) | In-situ high-frequency fatigue material mechanical test platform under scanning electron microscope based on stretching/compressing mode | |
CN107607410A (en) | Portable alternating temperature original position tension/compression testing device | |
CN106769452A (en) | Tensile fatigue four-point bending fatigue in-situ mechanical test device and its method of testing | |
CN109883833A (en) | Test device and method for material fatigue mechanical properties under tensile-bending composite load | |
CN102680325B (en) | Material mechanical performance testing platform for small-sized test sample under stretching bending composite loading mode | |
CN107703006A (en) | Stretching preloads lower dynamic torsional fatigue Mechanics Performance Testing device | |
CN102384875A (en) | Stretching, compression and bending combined load mode material mechanics performance test device under microscope | |
CN202305330U (en) | Mechanics testing platform for in-situ high frequency fatigue materials under scanning electron microscope based on stretching/compressing mode | |
CN108645719B (en) | Test device for carrying out biaxial loading by utilizing shear apparatus and use method thereof | |
CN203551372U (en) | Platform for in situ testing micro mechanical properties of material in shearing-torsion composite load mode | |
CN205015236U (en) | Compound load normal position nanometer indentation testing arrangement of drawing - bending | |
CN102331376A (en) | Cross-scale micro-nano in-situ three-point bending mechanical performance testing platform | |
CN207423703U (en) | Stretching preloads lower dynamic torsional fatigue Mechanics Performance Testing device | |
CN202256050U (en) | In-situ stretch/compression material mechanical test platform based on quasi-static loaded scanning electron microscope | |
CN105181500A (en) | Stretching-bending combined-load in-situ nano-indentation test device and method | |
CN105181436A (en) | Method and device for testing mechanical properties of bending preload micro/nano-indentations | |
CN115597966A (en) | DIC strain measurement assists miniature biax biaxial tension test machine | |
CN205981945U (en) | Normal position indentation mechanical testing device based on under biaxial stretching load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20151021 Effective date of abandoning: 20171222 |
|
AV01 | Patent right actively abandoned |