CN204709085U - The two slip artificial knee joint of a kind of high-molecular organic material - Google Patents
The two slip artificial knee joint of a kind of high-molecular organic material Download PDFInfo
- Publication number
- CN204709085U CN204709085U CN201520096526.4U CN201520096526U CN204709085U CN 204709085 U CN204709085 U CN 204709085U CN 201520096526 U CN201520096526 U CN 201520096526U CN 204709085 U CN204709085 U CN 204709085U
- Authority
- CN
- China
- Prior art keywords
- tibial
- liner
- knee joint
- tibia
- artificial knee
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000000629 knee joint Anatomy 0.000 title claims abstract description 36
- 239000011368 organic material Substances 0.000 title claims 11
- 239000004696 Poly ether ether ketone Substances 0.000 claims abstract description 47
- 229920002530 polyetherether ketone Polymers 0.000 claims abstract description 47
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims abstract description 12
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims abstract description 12
- 210000002303 tibia Anatomy 0.000 claims description 28
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- 230000002787 reinforcement Effects 0.000 claims description 9
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 4
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 239000000602 vitallium Substances 0.000 claims description 3
- 210000000689 upper leg Anatomy 0.000 claims 7
- 210000002414 leg Anatomy 0.000 claims 3
- 229910000831 Steel Inorganic materials 0.000 claims 2
- 229910000771 Vitallium Inorganic materials 0.000 claims 2
- 239000010959 steel Substances 0.000 claims 2
- 239000003351 stiffener Substances 0.000 claims 1
- 239000002861 polymer material Substances 0.000 abstract description 15
- 229920000620 organic polymer Polymers 0.000 abstract description 11
- 230000000087 stabilizing effect Effects 0.000 abstract description 10
- 210000000988 bone and bone Anatomy 0.000 abstract description 8
- 239000007769 metal material Substances 0.000 abstract description 8
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 abstract description 5
- 239000007943 implant Substances 0.000 abstract description 5
- 206010020751 Hypersensitivity Diseases 0.000 abstract description 4
- 208000026935 allergic disease Diseases 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000007815 allergy Effects 0.000 abstract description 2
- 239000004698 Polyethylene Substances 0.000 description 22
- -1 polyethylene Polymers 0.000 description 22
- 229920000573 polyethylene Polymers 0.000 description 22
- 229930182556 Polyacetal Natural products 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 229920006324 polyoxymethylene Polymers 0.000 description 8
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 7
- 241000906034 Orthops Species 0.000 description 7
- 210000003127 knee Anatomy 0.000 description 7
- 210000004394 hip joint Anatomy 0.000 description 5
- 238000013150 knee replacement Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000002639 bone cement Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 206010003246 arthritis Diseases 0.000 description 3
- 238000011882 arthroplasty Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000000399 orthopedic effect Effects 0.000 description 3
- 206010065687 Bone loss Diseases 0.000 description 2
- MTHLBYMFGWSRME-UHFFFAOYSA-N [Cr].[Co].[Mo] Chemical compound [Cr].[Co].[Mo] MTHLBYMFGWSRME-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 229920004943 Delrin® Polymers 0.000 description 1
- 206010026865 Mass Diseases 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004388 gamma ray sterilization Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000011883 total knee arthroplasty Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Prostheses (AREA)
Abstract
一种有机高分子材料双滑动人工膝关节,包括聚醚醚酮(PEEK)或其衍生物的股骨髁和胫骨托以及超高分子量聚乙烯(UHMWPE)的胫骨衬垫,其中胫骨托包括平台以及具有一定截面的稳定翼定位部,该稳定翼定位部设置在平台下方且与其垂直;胫骨衬垫的上端和下端分别与股骨髁和胫骨托平台接合;胫骨衬垫为双滑动胫骨衬垫,股骨髁对胫骨衬垫的滑动面和胫骨托对胫骨衬垫的滑动面均为光滑的滑动面。本实用新型结构的所有内植物部件不含金属材料,不存在金属和其腐蚀可能引起的过敏问题;PEEK的弹性模量与自然骨相匹配,减轻了应力遮挡问题;PEEK股骨髁对UHMWPE胫骨衬垫的主滑动摩擦面降低了磨损问题;PEEK胫骨托对UHMWPE胫骨衬垫的次滑动界面潜在磨损问题进一步降低。
A double-sliding artificial knee joint made of organic polymer materials, comprising femoral condyle and tibial support of polyetheretherketone (PEEK) or its derivatives and tibial liner of ultra-high molecular weight polyethylene (UHMWPE), wherein the tibial support includes a platform and The stabilizing wing positioning part has a certain section, and the stabilizing wing positioning part is arranged under the platform and is perpendicular to it; the upper end and the lower end of the tibial pad are respectively engaged with the femoral condyle and the tibial support platform; the tibial pad is a double sliding tibial pad, and the femoral The sliding surface of the condyle on the tibial liner and the sliding surface of the tibial tray on the tibial liner are smooth sliding surfaces. All implant parts of the structure of the utility model do not contain metal materials, and there is no allergy problem caused by metal and its corrosion; the elastic modulus of PEEK matches the natural bone, which reduces the problem of stress shielding; The primary sliding friction surface reduces the wear problem; the potential wear problem of the secondary sliding interface between the PEEK tibial tray and the UHMWPE tibial liner is further reduced.
Description
技术领域technical field
本实用新型涉及一种医疗康复器械,更具体地,涉及一种有机高分子材料双滑动人工膝关节。The utility model relates to a medical rehabilitation device, in particular to a double-sliding artificial knee joint made of organic polymer materials.
