CN204514375U - A kind of anchored slope distortion intelligent monitor system - Google Patents
A kind of anchored slope distortion intelligent monitor system Download PDFInfo
- Publication number
- CN204514375U CN204514375U CN201520176872.3U CN201520176872U CN204514375U CN 204514375 U CN204514375 U CN 204514375U CN 201520176872 U CN201520176872 U CN 201520176872U CN 204514375 U CN204514375 U CN 204514375U
- Authority
- CN
- China
- Prior art keywords
- slope
- monitoring system
- intelligent monitoring
- soil
- dynamometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 42
- 239000002689 soil Substances 0.000 claims abstract description 36
- 238000012544 monitoring process Methods 0.000 claims abstract description 35
- 238000004873 anchoring Methods 0.000 claims abstract description 11
- 239000013307 optical fiber Substances 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 238000013480 data collection Methods 0.000 abstract description 2
- 238000009530 blood pressure measurement Methods 0.000 abstract 1
- 238000007405 data analysis Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本实用新型公开了一种锚固边坡变形智能监测系统,在边坡坡面上固定有光纤布拉格光栅位移监测仪,在边坡的坡顶边缘处垂直布设有测斜仪(4),在坡顶处竖直向下插入有渗压计(5),在原有的支护锚杆或锚索的托板和边坡土体之间布设测力计(8),在边坡坡脚处固定有土压力盒(10)且所述的土压力盒(10)的受压面面向边坡土体,所述的光纤布拉格光栅位移监测仪、测力计(8)、渗压计(5)、测斜仪(4)和土压力盒(10)与计算机终端(13)通信连接。本实用新型能够自动监测锚固边坡坡面的位移、倾斜、压力测量;并进行相应的数据传输、数据分析和稳定性判定,是对以往的传统单一监测方法进行改进,以达到缩减数据收集、传输、分析的时间以及提高边坡稳定性判定的准确性。
The utility model discloses an intelligent monitoring system for anchoring slope deformation. An optical fiber Bragg grating displacement monitor is fixed on the slope surface, and an inclinometer (4) is vertically arranged at the slope top edge of the slope. A piezometer (5) is inserted vertically downward at the top, and a dynamometer (8) is arranged between the supporting plate of the original supporting anchor rod or anchor cable and the slope soil, and fixed at the foot of the slope. There is an earth pressure cell (10) and the pressure-bearing surface of the earth pressure cell (10) faces the slope soil, and the optical fiber Bragg grating displacement monitor, dynamometer (8), piezometer (5) , the inclinometer (4) and the earth pressure box (10) are communicatively connected with the computer terminal (13). The utility model can automatically monitor the displacement, inclination and pressure measurement of the anchored slope surface; and carry out corresponding data transmission, data analysis and stability judgment, which improves the traditional single monitoring method in the past to reduce data collection, Transmission, analysis time, and improved accuracy of slope stability determination.
Description
技术领域 technical field
本实用新型涉及一种边坡变形监测系统,特别是涉及一种锚固边坡变形智能监测系统。 The utility model relates to a side slope deformation monitoring system, in particular to an anchored side slope deformation intelligent monitoring system.
背景技术 Background technique
对松散岩土体坠落的高速公路边坡的防护治理,现行方案主要分为工程防护和生态防护两大类,工程防护主要是利用材料的物理力学性质来达到岩质边坡的稳定,但这种方案往往会留下大量的人工痕迹,破坏了自然生态平衡,而常用的生态防护往往短期绿化效果好,但其改善环境作用有限,更不能解决从根本上解决边坡的稳定问题。因此,找到一种可以长期发挥作用的生态防护方案,并与工程防护方案相结合,对高速公路改扩建工程边坡防护具有重要的意义。 For the protection and treatment of expressway slopes with loose rock and soil falling, the current schemes are mainly divided into two categories: engineering protection and ecological protection. Engineering protection mainly uses the physical and mechanical properties of materials to achieve the stability of rock slopes, but this This scheme often leaves a large number of artificial traces and destroys the natural ecological balance. The commonly used ecological protection often has a good short-term greening effect, but its effect on improving the environment is limited, and it cannot fundamentally solve the problem of slope stability. Therefore, it is of great significance to find an ecological protection scheme that can play a long-term role and combine it with the engineering protection scheme for the slope protection of expressway reconstruction and expansion projects.
