CN204577831U - A kind of solid state laser that can produce 266nm Ultra-Violet Laser - Google Patents
A kind of solid state laser that can produce 266nm Ultra-Violet Laser Download PDFInfo
- Publication number
- CN204577831U CN204577831U CN201520160856.5U CN201520160856U CN204577831U CN 204577831 U CN204577831 U CN 204577831U CN 201520160856 U CN201520160856 U CN 201520160856U CN 204577831 U CN204577831 U CN 204577831U
- Authority
- CN
- China
- Prior art keywords
- laser
- mirror
- solid state
- wavelength
- resonant cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007787 solid Substances 0.000 title claims description 8
- 239000000919 ceramic Substances 0.000 claims abstract description 26
- 230000008878 coupling Effects 0.000 claims abstract description 19
- 238000010168 coupling process Methods 0.000 claims abstract description 19
- 238000005859 coupling reaction Methods 0.000 claims abstract description 19
- 238000005086 pumping Methods 0.000 claims abstract description 16
- 239000004065 semiconductor Substances 0.000 claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000002310 reflectometry Methods 0.000 claims description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 24
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000003685 thermal hair damage Effects 0.000 abstract description 3
- 239000011521 glass Substances 0.000 abstract 1
- 239000010453 quartz Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Lasers (AREA)
Abstract
本实用新型公开了一种能产生266nm紫外激光的固体激光器,包括支撑平台,所述支撑平台上沿支撑平台的轴线依次设有808nm半导体激光泵浦系统、谐振腔、BBO倍频单晶以及石英玻璃分光棱镜,所述谐振腔的两端分别设有输入镜以及输出耦合镜,其中,所述输入镜与所述808nm半导体激光泵浦系统的位置相对,所述输出耦合镜与所述BBO倍频单晶的位置相对,所述输入镜与所述输出耦合镜之间的谐振腔内还依次固设有Nd:YAG透明陶瓷以及KTP倍频单晶。本实用新型的固体激光器为全固态结构,具有制备工艺简单、性能稳定、操作方便、成本低廉、转换效率高等优点,鉴于陶瓷的热损伤阈值比单晶高约1.5倍,本实用新型更适合连续高功率激光输出条件下工作。
The utility model discloses a solid-state laser capable of producing 266nm ultraviolet laser, which comprises a support platform, on which an 808nm semiconductor laser pumping system, a resonant cavity, a BBO frequency doubling single crystal and quartz are sequentially arranged along the axis of the support platform. A glass splitter prism, the two ends of the resonant cavity are respectively provided with an input mirror and an output coupling mirror, wherein the input mirror is opposite to the position of the 808nm semiconductor laser pumping system, and the output coupling mirror is opposite to the BBO multiple The positions of the frequency single crystals are opposite, and the resonant cavity between the input mirror and the output coupling mirror is further fixed with Nd:YAG transparent ceramics and KTP frequency doubling single crystals in sequence. The solid-state laser of the utility model has an all-solid-state structure, and has the advantages of simple preparation process, stable performance, convenient operation, low cost, and high conversion efficiency. In view of the fact that the thermal damage threshold of ceramics is about 1.5 times higher than that of single crystals, the utility model is more suitable for continuous Work under high power laser output conditions.
Description
技术领域technical field
本实用新型涉及激光探照技术,更具体地说,是涉及一种能产生266nm紫外激光的固体激光器。The utility model relates to a laser search technology, in particular to a solid-state laser capable of producing 266nm ultraviolet laser.
背景技术Background technique
在刑案现场潜在物证显现的过程中,指纹是犯罪分子遗留在现场最直接的物证之一,对指纹有效识别是案件侦破和法庭诉讼的关键要素之一。与传统的物理吸附和化学反应生成有色纹线相比,紫外激光显现潜在指纹技术具有操作简单、指纹损伤小等优点。In the process of revealing potential physical evidence at a criminal scene, fingerprints are one of the most direct physical evidence left by criminals at the scene, and effective identification of fingerprints is one of the key elements in case detection and court proceedings. Compared with the traditional physical adsorption and chemical reaction to generate colored lines, the ultraviolet laser technology to reveal latent fingerprints has the advantages of simple operation and small fingerprint damage.