背景技术Background technique
自上世纪80年代以来,双滑动人工膝关节置换被广泛应用于临床(LaCour MT,Sharma A,Carr CB,Komistek RD,Dennis DA.(2014)Confirmation of long-term in vivo bearing mobility in eight rotating-platformTKAs.Clin Orthop Relat Res.2014Sep;472(9):2766-73)。相对于传统的单滑动膝关节设计,双滑动设计具有接触应力低,内外旋转阻力小,及自动复位等优点。目前临床上一直应用的双滑动人工膝关节都采用钴铬钼(CoCrMo)合金对超高分子量聚乙烯(UHMWPE)的组合。股骨髁和胫骨托(胫骨平台)由CoCRMo合金构成,可旋转或可滑动的胫骨衬垫由超高分子量聚乙烯构成。Since the 1980s, double-sliding artificial knee replacements have been widely used clinically (LaCour MT, Sharma A, Carr CB, Komistek RD, Dennis DA. (2014) Confirmation of long-term in vivo bearing mobility in eight rotating- platformTKAs. Clin Orthop Relat Res. 2014 Sep;472(9):2766-73). Compared with the traditional single-sliding knee joint design, the double-sliding design has the advantages of low contact stress, small internal and external rotation resistance, and automatic reset. The double-sliding artificial knee joints that have been clinically used at present all use the combination of cobalt-chromium-molybdenum (CoCrMo) alloy and ultra-high molecular weight polyethylene (UHMWPE). The femoral condyle and tibial tray (tibial plateau) were constructed of CoCRMo alloy, and the rotatable or slidable tibial liner was constructed of ultra-high molecular weight polyethylene.
金属材料特别是CoCrMo合金不管是应用于股骨髁还是胫骨托都存在不尽如意的临床问题。第一,超高分子量聚乙烯胫骨衬垫对CoCrMo股骨髁主滑动面的磨损问题(Kinney MC,Kamath AF.(2013)Osteolyticpseudotumor after cemented total knee arthroplasty.Am J Orthop(BelleMead NJ).2013Nov;42(11):512-4);第二,超高分子量聚乙烯胫骨衬垫对CoCrMo胫骨托次滑动面的磨损问题(Banerjee S,Cherian JJ,Bono JV,Kurtz SM,Geesink R,Meneghini RM,Delanois RE,Mont MA.(2014)GrossTrunnion Failure After Primary Total Hip Arthroplasty.J Arthroplasty.2014Nov 26.pii:S0883-5403(14)00899-7);CoCrMo股骨髁对自然骨的应力遮挡问题(Panegrossi G,Ceretti M,Papalia M,Casella F,Favetti F,Falez F.(2014)Bone loss management in total knee revision surgery.Int Orthop.2014Feb;38(2):419-27);第三,CoCrMo胫骨托对自然骨的应力遮挡问题(Panegrossi G,Ceretti M,Papalia M,Casella F,Favetti F,Falez F.(2014)Bone loss management in total knee revision surgery.Int Orthop.2014Feb;38(2):419-27);第四,CoCrMo合金含有少量的镍元素,引起部分病人的过敏反应(Innocenti M,Carulli C,Matassi F,Carossino AM,Brandi ML,Civinini R.(2014)Total knee arthroplasty in patients with hypersensitivity tometals.Int Orthop.2014Feb;38(2):329-33.doi:10.1007/s00264-013-2229-2);第五,金属材料在人体中不可避免地产生腐蚀,释放出Co,Cr,Mo,Ni等离子,过量的金属离子释放会产生毒性(Kretzer JP,Reinders J,Sonntag R,Hagmann S,Streit M,Jeager S,MoradiB.(2014)Wear in total knee arthroplasty--just a question of polyethylene?:Metal ion release in total knee arthroplasty.Int Orthop.2014Feb;38(2):335-40.doi:10.1007/s00264-013-2162-4.Epub 2013Nov 12.);第六,金属材料特别是CoCrMo严重影响核磁共振(MRI)成像(Bachschmidt TJ,Sutter R,Jakob PM,Pfirrmann CW,Nittka M.(2014)Knee implant imagingat 3Tesla using high-bandwidth radiofrequency pulses.J Magn ResonImaging.2014Aug 23.doi:10.1002/jmri.24729.[Epub ahead of print])。Metal materials, especially CoCrMo alloys, have unsatisfactory clinical problems whether they are applied to femoral condyles or tibial trays. First, the wear problem of ultra-high molecular weight polyethylene tibial liner on the main sliding surface of CoCrMo femoral condyle (Kinney MC, Kamath AF. (2013) Osteolyticpseudotumor after cemented total knee arthroplasty. Am J Orthop (BelleMead NJ). 2013Nov; 42( 11):512-4); Second, the wear problem of ultra-high molecular weight polyethylene tibial liner on the sliding surface of CoCrMo tibial tray (Banerjee S, Cherian JJ, Bono JV, Kurtz SM, Geesink R, Meneghini RM, Delanois RE ,Mont MA.(2014)GrossTrunnion Failure After Primary Total Hip Arthroplasty.J Arthroplasty.2014Nov 26.pii:S0883-5403(14)00899-7); CoCrMo femoral condyle to natural bone stress shielding problem (Panegrossi G, Ceretti M ,Papalia M,Casella F,Favetti F,Falez F.(2014) Bone loss management in total knee revision surgery.Int Orthop.2014Feb;38(2):419-27); Third, the effect of CoCrMo tibial support on natural bone Stress shielding problem (Panegrossi G, Ceretti M, Papalia M, Casella F, Favetti F, Falez F.(2014) Bone loss management in total knee revision surgery. Int Orthop.2014Feb;38(2):419-27); Fourth, the CoCrMo alloy contains a small amount of nickel, which causes allergic reactions in some patients (Innocenti M, Carulli C, Matassi F, Carossino AM, Brandi ML, Civinini R. (2014) Total knee arthritis in patients with hypersensitivity tometals.Int Orthop. 2014Feb; 38(2):329-33.doi:10.1007/s00264-013-2229-2); fifth, metal materials are not Corrosion can be avoided, Co, Cr, Mo, Ni plasma are released, and excessive metal ion release can cause toxicity (Kretzer JP, Reinders J, Sonntag R, Hagmann S, Streit M, Jeager S, Moradi B. (2014) Wear in total knee arthritis--just a question of polyethylene? :Metal ion release in total knee arthritis.Int Orthop.2014Feb; 38(2):335-40.doi:10.1007/s00264-013-2162-4.Epub 2013Nov 12.); Sixth, metal materials, especially CoCrMo Impact on magnetic resonance (MRI) imaging (Bachschmidt TJ, Sutter R, Jakob PM, Pfirrmann CW, Nittka M. (2014) Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses. J Magn Reson Imaging. 2014Aug 2000/m1: 10. 24729.[Epub ahead of print]).