边坡的加固是新建或者改扩建高速公路很重要的组成部分,目前大多数的边坡加固工程量较大、人力投入比较高,在公路边坡加固工程中,常常采用锚固技术对边坡进行加固处理。 Slope reinforcement is a very important part of new or expanded highways. At present, most slope reinforcement projects have a large amount of labor and relatively high manpower investment. In highway slope reinforcement projects, anchoring technology is often used to carry out side slope Reinforcement treatment.
对于锚固边坡进行边坡变形监测,一般需监测各个测点的沉降,边坡土体内部的位移,边坡土体地下水位,边坡坡脚的土压力以及锚杆(锚索)的轴力,将所测量的数据利用数据采集系统进行收集,并传输到计算机进行数据处理分析,然后进行边坡变形分析,是未来边坡监测的一种发展方向。 For slope deformation monitoring of anchored slopes, it is generally necessary to monitor the settlement of each measuring point, the displacement inside the slope soil, the groundwater level of the slope soil, the soil pressure at the foot of the slope and the axis of the anchor rod (anchor cable). The measured data is collected by the data acquisition system and transmitted to the computer for data processing and analysis, and then slope deformation analysis is a development direction of slope monitoring in the future.
实用新型内容 Utility model content
本实用新型所要解决的技术问题是提供一种对锚固边坡变形智能监测,并且收集相关的测量数据以及对测量数据进行分析,判定该监测的边坡是否处于稳定的锚固边坡变形智能监测系统。 The technical problem to be solved by the utility model is to provide an intelligent monitoring system for the deformation of the anchored slope, which collects relevant measurement data and analyzes the measurement data to determine whether the monitored slope is stable or not. .
为了解决上述技术问题,本实用新型提供的锚固边坡变形智能监测系统,在边坡坡面上固定有位移监测仪,在边坡的坡顶边缘处垂直布设有测斜仪,在坡顶处竖直向下插入有渗压计,在原有的支护锚杆或锚索的托板和边坡土体之间布设测力计,在边坡坡脚处固定有土压力盒且所述的土压力盒的受压面面向边坡土体,所述的位移监测仪、测力计、渗压计、测斜仪和土压力盒与计算机终端通信连接。 In order to solve the above technical problems, the utility model provides an intelligent monitoring system for anchoring slope deformation. A displacement monitor is fixed on the slope surface, and an inclinometer is vertically arranged at the edge of the slope top. A piezometer is inserted vertically downward, and a dynamometer is arranged between the supporting plate of the original supporting anchor rod or anchor cable and the slope soil, and an earth pressure cell is fixed at the foot of the slope and the said The pressure-bearing surface of the earth pressure box faces the slope soil, and the displacement monitor, dynamometer, piezometer, inclinometer and earth pressure box are connected to the computer terminal by communication.
所述的位移监测仪是由传感器、钢丝绳和挡块组成,所述的传感器包含光纤布拉格光栅位移传感器、悬臂梁、恒温箱和弹簧,所述的悬臂梁固定在边坡的坡顶上,外罩所述的恒温箱,光纤布拉格光栅 位移传感器紧紧固定在所述的悬臂梁的中间位置,在每级边坡坡面上从坡顶至坡脚处间隔布置有所述的挡块,所述的挡块用所述的钢丝绳与所述的弹簧的一头相连,所述的弹簧的另一头连接所述的悬臂梁。 The displacement monitor is composed of a sensor, a steel wire rope and a stopper. The sensor includes a fiber Bragg grating displacement sensor, a cantilever beam, a constant temperature box and a spring. The cantilever beam is fixed on the top of the slope, and the outer cover The incubator and the optical fiber Bragg grating displacement sensor are tightly fixed at the middle position of the cantilever beam, and the stoppers are arranged at intervals from the top to the foot of the slope on each level of slope. The stopper is connected with one end of the spring by the steel wire rope, and the other end of the spring is connected with the cantilever beam.