国内为获得高重复频率、高峰值功率266nm紫外激光输出,普遍采用调Q技术,该技术的缺点是持续高频激光输出导致单晶内部热效应过大,降低输出激光的光束质量,影响紫外固体激光器的连续应用。近年来所发展的新型激光材料---Nd:YAG透明陶瓷,除了具有与单晶一致的热导率、热膨胀系数、吸收光谱、发射光谱、荧光寿命和激光性能,还具有单晶难以比拟的优势:Nd离子掺杂浓度高(有利于激光器小型化)、易于制备复合结构(有利于实现主动调Q)和大尺寸(有利于提高激光输出功率)等,陶瓷的高温热损伤阈值是单晶的1.5倍,机械性能也优于单晶,更适合在高温条件下使用。In order to obtain high repetition frequency and high peak power 266nm ultraviolet laser output in China, Q-switching technology is generally used. The disadvantage of this technology is that the continuous high-frequency laser output leads to excessive thermal effects inside the single crystal, which reduces the beam quality of the output laser and affects ultraviolet solid-state lasers. continuous application. The new laser material developed in recent years --- Nd:YAG transparent ceramics, in addition to having the same thermal conductivity, thermal expansion coefficient, absorption spectrum, emission spectrum, fluorescence lifetime and laser performance as single crystal, also has incomparable single crystal Advantages: high Nd ion doping concentration (beneficial to laser miniaturization), easy preparation of composite structures (beneficial to active Q-switching) and large size (beneficial to improving laser output power), etc. The high temperature thermal damage threshold of ceramics is single crystal 1.5 times higher than that of single crystal, and its mechanical properties are also better than that of single crystal, which is more suitable for use under high temperature conditions.
实用新型内容Utility model content
针对现有技术中存在的缺陷,本实用新型的目的是提供一种能产生266nm紫外激光的固体激光器。Aiming at the defects existing in the prior art, the purpose of the utility model is to provide a solid-state laser capable of generating 266nm ultraviolet laser.
为达到上述目的,本实用新型采用如下的技术方案:In order to achieve the above object, the utility model adopts the following technical solutions:
一种能产生266nm紫外激光的固体激光器,包括支撑平台,所述支撑平台上沿支撑平台的轴线依次设有808nm半导体激光泵浦系统、谐振腔、BBO倍频单晶以及石英玻璃分光棱镜,A solid-state laser capable of producing 266nm ultraviolet laser light, comprising a support platform, on which an 808nm semiconductor laser pumping system, a resonant cavity, a BBO frequency doubling single crystal and a quartz glass beamsplitter prism are sequentially arranged along the axis of the support platform,
所述谐振腔的两端分别设有输入镜以及输出耦合镜,其中,所述输入镜与所述808nm半导体激光泵浦系统的位置相对,所述输出耦合镜与所述BBO倍频单晶的位置相对,所述输入镜与所述输出耦合镜之间的谐振腔内还依次固设有Nd:YAG透明陶瓷以及KTP倍频单晶。Both ends of the resonant cavity are respectively provided with an input mirror and an output coupling mirror, wherein the input mirror is opposite to the position of the 808nm semiconductor laser pumping system, and the output coupling mirror is opposite to the BBO frequency doubling single crystal Relative to each other, Nd:YAG transparent ceramics and KTP frequency-doubling single crystals are sequentially fixed in the resonant cavity between the input mirror and the output coupling mirror.
所述Nd:YAG透明陶瓷为钕离子掺杂浓度范围为0.01at.%-8at.%的Nd:YAG透明陶瓷。The Nd:YAG transparent ceramic is a Nd:YAG transparent ceramic with a neodymium ion doping concentration ranging from 0.01 at.% to 8 at.%.
所述Nd:YAG透明陶瓷的一端为激光输入面,另一端为激光输出面,所述激光输入面以及激光输出面均采用激光级抛光结构,所述激光输入面镀有对于808nm以及1064nm这两个波长的透过率均大于90%的增透膜,所述激光输出面镀有对于808nm波长反射率为99.8%的高反膜以及对于1064nm波长透过率大于90%的增透膜。One end of the Nd:YAG transparent ceramic is a laser input surface, and the other end is a laser output surface. Both the laser input surface and the laser output surface adopt a laser-grade polished structure, and the laser input surface is coated with 808nm and 1064nm An anti-reflection coating with a transmittance of more than 90% for each wavelength, and a high-reflection film with a reflectance of 99.8% for a wavelength of 808nm and an anti-reflection film with a transmittance of greater than 90% for a wavelength of 1064nm.