早在上世纪90年代,英国医生和科学家曾尝试过全部由有机高分子材料构成的单滑动全膝关节置换在临床上的应用(Plante-Bordeneuve P,Freeman MA.(1993)Tibial high-density polyethylene wear in conformingtibiofemoral prostheses.J Bone Joint Surg Br.1993Jul;75(4):630-6.)。股骨髁由Polyacetal(Delrin)高分子材料构成,胫骨摩擦面由超高分子量聚乙烯构成,Polyacetal股骨髁与自然骨之间的固定采用骨水泥或没有骨水泥的挤压式固定,胫骨聚乙烯摩擦部件与自然骨之间采用骨水泥固定。十年的临床跟踪发现,Polyacetal对UHMWPE摩擦面没有出现异常的磨损问题,Polyacetal股骨髁也没有机械破坏问题,引起翻修的问题主要是松动及早期感染(Bradley GW,Freeman MA,Tuke MA,McKellop HA.(1993)Evaluation of wear in an all-polymer total knee replacement.Part 2:clinicalevaluation of wear in a polyethylene on polyacetal total knee.Clin Mater.1993;14(2):127-32;McKellop HA,T,Bradley G.(1993)Evaluation of wear in an all-polymer total knee replacement.Part 1:laboratory testing of polyethylene on polyacetal bearing surfaces.Clin Mater.14(2):117-26;Moore DJ,Freeman MA,Revell PA,Bradley GW,Tuke M.(1998)Can a total knee replacement prosthesis be made entirely of polymers?J Arthroplasty.13(4):388-95)。由于Polyacetal在伽玛射线灭菌后的化学稳定性差,Polyacetal作为股骨髁的临床应用被停止。As early as the 1990s, British doctors and scientists tried the clinical application of single-sliding total knee replacement made of organic polymer materials (Plante-Bordeneuve P, Freeman MA. (1993) Tibial high-density polyethylene wear in conforming tibiofemoral prostheses. J Bone Joint Surg Br. 1993 Jul; 75(4):630-6.). The femoral condyle is made of Polyacetal (Delrin) polymer material, and the tibial friction surface is made of ultra-high molecular weight polyethylene. The fixation between the Polyacetal femoral condyle and the natural bone is fixed by bone cement or extrusion without bone cement. The components are fixed with bone cement to the natural bone. Ten years of clinical follow-up found that Polyacetal had no abnormal wear on the UHMWPE friction surface, and Polyacetal had no mechanical damage to the femoral condyle. The main problems caused by revision were loosening and early infection (Bradley GW, Freeman MA, Tuke MA, McKellop HA .(1993)Evaluation of wear in an all-polymer total knee replacement.Part 2:clinicalevaluation of wear in a polyethylene on polyacetal total knee.Clin Mater.1993;14(2):127-32;McKellop HA, T, Bradley G.(1993)Evaluation of wear in an all-polymer total knee replacement.Part 1:laboratory testing of polyethylene on polyacetal bearing surfaces.Clin Mater.14(2):117-26;Moore DJ,Freeman MA, Revell PA, Bradley GW, Tuke M. (1998) Can a total knee replacement prosthesis be made entirely of polymers? J Arthroplasty. 13(4):388-95). The clinical use of Polyacetal as a femoral condyle was discontinued due to the poor chemical stability of Polyacetal after gamma ray sterilization.
近年来,高化学稳定性,高强度和高生物相容性的新一代高分子材料聚醚醚酮(PEEK)被广泛应用于骨科内植物,特别是应用于脊柱的固定和融合。2010年以来,美国科学家和研究人员发现,高强度及高稳定性的PEEK高分子材料作为髋关节股骨头对UHMWPE髋臼杯衬垫的摩擦面比CoCrMo合金对UHMWPE摩擦面具有更好的耐磨性(Wang AG,Zhang ZT,Lawrynowicz DE and Yau SS(2010)OrthopedicPAEK-on-polymer bearings,HOWMEDICA OSTEONICS CORP,IPC8Class:AA61F230FI,USPC Class:6231811,Patent application number:20100312348,2010-12-09;Singh,V,Ogden,C,Sitton,K and Sitton,K(2012)Wear evaluation of different polymeric materials for total discreplacement(TDR),Proceedings of the ASME/STLE International JointTribology Conference,Los Angeles,CA,2011,35-37,2012)。In recent years, a new generation of polymer material polyetheretherketone (PEEK) with high chemical stability, high strength and high biocompatibility has been widely used in orthopedic implants, especially for spinal fixation and fusion. Since 2010, American scientists and researchers have discovered that high-strength and high-stability PEEK polymer materials have better wear resistance than CoCrMo alloys on UHMWPE acetabular cup liners as the friction surface of the femoral head of the hip joint. Sex (Wang AG, Zhang ZT, Lawrynowicz DE and Yau SS(2010) Orthopedic PAEK-on-polymer bearings, HOWMEDICA OSTEONICS CORP, IPC8Class: AA61F230FI, USPC Class: 6231811, Patent application number: 20100312348-, 2010-1ingh; V, Ogden, C, Sitton, K and Sitton, K (2012) Wear evaluation of different polymeric materials for total discreplacement (TDR), Proceedings of the ASME/STLE International Joint Tribology Conference, Los Angeles, CA, 2011, 35-37, 2012).