在经过边坡坡顶转角处时固定一个定滑轮,所述的钢丝绳绕在所述的定滑轮上。 A fixed pulley is fixed when passing through the corner of the top of the slope, and the steel wire rope is wound on the fixed pulley.
在每级边坡坡面上从坡顶至坡脚处每隔1.5m~2.5m布置有所述的挡块。 The stoppers are arranged at intervals of 1.5m to 2.5m from the top of the slope to the foot of the slope on each level of slope.
所述的挡块插入边坡土体10cm以上。 The stopper is inserted more than 10cm into the slope soil.
所述的测斜仪边坡坡顶处垂直插入边坡直至达到与坡底同一水平位置。 The slope top of the inclinometer is vertically inserted into the slope until it reaches the same horizontal position as the bottom of the slope.
所述的测力计紧靠在锚杆或锚索的托板与边坡土体之间,在所述的测力计下方浇筑有混凝土。 The dynamometer is close to between the supporting plate of the anchor rod or the anchor cable and the slope soil, and concrete is poured under the dynamometer.
所述的渗压计垂直插入在边坡坡顶处为该级边坡的三分之一的高度。 The piezometer is vertically inserted at the top of the slope to a height of one-third of the level of the slope.
所述的土压力盒埋设在边坡坡脚处8cm~12cm深度处土体内。 The earth pressure cell is embedded in the soil body at the depth of 8cm to 12cm at the slope toe.
所述的光纤布拉格光栅位移监测仪、测力计、测斜仪、渗压计和土压力盒通过无线数据采集器与所述的计算机终端通信连接。 The optical fiber Bragg grating displacement monitor, dynamometer, inclinometer, piezometer and earth pressure box are connected to the computer terminal through a wireless data collector.
采用上述技术方案的锚固边坡变形智能监测系统,是在确定监测的边坡坡面后,在边坡坡面上,固定光纤布拉格光栅位移监测仪,监测每级边坡坡面各个测点处的竖向位移以及水平位移;在每级边坡坡顶靠近边坡坡顶边缘垂直布设测斜仪监测边坡内的土体相对滑动;在预应力锚杆或锚索的托板与边坡土体中固定测力计用以监测边坡锚杆或锚索在监测过程中的受力情况,分析在监测边坡期间锚杆或锚索是否已经失效;在边坡坡顶处垂直插入渗压计,监测边坡土体地下水位;在边坡坡脚处沿土体方向一定深度布设土压力盒,监测边坡坡脚处压力的变化;将收集的监测数据传入到计算机终端,通过计算机对数据进行计算分析,分析边坡的变形情况。 The intelligent monitoring system for anchoring slope deformation using the above technical solution is to fix the optical fiber Bragg grating displacement monitor on the slope surface after determining the slope surface to be monitored, and monitor each measuring point on the slope surface of each level Vertical displacement and horizontal displacement; vertically arrange inclinometers at the top of each level of slope close to the edge of the slope top to monitor the relative sliding of the soil in the slope; The fixed dynamometer in the soil is used to monitor the stress of the slope anchor rod or anchor cable during the monitoring process, and analyze whether the anchor rod or anchor cable has failed during the monitoring of the slope; vertically insert the seepage at the top of the slope piezometer to monitor the underground water level of the slope soil; an earth pressure cell is arranged at a certain depth along the soil direction at the slope toe to monitor the pressure change at the slope toe; the collected monitoring data is transmitted to the computer terminal, through The computer calculates and analyzes the data to analyze the deformation of the slope.