所述输入镜为平面镜,其内表面镀有对于808nm波长透过率大于90%的增透膜、对于1064nm以及532nm这两个波长的反射率均为99.8%的高反膜。The input mirror is a flat mirror, the inner surface of which is coated with an anti-reflection coating with a transmittance greater than 90% for the 808nm wavelength, and a high-reflection coating with a reflectivity of 99.8% for the two wavelengths of 1064nm and 532nm.
所述输出耦合镜为凹透镜,其内表面镀有对于1064nm以及532nm这两个波长的反射率均为95%的高反膜。The output coupling mirror is a concave lens, and its inner surface is coated with a high-reflection film with a reflectivity of 95% for the two wavelengths of 1064nm and 532nm.
所述808nm半导体激光泵浦系统采用交流供电。The 808nm semiconductor laser pumping system adopts AC power supply.
与现有技术相比,采用本实用新型的一种能产生266nm紫外激光的固体激光器具有以下有益的技术效果:Compared with the prior art, adopting a solid-state laser capable of producing 266nm ultraviolet laser of the present utility model has the following beneficial technical effects:
1)所用的激发波长为808nm半导体激光器固定在支撑平台上,作为固体激光器的泵浦系统,利用光纤对808nm泵浦激光进行汇集,汇集后的808nm激光穿过输入镜,从Nd:YAG陶瓷抛光镀膜端面进入其内部,实现Nd离子的受激跃迁。1) The semiconductor laser with an excitation wavelength of 808nm is fixed on the support platform. As the pumping system of the solid-state laser, the 808nm pump laser is collected by an optical fiber. The collected 808nm laser passes through the input mirror and is polished from Nd:YAG ceramics. The end face of the coating film enters its interior to realize the stimulated transition of Nd ions.
2)Nd:YAG透明陶瓷采用压片成型并结合真空烧结技术制备,根据固体激光器设计要求对陶瓷材料进行加工。所述的谐振腔中输入镜和输出耦合镜之间距离以及输出耦合镜的曲率半径根据陶瓷尺寸进行优化调整。2) Nd: YAG transparent ceramics are prepared by tablet molding combined with vacuum sintering technology, and the ceramic materials are processed according to the design requirements of solid-state lasers. The distance between the input mirror and the output coupling mirror in the resonant cavity and the radius of curvature of the output coupling mirror are optimized and adjusted according to the ceramic size.
3)KTP倍频单晶放置在谐振腔内部,对1064nm激光倍频,获得532nm绿光;BBO倍频单晶放置在谐振腔外部,对532nm激光再次倍频,获得266nm紫外激光输出。3) The KTP frequency doubling single crystal is placed inside the resonant cavity to double the frequency of the 1064nm laser to obtain 532nm green light; the BBO frequency doubling single crystal is placed outside the resonant cavity to double the frequency of the 532nm laser to obtain a 266nm ultraviolet laser output.
4)通过石英玻璃分光棱镜对输出的1064nm、532nm、226nm三种激光进行分束,获得单色性更好的266nm紫外激光,266nm紫外激光采用自由发散方式输出。266nm紫外激光光斑为TEM00模式的高斯分布。4) The output 1064nm, 532nm, and 226nm laser beams are split by a quartz glass beam splitting prism to obtain a 266nm ultraviolet laser with better monochromaticity, and the 266nm ultraviolet laser is output in a free divergence mode. The 266nm ultraviolet laser spot is a Gaussian distribution of TEM00 mode.
5)808nm半导体激光泵浦系统、Nd:YAG透明陶瓷、KTP倍频单晶、BBO倍频单晶以及石英玻璃分光棱镜沿直线固定在同一支撑平台上,其目的在于减少光损耗,提高266nm紫外激光输出功率。5) 808nm semiconductor laser pumping system, Nd:YAG transparent ceramics, KTP frequency doubling single crystal, BBO frequency doubling single crystal and quartz glass beam splitting prism are fixed on the same support platform along a straight line, the purpose is to reduce light loss and improve 266nm UV Laser output power.
6)本实用新型的固体激光器采用空冷方式散热,通过功率调节器控制电流大小来调节808nm泵浦系统的泵浦功率,进而控制266nm紫外激光实际输出功率在10-200mW之间可调,固体激光器连续使用时,266nm紫外激光的实际输出功率大小的浮动幅度小于5%。6) The solid-state laser of the present utility model adopts an air-cooling method for heat dissipation, and the pumping power of the 808nm pumping system is adjusted by controlling the current through the power regulator, and then the actual output power of the 266nm ultraviolet laser is controlled between 10-200mW. The solid-state laser When used continuously, the fluctuation range of the actual output power of the 266nm ultraviolet laser is less than 5%.