虽然上述研究提出了PEEK对聚乙烯滑动表面的概念,但是PEEK对聚乙烯滑动表面的摩擦,其只适合具有良好匹配度的、低表面接触应力的关节面,例如球窝结构的髋关节(磨损量:16.5±1.8mm3/million,WangAG,Zhang ZT,Lawrynowicz DE and Yau SS(2010)OrthopedicPAEK-on-polymer bearings,HOWMEDICA OSTEONICS CORP,IPC8Class:AA61F230FI,USPC Class:623-1811,Patent application number:20100312348,2010-12-09)。而且,PEEK对高分子量聚乙烯在髋关节上的低磨损不能直接在膝关节中体现出来,膝关节由于不同运动的要求,加上远远大于髋关节的冲击力,表面形状非常复杂,匹配度相对较差,这会导致膝关节表面压强(10~20MPa)远远高于髋关节(2~5MPa)。这些比较恶劣的机械环境和具有较高刚性的金属胫骨托的耦合导致磨损大幅增大。根据ISO14243标准测试,PEEK股骨髁对高分子量聚乙烯衬垫的磨损可以达到18.0±3.0mm3/million,高于目前使用的CoCrMo对聚乙烯的磨损量(9.0±4.0mm3/million,Fisher J,Jennings LM,Galvin AL,Jin ZM,Stone MH,Ingham E.(2010)Knee Society Presidential Guest Lecture:Polyethylene wear in total knees.Clin Orthop Relat Res.2010Jan;468(1):12-8.doi:10.1007/s11999-009-1033-1.Epub 2009Aug 11),这也进一步印证了到目前为止,为什么临床上应用的膝关节假体全部为金属材料特别是CoCrMo合金。Although the above studies have proposed the concept of PEEK on polyethylene sliding surface, the friction of PEEK on polyethylene sliding surface is only suitable for articular surfaces with good matching and low surface contact stress, such as ball-and-socket hip joints (wear Quantity: 16.5±1.8mm 3 /million, WangAG, Zhang ZT, Lawrynowicz DE and Yau SS(2010) Orthopedic PAEK-on-polymer bearings, HOWMEDICA OSTEONICS CORP, IPC8Class: AA61F230FI, USPC Class: 623-1811, Patent application number: 2031003 ,2010-12-09). Moreover, the low wear of PEEK on the high molecular weight polyethylene on the hip joint cannot be directly reflected in the knee joint. Due to the requirements of different sports and the impact force far greater than that of the hip joint, the surface shape of the knee joint is very complex and the matching degree Relatively poor, which will cause the knee joint surface pressure (10 ~ 20MPa) is much higher than the hip joint (2 ~ 5MPa). The coupling of these harsher mechanical environments and the higher rigidity of the metal tibial tray results in substantially increased wear. According to the ISO14243 standard test, the wear of the PEEK femoral condyle to the high molecular weight polyethylene liner can reach 18.0±3.0mm 3 /million, which is higher than the wear of the currently used CoCrMo to polyethylene (9.0±4.0mm 3 /million, Fisher J , Jennings LM, Galvin AL, Jin ZM, Stone MH, Ingham E. (2010) Knee Society Presidential Guest Lecture: Polyethylene wear in total knees. Clin Orthop Relat Res. 2010 Jan; 468(1): 12-8. doi: 10.1007 /s11999-009-1033-1.Epub 2009Aug 11), which further proves why the clinically applied knee prostheses are all made of metal materials, especially CoCrMo alloys.
针对上述问题,我们做了大量试验,通过对PEEK股骨髁对高分子量聚乙烯衬垫的摩擦表面进一步处理,摩擦状况有了一定改善,但还是没有达到理想的结果。以上试验无论是在金属胫骨托上还是将高分子量聚乙烯作为衬垫用骨水泥直接固定在胫骨上,结果都相差无几。In response to the above problems, we have done a lot of experiments, and through further treatment of the friction surface of the PEEK femoral condyle on the high molecular weight polyethylene liner, the friction situation has been improved to some extent, but the desired result has not yet been achieved. The results of the above tests were almost the same whether the metal tibial tray was used or the high molecular weight polyethylene was used as the liner and fixed directly on the tibia with bone cement.
进一步地,我们研究发现,根据摩擦学原理,在高强度运动负荷下,关节磨损具有一定的传导转移作用,应该可以对胫骨托作进一步优化来降低这种冲击负荷,来间接达到降低PEEK股骨髁对高分子量聚乙烯衬垫的磨损量。但是,由于膝关节结构特点,胫骨托承担了最大的负荷,不管是临床实践,还是文献上从来就没有采用或提到过胫骨托可以采用其他材料。因此,本实用新型关键在于是否能找出这个替代材料,来同时满足强度、减缓冲击负荷降低磨损的使用要求,使得整个人工膝关节系统整体上优于目前的全金属材料特别是CoCrMo合金的人工膝关节。Further, our research found that, according to the principle of tribology, under high-intensity exercise load, joint wear has a certain conduction transfer effect, and it should be possible to further optimize the tibial tray to reduce this impact load, and indirectly reduce the PEEK femoral condyle. Abrasion against high molecular weight polyethylene liners. However, due to the structural characteristics of the knee joint, the tibial tray bears the greatest load. No matter in clinical practice or in the literature, it has never been used or mentioned that other materials can be used for the tibial tray. Therefore, the key of the utility model is whether this alternative material can be found to meet the requirements of strength, impact load reduction and wear reduction at the same time, so that the whole artificial knee joint system is better than the current all-metal materials, especially the artificial CoCrMo alloy. knee joint.
实用新型内容Utility model content
本实用新型首次提出由一种有机高分子材料双滑动人工膝关节,其包括股骨髁,胫骨衬垫和胫骨托,其中股骨髁和胫骨托由PEEK或其衍生物材料构成,胫骨衬垫由高分子量聚乙烯材料构成。本实用新型的膝关节结构由于创造性地采用了PEEK或其衍生物材料的胫骨托,使得PEEK股骨髁对高分子量聚乙烯胫骨衬垫在膝关节系统中应用有了可能。在本实用新型中,通过聚乙烯胫骨衬垫和PEEK胫骨托之间材料属性的匹配,增加PEEK股骨髁对聚乙烯胫骨衬垫和PEEK胫骨托对聚乙烯胫骨衬垫两个滑动表面的缓冲,控制两者之间的位移,影响了PEEK股骨髁对高分子量聚乙烯胫骨衬垫的磨损机理,加上PEEK胫骨托能够将运动负荷有效传导下去,使PEEK股骨髁与聚乙烯胫骨衬垫之间的主滑动和PEEK胫骨托与聚乙烯胫骨衬垫之间的次滑动运动相匹配,降低由于多向运动造成的交变剪切,从而可以大大减低聚乙烯衬垫两个表面的总体磨损。按照ISO14243标准测试,磨损量降低到4.3±1.1mm3/million,已经大幅优于目前使用的CoCrMo对聚乙烯的磨损量(9.0±4.0mm3/million),因此可以预测,基于磨损的膝关节寿命可以从目前的20年达到40年以上。这充分提供了基于PEEK材料的全膝关节系统临床使用的可能性。The utility model proposes a double-sliding artificial knee joint made of organic polymer material for the first time, which includes the femoral condyle, tibial liner and tibial support, wherein the femoral condyle and tibial support are made of PEEK or its derivative materials, and the tibial liner is made of high Made of molecular weight polyethylene material. Because the knee joint structure of the utility model creatively adopts the tibial bracket of PEEK or its derivative material, it is possible to apply the PEEK femoral condyle to the high molecular weight polyethylene tibial liner in the knee joint system. In the utility model, through the matching of material properties between the polyethylene tibial liner and the PEEK tibial support, the cushioning of the two sliding surfaces of the PEEK femoral condyle to the polyethylene tibial liner and the PEEK tibial support to the polyethylene tibial liner is increased, Controlling the displacement between the two affects the wear mechanism of the PEEK femoral condyle on the high molecular weight polyethylene tibial liner. In addition, the PEEK tibial tray can effectively transmit the motion load, so that the gap between the PEEK femoral condyle and the polyethylene tibial liner The primary sliding and secondary sliding movement between the PEEK tibial tray and the polyethylene tibial liner are matched to reduce the alternating shear caused by multi-directional movement, which can greatly reduce the overall wear of the two surfaces of the polyethylene liner. According to the ISO14243 standard test, the wear amount is reduced to 4.3±1.1mm 3 /million, which is much better than the wear amount of the currently used CoCrMo on polyethylene (9.0±4.0mm 3 /million), so it can be predicted that the knee joint based on wear The life span can reach more than 40 years from the current 20 years. This fully provides the possibility of clinical application of the total knee joint system based on PEEK material.