本实用新型专利针对锚固边坡进行边坡变形智能监测,主要实施的方案的目的是监测各个测点的沉降,边坡土体内部的滑动监测,边坡土体地下水位的监测,边坡坡脚的土压力情况以及原有支护锚杆或锚索的轴力监测。将所测量的数据利用数据采集系统进行收集数据,并传输到计算机进行数据处理分析,并进行边坡变形分析。因此,该方案对公路工程边坡爆破防护具有重要的意义。 The utility model patent carries out intelligent monitoring of slope deformation for anchored slopes. The main purpose of the implemented scheme is to monitor the settlement of each measuring point, the sliding monitoring inside the slope soil, the monitoring of the groundwater level of the slope soil, and the monitoring of the slope slope. The soil pressure of the foot and the axial force monitoring of the original support anchor rod or anchor cable. The measured data is collected by the data acquisition system, and transmitted to the computer for data processing and analysis, and slope deformation analysis. Therefore, this scheme is of great significance to the blasting protection of highway engineering slopes.
综上所述,本实用新型减少了边坡竖向位移监测的时间和工程量,准确而又系统地对边坡的变形进行监测分析。这是一种较为安全可靠、安装简单的锚固边坡变形智能监测系统。 To sum up, the utility model reduces the time and engineering quantity for monitoring the vertical displacement of the slope, and accurately and systematically monitors and analyzes the deformation of the slope. This is a relatively safe, reliable, and easy-to-install intelligent monitoring system for deformation of anchored slopes.
附图说明 Description of drawings
图1是高速公路边坡智能监测仪器布设示意图。 Figure 1 is a schematic diagram of the layout of intelligent monitoring instruments for expressway slopes.
图2是光纤布拉格光栅的位移监测器结构示意图。 Fig. 2 is a schematic structural diagram of a displacement monitor of a fiber Bragg grating.
图3是数据传输示意图。 Fig. 3 is a schematic diagram of data transmission.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步说明。 The present invention will be further described below in conjunction with accompanying drawing.
参见图1、图2和图3,本锚固边坡变形智能监测系统主要分为三个部分:第一部分,数据的测量,数据测量的仪器包括光纤布拉格光栅位移传感器6测试边坡坡面各个测点的位移的测试、测斜仪4测量边坡土体的滑移、测力计8测量原有锚杆9或锚索端的压力变化、渗压计5测量边坡土体的地下水位的高度、土压力盒10测量边坡坡脚处土压力;第二部分,数据的收集。利用无线数据采集器14对测量的数据进行收集,将采集的数据传入计算机终端13;第三部分,数据计算分析以及边坡稳定性的判定,将收集的数据传入计算机进行计算分析及相关的边坡稳定性的判定。 Referring to Fig. 1, Fig. 2 and Fig. 3, this anchored slope deformation intelligent monitoring system is mainly divided into three parts: the first part, the measurement of data, the instrument of data measurement includes the optical fiber Bragg grating displacement sensor 6 tests each measurement of slope surface The displacement test of the point, the inclinometer 4 measures the slippage of the slope soil, the dynamometer 8 measures the pressure change of the original anchor rod 9 or the end of the anchor cable, and the piezometer 5 measures the height of the underground water level of the slope soil , The earth pressure box 10 measures the earth pressure at the toe of the slope; the second part is data collection. Utilize the wireless data collector 14 to collect the measured data, and transfer the collected data to the computer terminal 13; the third part, data calculation and analysis and determination of slope stability, transfer the collected data to the computer for calculation and analysis and correlation determination of slope stability.
本方法能够比较系统对锚固边坡变形进行智能监测。 The method can compare the system to intelligently monitor the deformation of the anchored slope.