总之,本实用新型的固体激光器为全固态结构,具有制备工艺简单、性能稳定、操作方便、成本低廉、转换效率高等优点,鉴于陶瓷的热损伤阈值比单晶高约1.5倍,本实用新型更适合连续高功率激光输出条件下工作。In short, the solid-state laser of the present invention has an all-solid-state structure, and has the advantages of simple preparation process, stable performance, convenient operation, low cost, and high conversion efficiency. In view of the fact that the thermal damage threshold of ceramics is about 1.5 times higher than that of single crystals, the utility model is more It is suitable for working under the condition of continuous high power laser output.
附图说明Description of drawings
图1是本实用新型的实施例的原理示意图。Fig. 1 is a schematic diagram of the principle of an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例进一步说明本实用新型的技术方案。The technical scheme of the utility model is further described below in conjunction with the accompanying drawings and embodiments.
请参阅图1所示的一种能产生266nm紫外激光的固体激光器,包括支撑平台11,支撑平台11上沿支撑平台的轴线依次设有808nm半导体激光泵浦系统12、谐振腔、BBO倍频单晶13以及石英玻璃分光棱镜14,谐振腔包括与808nm半导体激光泵浦系统相对的输入镜15以及与BBO倍频单晶相对的输出耦合镜16,输入镜与输出耦合镜之间的谐振腔内还依次固设有Nd掺杂浓度为1.0at.%的Nd:YAG透明陶瓷17以及KTP倍频单晶18。Please refer to a kind of solid-state laser that can produce 266nm ultraviolet laser shown in Fig. 1, comprise support platform 11, be provided with 808nm semiconductor laser pumping system 12, resonant cavity, BBO frequency doubling unit successively along the axis of support platform on support platform 11 crystal 13 and quartz glass beam splitting prism 14, the resonant cavity includes an input mirror 15 opposite to the 808nm semiconductor laser pumping system and an output coupling mirror 16 opposite to the BBO frequency doubling single crystal, the resonant cavity between the input mirror and the output coupling mirror Nd:YAG transparent ceramics 17 with an Nd doping concentration of 1.0 at.% and a KTP frequency doubling single crystal 18 are also fixed in sequence.
所述Nd:YAG透明陶瓷的一端为激光输入面,另一端为激光输出面,所述激光输入面以及激光输出面均采用激光级抛光结构,所述激光输入面镀有对于808nm以及1064nm这两个波长的透过率均大于90%的增透膜,所述激光输出面镀有对于808nm波长反射率为99.8%的高反膜以及对于1064nm波长透过率大于90%的增透膜。One end of the Nd:YAG transparent ceramic is a laser input surface, and the other end is a laser output surface. Both the laser input surface and the laser output surface adopt a laser-grade polished structure, and the laser input surface is coated with 808nm and 1064nm An anti-reflection coating with a transmittance of more than 90% for each wavelength, and a high-reflection film with a reflectance of 99.8% for a wavelength of 808nm and an anti-reflection film with a transmittance of greater than 90% for a wavelength of 1064nm.
所述输入镜为平面镜,其内表面镀有对于808nm波长透过率大于90%的增透膜、对于1064nm以及532nm这两个波长的反射率均为99.8%的高反膜。The input mirror is a flat mirror, the inner surface of which is coated with an anti-reflection coating with a transmittance greater than 90% for the 808nm wavelength, and a high-reflection coating with a reflectivity of 99.8% for the two wavelengths of 1064nm and 532nm.
所述输出耦合镜为凹透镜,其内表面镀有对于1064nm以及532nm这两个波长的反射率均为95%的高反膜。The output coupling mirror is a concave lens, and its inner surface is coated with a high-reflection film with a reflectivity of 95% for the two wavelengths of 1064nm and 532nm.
所述808nm半导体激光泵浦系统为交流供电。The 808nm semiconductor laser pumping system is powered by AC.
谐振腔的模式为平凹腔、平平腔、凹凹腔或凸凸腔中的一种。The mode of the resonant cavity is one of flat-concave cavity, flat-flat cavity, concave-concave cavity or convex-convex cavity.