另外,本实用新型由于减少了金属材料使用所造成的临床问题,例如,金属离子的敏感,毒性,假性肿瘤等问题以及由于PEEK材料的弹性模量(3GPa)远远低于金属(200GPa)而和骨的弹性模量差不多(0.8~17GPa),所以采用PEEK的胫骨托可以降低胫骨的应力遮挡,避免骨吸收,从而达到超过30年的长期良好的固定效果;这些优点将使全高分子聚合物组成的膝关节系统可以广泛用于不同患者,尤其是年轻患者,而不需要临床翻修;这不仅可以降低病人的痛苦,还可以大大减少医疗成本。此外,本实用新型还进一步解决了聚合物手术过程中的夹持问题,以便不损坏聚合物假体,解决了临床的实际使用问题,同时本实用新型也解决了聚合物假体手术后的显影问题,以便观察手术效果和假体在人体中的长期服役。In addition, the utility model reduces the clinical problems caused by the use of metal materials, such as the sensitivity of metal ions, toxicity, pseudo-tumor and other problems and because the elastic modulus (3GPa) of PEEK material is far lower than that of metal (200GPa) It is similar to the elastic modulus of bone (0.8 ~ 17GPa), so the use of PEEK tibial tray can reduce the stress shielding of the tibia, avoid bone resorption, so as to achieve a long-term good fixation effect of more than 30 years; these advantages will make full polymer polymerization The knee joint system composed of materials can be widely used in different patients, especially young patients, without clinical revision; this can not only reduce the pain of patients, but also greatly reduce medical costs. In addition, the utility model further solves the clamping problem in the polymer prosthesis in order not to damage the polymer prosthesis, and solves the problem of clinical practical use. problems in order to observe the surgical effect and the long-term service of the prosthesis in the human body.
为了实现上述实用新型的目的,本实用新型采用如下技术方案:In order to realize the purpose of above-mentioned utility model, the utility model adopts following technical scheme:
一种有机高分子材料双滑动人工膝关节,包括股骨髁,胫骨衬垫和胫骨托,其中:A double-sliding artificial knee joint made of organic polymer materials, including femoral condyle, tibial liner and tibial tray, wherein:
所述胫骨托包括胫骨托平台以及稳定翼定位部,所述稳定翼定位部设置在所述胫骨托平台下方且与所述胫骨托平台垂直;所述股骨髁的下端与所述胫骨衬垫的上端接合;所述胫骨衬垫的下端与所述胫骨托平台接合;所述股骨髁、所述胫骨衬垫和所述胫骨托均由高分子材料构成,其中所述股骨髁和所述胫骨托由聚醚醚酮或其衍生物构成,所述胫骨衬垫由超高分子量聚乙烯构成;所述胫骨衬垫为双滑动胫骨衬垫,其中所述股骨髁对所述胫骨衬垫的滑动面和所述胫骨托对所述胫骨衬垫的滑动面均为光滑的滑动面。The tibial support includes a tibial support platform and a stabilizing wing positioning part, and the stabilizing wing positioning part is arranged below the tibial support platform and perpendicular to the tibial support platform; the lower end of the femoral condyle is in contact with the tibial pad The upper end is engaged; the lower end of the tibial pad is engaged with the tibial tray platform; the femoral condyle, the tibial pad, and the tibial tray are all made of polymer materials, wherein the femoral condyle and the tibial tray Composed of polyetheretherketone or its derivatives, the tibial liner is composed of ultra-high molecular weight polyethylene; the tibial liner is a double-sliding tibial liner, wherein the femoral condyle is opposed to the sliding surface of the tibial liner The sliding surfaces of the tibial tray and the tibial liner are smooth sliding surfaces.
进一步地,所述滑动面的表面光洁度不大于1.0μm。Further, the surface roughness of the sliding surface is not greater than 1.0 μm.
进一步地,所述滑动面的表面光洁度小于0.1μm。Further, the surface roughness of the sliding surface is less than 0.1 μm.
进一步地,所述股骨髁的左右两侧设置有夹槽;所述夹槽包含与其形状匹配的金属或陶瓷加强物;所述胫骨托平台上端侧壁包含一个或多个金属带状部件。Further, the left and right sides of the femoral condyle are provided with clamping grooves; the clamping grooves contain metal or ceramic reinforcements matching their shapes; the upper end sidewall of the tibial tray platform contains one or more metal strip-shaped components.
进一步地,所述稳定翼定位部外端与所述胫骨托平台的交界处包含金属加强部。Further, the junction of the outer end of the stabilizing wing positioning part and the platform of the tibial tray includes a metal reinforcement part.
进一步地,所述金属加强物、所述金属带状部件和所述金属加强部均由生物相容性金属或其合金构成;所述金属或其合金包括钴铬钼合金、钛或钛合金、钽或钽合金、不锈钢和锆铌合金。Further, the metal reinforcement, the metal strip-shaped part and the metal reinforcement are all made of biocompatible metals or alloys thereof; the metals or alloys thereof include cobalt-chromium-molybdenum alloys, titanium or titanium alloys, Tantalum or tantalum alloys, stainless steel, and zirconium-niobium alloys.