参见图1、图2和图3,位移监测仪是由传感器、钢丝绳11和挡块3组成,传感器包含光纤布拉格光栅位移传感器6、悬臂梁7、恒温箱1和弹簧12,在每级边坡坡面上从坡顶至坡脚处每隔2m进行布置位移监测仪的挡块3,位移监测仪点的土体利用重物压实并且在压实的坡顶的土体处浇筑混凝土作为位移监测仪的支座,防止在监测期间因雨水冲刷等其他因素使得位移监测仪的监测出现偏差。将挡块3用钢丝绳11与位移监测仪的弹簧12相连,在经过边坡坡顶转角处时固定一个定滑轮2,位移监测仪布设在边坡坡顶处上,位移监测仪中的弹簧12的一头与钢丝绳11相连另一头连接悬臂梁7,悬臂梁7用混凝土浇筑固定在边坡的坡顶上,外罩一个恒温箱1控制温度的变化,并且将位移监测仪的光纤布拉格光栅位移传感器6(简称FBG)紧紧固定在悬臂梁7的中间位置,当边坡的土体发生滑动时,带动挡块3的移动,从而引起悬臂梁7的弯曲并且改变光纤布拉格光栅位移传感器6的波长。从而可以测算出边坡土体的沉降。在经过边坡坡顶时在边坡坡顶的转角处固定一个定滑轮2,确保悬臂梁7上的光纤布拉格光栅位移传感器6能准确记录挡块3位移,从而可以得出土体的沉降位移。悬臂梁7是选用等强度的材料,在外力作用于悬臂端部时能产生一定的弯曲变形。光纤布拉格光栅位移传感器6是紧紧依附在悬臂梁7上,并且能与悬臂梁7在外力作用下能有相同的弯曲变形。挡块3插入边坡土体10cm以上,并且在插入的位置点用混凝土浇筑确保其位置不因雨水的冲刷而发生滑动。 Referring to Fig. 1, Fig. 2 and Fig. 3, the displacement monitor is composed of a sensor, a steel wire rope 11 and a stopper 3, and the sensor includes a fiber Bragg grating displacement sensor 6, a cantilever beam 7, a constant temperature box 1 and a spring 12. On the slope, the stopper 3 of the displacement monitor is arranged every 2m from the top of the slope to the foot of the slope. The soil at the point of the displacement monitor is compacted with heavy objects and concrete is poured on the compacted soil at the top of the slope as the displacement. The support of the monitor prevents deviations in the monitoring of the displacement monitor due to other factors such as rain erosion during the monitoring period. Connect the stopper 3 with the spring 12 of the displacement monitor with a steel wire rope 11, fix a fixed pulley 2 when passing through the corner of the slope top, the displacement monitor is arranged on the slope top, and the spring 12 in the displacement monitor One end is connected with steel wire rope 11 and the other end is connected with cantilever beam 7, and cantilever beam 7 is fixed on the top of the slope with concrete pouring, and a constant temperature box 1 is covered to control the temperature change, and the optical fiber Bragg grating displacement sensor 6 of the displacement monitor (FBG for short) is tightly fixed at the middle position of the cantilever beam 7. When the soil of the slope slides, it drives the movement of the stopper 3, thereby causing the cantilever beam 7 to bend and changing the wavelength of the fiber Bragg grating displacement sensor 6. Thus, the settlement of slope soil can be calculated. When passing the top of the slope, a fixed pulley 2 is fixed at the corner of the top of the slope to ensure that the fiber Bragg grating displacement sensor 6 on the cantilever beam 7 can accurately record the displacement of the stopper 3, so that the settlement displacement of the soil can be obtained. The cantilever beam 7 is made of materials of equal strength, which can produce a certain bending deformation when an external force acts on the end of the cantilever. The fiber Bragg grating displacement sensor 6 is tightly attached to the cantilever beam 7, and can have the same bending deformation as the cantilever beam 7 under the action of external force. The stopper 3 is inserted into the slope soil body more than 10cm, and the inserted position is poured with concrete to ensure that its position will not slide due to the erosion of rainwater.