本实用新型的陶瓷紫外固体激光器光路为:808nm半导体激光泵浦系统发射出波长为808nm的激光,利用光纤耦合,导入谐振腔,从Nd:YAG透明陶瓷激光输入面进入到其内部,808nm激光实现材料中Nd粒子从基态到激发态的跃迁,当Nd粒子从激发态回到基态,向外辐射出1064nm激光,1064nm激光进入到KTP倍频单晶,部分1064nm激光倍频为532nm绿光,输入镜和输出耦合镜表面镀了1064nm和532nm高反膜,1064nm和532nm激光在谐振腔内来回震荡,808nm激光持续激发Nd粒子,受激产生的1064nm激光功率不断升高,倍频产生的532nm激光功率也随之升高,当谐振腔内1064nm和532nm激光功率超过输出耦合镜的阈值后,从输出耦合镜输出,部分532nm被BBO单晶倍频产生266nm紫外激光,再利用石英玻璃分光棱镜对1064nm、532nm、226nm三种激光进行分束,获得单色性更好的266nm紫外激光。激光为自由发散输出,通过功率调节器可控制输出激光功率大小。The optical path of the ceramic ultraviolet solid laser of the utility model is: the 808nm semiconductor laser pumping system emits a laser with a wavelength of 808nm, which is coupled with an optical fiber and introduced into the resonant cavity, and enters the interior from the Nd:YAG transparent ceramic laser input surface, and the 808nm laser realizes The transition of Nd particles in the material from the ground state to the excited state, when the Nd particles return to the ground state from the excited state, radiates 1064nm laser light outwards, the 1064nm laser light enters the KTP frequency doubled single crystal, part of the 1064nm laser frequency doubles to 532nm green light, input The mirror and the output coupling mirror are coated with 1064nm and 532nm high-reflection coatings. The 1064nm and 532nm lasers oscillate back and forth in the resonator. The 808nm laser continuously excites Nd particles. The power also increases accordingly. When the 1064nm and 532nm laser power in the resonator exceeds the threshold of the output coupling mirror, it is output from the output coupling mirror, and part of the 532nm is frequency-multiplied by BBO single crystal to generate 266nm ultraviolet laser, and then the quartz glass beam splitter is used to pair 1064nm, 532nm, and 226nm three kinds of laser beams are split to obtain 266nm ultraviolet laser with better monochromaticity. The laser is output freely, and the output laser power can be controlled through the power regulator.
本实用新型除用功率调节器来控制激光输出功率外,还可根据实际应用,来设计固体激光器所用Nd:YAG透明陶瓷参数。In addition to using the power regulator to control the output power of the laser, the utility model can also design the parameters of the Nd:YAG transparent ceramic used in the solid-state laser according to the actual application.
以刑案现场为例,本实用新型通过对刑案现场潜在指纹的吸收峰进行测量,针对现场勘查技术的实际需求,设计基于Nd:YAG透明陶瓷为增益介质的陶瓷紫外固体激光器,利用透明陶瓷材料相对于Nd:YAG单晶在损伤阈值高、掺杂浓度高和均匀性好等方面的优势。陶瓷紫外固体激光器的波长涵盖了潜在指纹的光谱吸收峰,很好地解决了现场物证的探测与发现。特别是,通过本技术方案产生的266nm紫外激光激发指纹发射出荧光,实现潜在指纹的显现和拍照提取。Taking the criminal case scene as an example, the utility model measures the absorption peak of the potential fingerprint at the criminal case scene, and aims at the actual needs of the field investigation technology, designs a ceramic ultraviolet solid-state laser based on Nd:YAG transparent ceramics as the gain medium, and uses transparent ceramics Compared with Nd:YAG single crystal, the material has advantages in high damage threshold, high doping concentration and good uniformity. The wavelength of the ceramic ultraviolet solid-state laser covers the spectral absorption peak of the potential fingerprint, which is a good solution to the detection and discovery of on-site physical evidence. In particular, the 266nm ultraviolet laser generated by the technical solution excites fingerprints to emit fluorescence, realizing the visualization and photographic extraction of latent fingerprints.