进一步地,所述稳定翼定位部内设置有与所述胫骨托平台垂直的空心固定柱,且所述空心固定柱的开口设置在所述胫骨托平台的上表面上;或者所述平台的上表面上设置有凸起的旋转柱。Further, the stabilizing wing positioning part is provided with a hollow fixing column perpendicular to the tibial support platform, and the opening of the hollow fixing column is set on the upper surface of the tibial support platform; or the upper surface of the platform A raised swivel column is arranged on the top.
进一步地,所述胫骨衬垫下部设置有圆柱状或锥体状的旋转柱;或者所述胫骨衬垫下部设置为向内凹的空洞。Further, the lower part of the tibial pad is provided with a cylindrical or conical rotating column; or the lower part of the tibial pad is provided with an inward concave cavity.
进一步地,所述空心固定柱与所述圆柱状或锥体状的旋转柱相匹配;所述凸起的旋转柱与所述向内凹的空洞相匹配。Further, the hollow fixing column is matched with the cylindrical or conical rotating column; the raised rotating column is matched with the concave cavity.
进一步地,所述股骨髁,所述胫骨衬垫和所述胫骨托能够灵活的组合和拆卸。Further, the femoral condyle, the tibial liner and the tibial tray can be combined and disassembled flexibly.
由于采用以上技术方案,本实用新型的有益效果为:Owing to adopting above technical scheme, the beneficial effect of the utility model is:
1)本实用新型提供的有机高分子材料双滑动人工膝关节的所有内植物部件不含金属材料,不存在金属腐蚀和金属可能引起的过敏问题;1) All implant parts of the organic polymer material double-sliding artificial knee joint provided by the utility model do not contain metal materials, and there is no metal corrosion and allergy problems that may be caused by metals;
2)本实用新型中PEEK的弹性模量与自然骨相匹配,减轻了应力遮挡问题;2) The elastic modulus of PEEK in the utility model matches the natural bone, which reduces the problem of stress shielding;
3)本实用新型中PEEK股骨髁对UHMWPE胫骨衬垫的滑动面降低了磨损问题;3) In the utility model, the sliding surface of the PEEK femoral condyle to the UHMWPE tibial liner reduces the wear problem;
4)本实用新型中PEEK胫骨托对UHMWPE胫骨衬垫的滑动面的潜在磨损问题进一步降低;4) In the utility model, the potential wear problem of the PEEK tibial support on the sliding surface of the UHMWPE tibial liner is further reduced;
5)本实用新型中全部由有机高分子材料组成的所有内植物部件对核磁共振成像不造成干扰。5) In the present utility model, all implant parts composed of organic polymer materials do not interfere with nuclear magnetic resonance imaging.
附图说明Description of drawings
图1为本实用新型提供的有机高分子材料双滑动人工膝关节的各组件接合为一体的结构示意图;Fig. 1 is a structural schematic view of the joining of components of the organic polymer material double-sliding artificial knee joint provided by the present invention;
图2为本实用新型一实施例中有机高分子材料双滑动人工膝关节的各组件结构示意图;Fig. 2 is a structural schematic diagram of the components of the double-sliding artificial knee joint made of organic polymer materials in an embodiment of the utility model;
图3为本实用新型另一实施例中有机高分子材料双滑动人工膝关节的各组件结构示意图。Fig. 3 is a schematic diagram of the components of the double-sliding artificial knee joint made of organic polymer materials in another embodiment of the present invention.
图4为本实用新型中的股骨髁的俯视图,其示出了股骨髁两侧金属镶嵌物的结构示意图;Fig. 4 is the plan view of femoral condyle among the utility model, and it has shown the structural representation of metal inlay on both sides of femoral condyle;
图5为本实用新型中胫骨托平台上端侧壁镶入金属带状部件的结构示意图;Fig. 5 is a schematic structural view of the upper side wall of the tibial support platform inlaid with a metal band-shaped part in the utility model;
图6为本实用新型图5结构的剖面图;Fig. 6 is a sectional view of the structure of Fig. 5 of the utility model;
附图标记说明Explanation of reference signs
1股骨髁、2胫骨衬垫、21圆柱状或锥体状的旋转柱、3胫骨托、31空心固定柱、32凸起的旋转柱、4胫骨托平台、5稳定翼定位部、11金属镶嵌物、12金属镶嵌物、33金属带状部件。1 femoral condyle, 2 tibial liner, 21 cylindrical or cone-shaped rotating column, 3 tibial tray, 31 hollow fixed column, 32 raised rotating column, 4 tibial tray platform, 5 stabilizer wing positioning part, 11 metal inlay objects, 12 metal inlays, 33 metal bands.
具体实施方式Detailed ways
为了使本实用新型的目的、技术方案及优点更加清楚明白,下面结合附图及实施例对本实用新型作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本实用新型,并不用于限定本实用新型。In order to make the purpose, technical solution and advantages of the utility model clearer, the utility model will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the utility model, and are not intended to limit the utility model.
如图1、2和3所示,本实用新型提供的一种有机高分子材料双滑动人工膝关节,包括股骨髁1,胫骨衬垫2和胫骨托3,其中胫骨托3包括胫骨托平台4以及具有一定截面的稳定翼定位部5,该稳定翼定位部5设置在胫骨托平台4下方且与胫骨托平台4垂直,用于将胫骨托3,进而将整个人工膝关节固定在人体骨骼上;股骨髁1的下端与胫骨衬垫2的上端接合;胫骨衬垫2的下端与胫骨托平台4接合;股骨髁1、胫骨衬垫2和胫骨托3均由高分子材料构成,其中股骨髁1和胫骨托3由聚醚醚酮或其衍生物材料构成,胫骨衬垫2由超高分子量聚乙烯构成;胫骨衬垫2为双滑动胫骨衬垫2,其中股骨髁1对胫骨衬垫2的滑动面和胫骨衬垫2对胫骨托3的滑动面均为光滑的滑动面。As shown in Figures 1, 2 and 3, a kind of organic polymer material double-sliding artificial knee joint provided by the utility model includes a femoral condyle 1, a tibial pad 2 and a tibial support 3, wherein the tibial support 3 includes a tibial support platform 4 And the stabilizing wing positioning part 5 with a certain cross section, the stabilizing wing positioning part 5 is arranged below the tibial support platform 4 and perpendicular to the tibial support platform 4, and is used to fix the tibial support 3 and then the whole artificial knee joint on the human skeleton The lower end of the femoral condyle 1 is joined to the upper end of the tibial pad 2; the lower end of the tibial pad 2 is joined to the tibial tray platform 4; 1 and tibial tray 3 are made of polyetheretherketone or its derivative material, tibial liner 2 is made of ultra-high molecular weight polyethylene; tibial liner 2 is double sliding tibial liner 2, in which femoral condyle 1 is paired with tibial liner 2 The sliding surface of the tibial pad 2 and the sliding surface of the tibial tray 3 are smooth sliding surfaces.