测斜仪4的布设点设置在边坡坡顶边缘处,对边坡坡顶的监测点 进行钻孔,钻孔的深度应达到边坡坡脚同一水平位置。插入测斜仪4,在测斜仪4与边坡钻孔中存在的间隙用砂浆进行浇筑,确保减小测斜仪收集数据的误差,将露出坡面的测斜仪4的部分进行锚固确保不会产生松动,并记录此时测斜仪4的偏斜的角度。 The layout point of the inclinometer 4 is set at the edge of the slope crest, and the monitoring point of the slope crest is drilled, and the depth of the borehole should reach the same horizontal position of the slope toe. Insert the inclinometer 4, and pour mortar into the gap between the inclinometer 4 and the slope drilling to ensure that the error of the data collected by the inclinometer is reduced, and anchor the part of the inclinometer 4 that is exposed on the slope to ensure No loosening occurs, and the angle of deflection of the inclinometer 4 at this time is recorded.
将测力计8置换在原有的预应力支护锚杆9或锚索的端部托板处土体,并确保测力计8紧紧挨着边坡土体和锚杆9或锚索的托板,利用绳索将测力计和锚杆或锚索紧紧绑扎在一起,确保测力计8在测试期间不发生脱落。并记录此时的测力计8的度数。当边坡土体开始发生沉降移动时,锚杆9或锚索的轴力发生变化改变测力计8的读数,时刻记录测力计8在监测期间的读数。 Replace the dynamometer 8 at the end supporting plate of the original prestressed support anchor 9 or the anchor cable, and ensure that the dynamometer 8 is close to the slope soil and the anchor 9 or the anchor cable The supporting plate is used to tightly bind the dynamometer and the anchor rod or anchor cable together with ropes to ensure that the dynamometer 8 does not fall off during the test. And record the degrees of the dynamometer 8 at this time. When the slope soil begins to settle and move, the axial force of the anchor rod 9 or the anchor cable changes to change the reading of the dynamometer 8, and the reading of the dynamometer 8 during the monitoring period is recorded at all times.
在边坡坡顶处利用清水钻孔的方法垂直钻入深度为该级边坡的三分之一的高度,在施工中,边钻孔边下孔径为渗压计大小的管套,钻进到设计深度后结束,确定高程无误后,用细铜网加入中粗砂,将渗压计5放进孔径为1mm左右的细铜丝网中包裹中粗砂,准确地下入孔中设计高程。渗压计5埋设完毕后,停等24h,在没有较大的沉陷后,为保护好留在孔外的电缆,用2寸PVC管做70~100cm长的孔口管进行埋设保护,最后进行起拔套管,采用轻打的办法,防止将渗压计5震坏。 At the top of the slope, use the method of clear water drilling to drill vertically to a depth of one-third of the height of the slope. After reaching the design depth, after confirming that the elevation is correct, add medium-coarse sand with a fine copper mesh, put the piezometer 5 into a fine copper wire mesh with an aperture of about 1 mm to wrap the medium-coarse sand, and accurately enter the hole into the design elevation. After the osmometer 5 is buried, wait for 24 hours. After there is no major subsidence, in order to protect the cables left outside the hole, use a 2-inch PVC pipe to make a 70-100cm long orifice pipe for burial protection, and finally carry out To pull out the casing, use the method of tapping lightly to prevent the piezometer 5 from being damaged by shock.
在边坡坡脚处10cm深度处,固定土压力盒10,将土压力盒10的受压面面向边坡土体,在土压力盒周边用细沙填充,牵出土压力盒10的导线。 Fix the earth pressure cell 10 at the depth of 10 cm at the foot of the slope, face the pressure surface of the earth pressure cell 10 to the slope soil, fill the periphery of the earth pressure cell with fine sand, and pull out the wire of the earth pressure cell 10.