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本实用新型的目的,而并非用作对本实用新型的限定,只要在本实用新型的实质范围内,对以上所述实施例的变化、变型都将落在本实用新型的权利要求的范围内。Those of ordinary skill in the art should recognize that the above embodiments are only used to illustrate the purpose of the utility model, rather than as a limitation of the utility model, as long as within the essential scope of the utility model, the above-mentioned The changes and modifications of the above embodiments will fall within the scope of the claims of the present utility model.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520160856.5U CN204577831U (en) | 2015-03-20 | 2015-03-20 | A kind of solid state laser that can produce 266nm Ultra-Violet Laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520160856.5U CN204577831U (en) | 2015-03-20 | 2015-03-20 | A kind of solid state laser that can produce 266nm Ultra-Violet Laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204577831U true CN204577831U (en) | 2015-08-19 |
Family
ID=53870426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520160856.5U Expired - Lifetime CN204577831U (en) | 2015-03-20 | 2015-03-20 | A kind of solid state laser that can produce 266nm Ultra-Violet Laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204577831U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110212400A (en) * | 2019-06-23 | 2019-09-06 | 海南师范大学 | A kind of direct frequency doubling day blind ultraviolet band 260nm narrow-linewidth laser emitter |
CN111600179A (en) * | 2020-05-25 | 2020-08-28 | 中国人民解放军总医院 | 266nm laser therapy equipment |
-
2015
- 2015-03-20 CN CN201520160856.5U patent/CN204577831U/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110212400A (en) * | 2019-06-23 | 2019-09-06 | 海南师范大学 | A kind of direct frequency doubling day blind ultraviolet band 260nm narrow-linewidth laser emitter |
CN111600179A (en) * | 2020-05-25 | 2020-08-28 | 中国人民解放军总医院 | 266nm laser therapy equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fan et al. | Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser | |
CN104659643B (en) | A kind of 0.9 μm of laser of both-end polarized pump | |
CN105071214A (en) | Method for producing deep ultraviolet laser light through visible laser direct frequency conversion and all-solid-state deep ultraviolet laser | |
CN107394577B (en) | A mid-infrared all-solid-state laser | |
CN103972778B (en) | A kind of all solid state femto-second laser of kerr lens mode locking Yb:YCOB of diode pumping | |
CN202050155U (en) | Full-solid-state yellow light self-mode-locked Raman laser | |
CN102088158A (en) | Method and device for obtaining high-power ultraviolet laser light | |
CN101814692A (en) | Medicinal all-solid-state yellow laser | |
CN204577831U (en) | A kind of solid state laser that can produce 266nm Ultra-Violet Laser | |
CN102751653A (en) | Photonic crystal fiber based medium-infrared optical fiber parametric oscillator for degenerating four-wave mixing | |
CN103022870B (en) | Based on the high-power 355nm ultraviolet laser of battened construction | |
CN101728764A (en) | Ring-shaped laser resonator structure | |
CN105098591A (en) | Continuous wave self-Raman laser of wavelength-locked LD resonance pumping | |
CN103779770A (en) | Blue-light LD pimping praseodymium-doped yttrium lithium fluoride 915 nm near-infrared total-solid laser device | |
CN102593700A (en) | Three-wavelength laser device without gain competition | |
CN104577686A (en) | Fiber laser double-end pumping Ho3+laser crystal 1.19 micrometer waveband laser device | |
CN101159362A (en) | LD terminal pump yellow light laser | |
CN203415812U (en) | Medical three-wavelength green-yellow laser | |
CN103107479B (en) | 2.9 mu m intermediate infrared solid-state laser based on automatic Raman pump | |
CN103296576B (en) | Fiber-coupled output diode end-pumped and Tm-doped (thulium-doped) slab solid-state laser | |
CN204481320U (en) | A kind of two gain crystal passive Q-regulaitng laser | |
CN201149951Y (en) | solid-state yellow laser | |
CN100442613C (en) | High-power narrow-linewidth all-solid-state pulsed 910nm laser system | |
CN204927803U (en) | A Stokes light source based on potassium titanyl arsenate crystal | |
CN104752948B (en) | One kind utilizes 456nm all-solid state laser pumpings Pr:YLF realizes the device and method of 639nm laser output |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190916 Address after: Room 04, 7th floor, No. 10 Building, 196 Ouyang Road, Hongkou District, Shanghai, 200081 Patentee after: Shanghai Original Standard Technology Co.,Ltd. Address before: 200083 No. 803, No. 1, North Road, Hongkou District, Shanghai, Zhongshan Patentee before: SHANGHAI CRIMINAL SCIENCE TECHNOLOGY Research Institute |
|
TR01 | Transfer of patent right | ||
CX01 | Expiry of patent term |
Granted publication date: 20150819 |