另外,在本实用新型中,通过聚乙烯胫骨衬垫2和PEEK胫骨托3之间材料属性的匹配,增加PEEK股骨髁1对聚乙烯胫骨衬垫2和PEEK胫骨托3对聚乙烯胫骨衬垫2两个滑动表面的缓冲,控制两者之间的位移;由于加上PEEK胫骨托3能够将运动负荷有效传导下去,使PEEK股骨髁1与聚乙烯胫骨衬垫2之间的滑动和PEEK胫骨托3与聚乙烯胫骨衬垫2之间的滑动运动相匹配,降低由于多向运动造成的交变剪切,从而可以大大减低聚乙烯衬垫2两个表面的总体磨损。In addition, in this utility model, through the matching of material properties between the polyethylene tibial liner 2 and the PEEK tibial support 3, the PEEK femoral condyle 1 pair polyethylene tibial liner 2 and the PEEK tibial support 3 pair polyethylene tibial liner 2 The cushioning of the two sliding surfaces controls the displacement between the two; since the addition of the PEEK tibial support 3 can effectively transmit the motion load, the sliding between the PEEK femoral condyle 1 and the polyethylene tibial liner 2 and the PEEK tibial The sliding movement between the holder 3 and the polyethylene tibial liner 2 is matched to reduce the alternating shear caused by multi-directional movement, thereby greatly reducing the overall wear of the two surfaces of the polyethylene liner 2 .
按照ISO14243标准测试,磨损量降低到4.3±1.1mm3/million,已经大幅优于目前使用的CoCrMo对聚乙烯的磨损量(9.0±4.0mm3/million),因此可以预测,基于磨损的膝关节寿命可以从目前的20年达到40年以上。这充分提供了基于PEEK材料的全膝关节系统临床使用的可能性。According to the ISO14243 standard test, the wear amount is reduced to 4.3±1.1mm 3 /million, which is much better than the wear amount of the currently used CoCrMo on polyethylene (9.0±4.0mm 3 /million), so it can be predicted that the knee joint based on wear The life span can reach more than 40 years from the current 20 years. This fully provides the possibility of clinical application of the total knee joint system based on PEEK material.
在上述技术方案中,如图4-6所示,股骨髁1的左右两侧设置有夹槽;夹槽包含与其形状匹配的金属或陶瓷加强物11和12;胫骨托平台4上端侧壁包含一个或多个金属带状部件33;稳定翼定位部外端与胫骨托平台4的交界处包含金属加强部;金属加强物、金属带状部件33和金属加强部均由生物相容性金属或其合金构成;金属或其合金包括钴铬钼合金、钛或钛合金、钽或钽合金、不锈钢和锆铌合金。In the above technical solution, as shown in Figure 4-6, the left and right sides of the femoral condyle 1 are provided with clamping grooves; the clamping grooves include metal or ceramic reinforcements 11 and 12 that match their shapes; One or more metal belt parts 33; the junction of the outer end of the stabilizing wing positioning part and the tibial support platform 4 contains a metal reinforcement; the metal reinforcement, the metal belt parts 33 and the metal reinforcement are all made of biocompatible metal or Its alloy composition; metal or its alloys include cobalt chromium molybdenum alloy, titanium or titanium alloy, tantalum or tantalum alloy, stainless steel and zirconium niobium alloy.
在上述技术方案中,聚醚醚酮(PEEK)胫骨托3的上表面与超高分子聚乙烯(UHMWPE)双滑动胫骨衬垫2下表面的结合面采取可旋转或可滑动的设计。在一个实施例中,再次如图2所示,聚醚醚酮(PEEK)胫骨托平台4的上表面为光滑的滑动面,其表面光洁度Ra≤1.0μm,优选为Ra<0.1μm;胫骨托3的稳定翼定位部5内设置有与胫骨托平台4垂直的空心固定柱31,且该空心固定柱31的开口设置在胫骨托平台4的上表面上;超高分子量聚乙烯(UHMWPE)双滑动胫骨衬垫2下部设置有圆柱状或锥体状的旋转柱21,其可以通过在上表面上的开口插入空心固定柱31中,并且其形状和大小与PEEK胫骨托3下端固定柱31的空心部分相匹配。In the above technical solution, the joint surface between the upper surface of the polyetheretherketone (PEEK) tibial tray 3 and the lower surface of the ultrahigh molecular weight polyethylene (UHMWPE) double sliding tibial liner 2 adopts a rotatable or slidable design. In one embodiment, as shown in Figure 2 again, the upper surface of the polyether ether ketone (PEEK) tibial tray platform 4 is a smooth sliding surface, with a surface finish of Ra≤1.0 μm, preferably Ra<0.1 μm; The stabilizing wing positioning part 5 of 3 is provided with a hollow fixing column 31 perpendicular to the tibial support platform 4, and the opening of the hollow fixing column 31 is arranged on the upper surface of the tibial support platform 4; ultra-high molecular weight polyethylene (UHMWPE) double The lower part of the sliding tibial liner 2 is provided with a cylindrical or conical rotating column 21, which can be inserted into the hollow fixing column 31 through an opening on the upper surface, and its shape and size are the same as those of the lower end of the PEEK tibial tray 3 fixing column 31. The hollow part matches.
在另外一实施例中,再次如图3所示,聚醚醚酮(PEEK)胫骨托3的上表面为光滑的滑动面,其表面光洁度Ra≤1.0μm,优选为Ra<0.1μm;胫骨托3上端设置有凸起的旋转柱32;超高分子量聚乙烯(UHMWPE)双滑动胫骨衬垫2下部设置有凹进去的空洞(未示出),其形状和大小与PEEK胫骨托3凸出的旋转柱32相匹配。In another embodiment, as shown in FIG. 3 again, the upper surface of the polyether ether ketone (PEEK) tibial tray 3 is a smooth sliding surface, and its surface finish is Ra≤1.0 μm, preferably Ra<0.1 μm; 3 The upper end is provided with a raised rotating post 32; the lower part of the ultra-high molecular weight polyethylene (UHMWPE) double sliding tibial liner 2 is provided with a concave cavity (not shown), its shape and size are the same as the PEEK tibial tray 3 protruding The swivel column 32 matches.