参见图1、图2和图3,光纤布拉格光栅位移监测仪的光纤布拉格光栅位移传感器6、测力计8、测斜仪4、渗压计5和土压力盒10通过无线数据采集器14与计算机终端13通信连接。利用无线数据采集器14收集边坡坡顶的FBG6的竖向位移、测斜仪4、锚杆9或锚索的轴力的测力计8、以及边坡土体的渗压计5等数据,并将收集的数据传输到计算机终端13,利用计算机终端13进行数据分析,分析边坡是否处于稳定状态,若边坡处于稳定状态则系统提示边坡处于稳定状态,反之则提示为边坡处于失稳状态。 Referring to Fig. 1, Fig. 2 and Fig. 3, the fiber Bragg grating displacement sensor 6, the dynamometer 8, the inclinometer 4, the piezometer 5 and the earth pressure cell 10 of the fiber Bragg grating displacement monitor are connected by the wireless data collector 14 and The computer terminal 13 is connected for communication. Utilize the wireless data collector 14 to collect data such as the vertical displacement of the FBG6 at the top of the slope, the dynamometer 8 of the axial force of the inclinometer 4, the anchor rod 9 or the anchor cable, and the piezometer 5 of the slope soil , and transmit the collected data to the computer terminal 13, use the computer terminal 13 to analyze the data, analyze whether the slope is in a stable state, if the slope is in a stable state, the system will prompt that the slope is in a stable state, otherwise it will prompt that the slope is in a unstable state.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520176872.3U CN204514375U (en) | 2015-03-26 | 2015-03-26 | A kind of anchored slope distortion intelligent monitor system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520176872.3U CN204514375U (en) | 2015-03-26 | 2015-03-26 | A kind of anchored slope distortion intelligent monitor system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204514375U true CN204514375U (en) | 2015-07-29 |
Family
ID=53712342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520176872.3U Expired - Fee Related CN204514375U (en) | 2015-03-26 | 2015-03-26 | A kind of anchored slope distortion intelligent monitor system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204514375U (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105737938A (en) * | 2016-02-24 | 2016-07-06 | 石家庄铁道大学 | Underground water level and deep-seated displacement same-hole monitoring device |
CN105806418A (en) * | 2016-05-19 | 2016-07-27 | 中国电建集团华东勘测设计研究院有限公司 | Reservoir landslide multi-field information field monitoring system and construction method thereof |
CN105806311A (en) * | 2015-09-30 | 2016-07-27 | 李儒峰 | Optical fiber slope dam displacement settlement monitoring system |
CN106245651A (en) * | 2016-07-26 | 2016-12-21 | 中铁建大桥工程局集团第五工程有限公司 | Mountain area national highway vertical high slope explosion butt construction |
CN106643634A (en) * | 2016-12-28 | 2017-05-10 | 湖南科技大学 | Device for measuring water area-crossing bridge deflection and measurement method thereof |
CN107218976A (en) * | 2017-07-19 | 2017-09-29 | 中国铁路设计集团有限公司 | Automatic Synthesis railway slope monitoring system |
CN107607030A (en) * | 2017-09-22 | 2018-01-19 | 山东大学 | The monitoring of structures and its construction method of a kind of existing roadbed, slope stability |
CN108560525A (en) * | 2018-04-28 | 2018-09-21 | 四川理工学院 | A reference detection structure of a slope protection monitoring device |
CN109029278A (en) * | 2018-06-29 | 2018-12-18 | 广西大学 | Grid protects the monitoring device and monitoring method of side slope surface stress strain |
CN109537650A (en) * | 2018-12-29 | 2019-03-29 | 中国矿业大学 | Side slope wide-range finder and side slope deformation real-time monitoring method |
CN110849306A (en) * | 2019-12-12 | 2020-02-28 | 深圳市地质环境研究院有限公司 | A crack dislocation displacement measurement system and measurement method |
CN111044369A (en) * | 2020-01-02 | 2020-04-21 | 大连理工大学 | A temperature-controlled optical fiber-soil pulling test device and using method thereof |