以上所述仅为本实用新型的较佳实施例,并非用来限定本实用新型的实施范围;如果不脱离本实用新型的精神和范围,对本实用新型进行修改或者等同替换,均应涵盖在本实用新型权利要求的保护范围当中。The above descriptions are only preferred embodiments of the present utility model, and are not used to limit the implementation scope of the present utility model; if the utility model is modified or equivalently replaced without departing from the spirit and scope of the present utility model, all should be covered by this utility model. within the protection scope of utility model claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520096526.4U CN204709085U (en) | 2015-02-10 | 2015-02-10 | The two slip artificial knee joint of a kind of high-molecular organic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520096526.4U CN204709085U (en) | 2015-02-10 | 2015-02-10 | The two slip artificial knee joint of a kind of high-molecular organic material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204709085U true CN204709085U (en) | 2015-10-21 |
Family
ID=54308120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520096526.4U Expired - Lifetime CN204709085U (en) | 2015-02-10 | 2015-02-10 | The two slip artificial knee joint of a kind of high-molecular organic material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204709085U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105030382A (en) * | 2015-02-10 | 2015-11-11 | 江苏奥康尼医疗科技发展有限公司 | Organic polymer material dual-slide artificial knee joint |
CN106109063A (en) * | 2016-07-22 | 2016-11-16 | 西安市红会医院 | A kind of artificial knee joint prosthesis |
CN112296342A (en) * | 2020-10-30 | 2021-02-02 | 嘉思特华剑医疗器材(天津)有限公司 | Oxide layer-containing zirconium-niobium alloy partitioned trabecular single compartment femoral condyle and preparation method thereof |
-
2015
- 2015-02-10 CN CN201520096526.4U patent/CN204709085U/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105030382A (en) * | 2015-02-10 | 2015-11-11 | 江苏奥康尼医疗科技发展有限公司 | Organic polymer material dual-slide artificial knee joint |
WO2016127281A1 (en) * | 2015-02-10 | 2016-08-18 | 江苏奥康尼医疗科技发展有限公司 | Organic polymer material dual-slide artificial knee joint |
CN106109063A (en) * | 2016-07-22 | 2016-11-16 | 西安市红会医院 | A kind of artificial knee joint prosthesis |
CN112296342A (en) * | 2020-10-30 | 2021-02-02 | 嘉思特华剑医疗器材(天津)有限公司 | Oxide layer-containing zirconium-niobium alloy partitioned trabecular single compartment femoral condyle and preparation method thereof |
CN112296342B (en) * | 2020-10-30 | 2023-03-10 | 嘉思特华剑医疗器材(天津)有限公司 | Oxide layer-containing zirconium-niobium alloy partitioned trabecular single compartment femoral condyle and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016127281A1 (en) | Organic polymer material dual-slide artificial knee joint | |
WO2016179728A1 (en) | Combined type fully-organic polymer material artificial unicondylar knee joint | |
Sedel | Evolution of alumina-on-alumina implants: a review. | |
Thomas et al. | The seven-year wear of highly cross-linked polyethylene in total hip arthroplasty: a double-blind, randomized controlled trial using radiostereometric analysis | |
Mbogori et al. | Poly-Ether-Ether-Ketone (PEEK) in orthopaedic practice-A current concept review | |
Wegrzyn et al. | Can dual mobility cups prevent dislocation in all situations after revision total hip arthroplasty? | |
Mellon et al. | Hip replacement: landmark surgery in modern medical history | |
EP3257476B1 (en) | Combined fully organic high molecular material artificial knee joint | |
WO2017004741A1 (en) | Artificial hip joint cup | |
CN105030376B (en) | Total hip surface replacement implant | |
CN204618488U (en) | A kind of combination type full stress-strain macromolecular material artificial knee joint | |
WO2021139067A1 (en) | Artificial knee joint | |
Gioe et al. | The all-polyethylene tibial component in primary total knee arthroplasty | |
CN107361883A (en) | Cone locking knee-joint prosthesis | |
Xu et al. | Reconstruction of tumor-induced pelvic defects with customized, three-dimensional printed prostheses | |
CN204709085U (en) | The two slip artificial knee joint of a kind of high-molecular organic material | |
CN105596122A (en) | Artificial total knee joint prosthesis | |
WO2016183701A1 (en) | Artificial prosthesis made of organic polymeric material for hip hemiarthroplasty | |
Gallo et al. | Implants for joint replacement of the hip and knee | |
CN204709086U (en) | A kind of combination type full stress-strain macromolecular material list condyle artificial knee joint | |
CN105748176A (en) | Artificial total knee joint prosthesis of integral type | |
FIRESTONE et al. | The clinical and roentgenographic results of cementless porous-coated patellar fixation | |
Nakahara et al. | Fixation strength of taper connection at head–neck junction in retrieved carbon fiber-reinforced PEEK hip stems | |
CN205041570U (en) | Artifical hip joint mortar cup | |
CN204618485U (en) | A kind of full hip resurfacing implant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20181212 Address after: Room 494, 4-storey A, No. 84-86-2 Jinghua Road, Xujing Town, Qingpu District, Shanghai, 2010 Patentee after: SHANGHAI QILI BIOTECHNOLOGY SERVICE CENTER Address before: Room 606, Room 9, Changchun North Road, Chengxiang Town, Taicang City, Jiangsu Province, 215400 Patentee before: JIANGSU OKANI MEDICAL TECHNOLOGY Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190308 Address after: 215000 East of No. 52 Workshop of Chuangdu Industrial Workshop, Loujinbei District, Suzhou Industrial Park, Jiangsu Province Patentee after: SUZHOU ZHONGKE BIOLOGY MEDICAL MATERIAL Co.,Ltd. Address before: Room 494, 4-storey A, No. 84-86-2 Jinghua Road, Xujing Town, Qingpu District, Shanghai, 2010 Patentee before: SHANGHAI QILI BIOTECHNOLOGY SERVICE CENTER |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20151021 |