CN111287225A (en) * | 2020-02-20 | 2020-06-16 | 中南大学 | Anchor rod stress monitoring and reconstruction slope stability evaluation method for anchoring type slope |
CN111811422A (en) * | 2020-07-30 | 2020-10-23 | 中国水利水电科学研究院 | An online monitoring and acquisition device for rock slope deformation based on anchor cable stabilization |
CN112833851A (en) * | 2021-02-04 | 2021-05-25 | 乔晓冬 | Building slope deformation monitoring devices |
CN115046899A (en) * | 2022-04-13 | 2022-09-13 | 煤炭科学研究总院有限公司 | Slope seepage-proofing detection equipment |
CN115112485A (en) * | 2022-06-22 | 2022-09-27 | 中国水利水电科学研究院 | Soil strength, deformation characteristic and seepage characteristic integrated detection device |
CN115341590A (en) * | 2022-08-10 | 2022-11-15 | 武汉理工大学 | Side slope monitoring system based on distributed optical fiber sensing technology |
CN115539038A (en) * | 2022-09-19 | 2022-12-30 | 云南端田矿业科技开发有限公司 | Strip mine side coal-pressing recovery method capable of monitoring stress displacement |
CN115655366A (en) * | 2022-10-25 | 2023-01-31 | 广东御鑫建筑工程有限公司 | Slope geotechnical engineering monitoring system |
CN116086544A (en) * | 2023-02-23 | 2023-05-09 | 中国水利水电科学研究院 | A multi-physical quantity integrated monitoring method and device for a dam surface |
CN116556305A (en) * | 2023-05-04 | 2023-08-08 | 中国水利水电第十一工程局有限公司 | A Dynamic Compaction Construction Method Suitable for Roads in Mountainous Areas |
CN118500350A (en) * | 2024-07-18 | 2024-08-16 | 山东省地质科学研究院 | Slope settlement monitoring equipment and monitoring method |
-
2015
- 2015-03-26 CN CN201520176872.3U patent/CN204514375U/en not_active Expired - Fee Related
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105806311A (en) * | 2015-09-30 | 2016-07-27 | 李儒峰 | Optical fiber slope dam displacement settlement monitoring system |
CN105806311B (en) * | 2015-09-30 | 2018-12-07 | 李儒峰 | A kind of optical fiber slope dam is displaced sedimentation monitoring system |
CN105737938A (en) * | 2016-02-24 | 2016-07-06 | 石家庄铁道大学 | Underground water level and deep-seated displacement same-hole monitoring device |
CN105737938B (en) * | 2016-02-24 | 2018-11-02 | 石家庄铁道大学 | A kind of level of ground water is with deep displacement with hole monitoring device |
CN105806418A (en) * | 2016-05-19 | 2016-07-27 | 中国电建集团华东勘测设计研究院有限公司 | Reservoir landslide multi-field information field monitoring system and construction method thereof |
CN106245651A (en) * | 2016-07-26 | 2016-12-21 | 中铁建大桥工程局集团第五工程有限公司 | Mountain area national highway vertical high slope explosion butt construction |
CN106643634A (en) * | 2016-12-28 | 2017-05-10 | 湖南科技大学 | Device for measuring water area-crossing bridge deflection and measurement method thereof |
CN107218976A (en) * | 2017-07-19 | 2017-09-29 | 中国铁路设计集团有限公司 | Automatic Synthesis railway slope monitoring system |
CN107607030A (en) * | 2017-09-22 | 2018-01-19 | 山东大学 | The monitoring of structures and its construction method of a kind of existing roadbed, slope stability |
CN107607030B (en) * | 2017-09-22 | 2024-01-23 | 山东大学 | Existing roadbed and slope stability monitoring structure and construction method thereof |
CN108560525B (en) * | 2018-04-28 | 2020-09-01 | 四川理工学院 | Side slope protection monitoring devices's benchmark detects structure |
CN108560525A (en) * | 2018-04-28 | 2018-09-21 | 四川理工学院 | A reference detection structure of a slope protection monitoring device |
CN109029278B (en) * | 2018-06-29 | 2023-06-27 | 广西大学 | Device and method for monitoring surface stress strain of grille protection side slope |
CN109029278A (en) * | 2018-06-29 | 2018-12-18 | 广西大学 | Grid protects the monitoring device and monitoring method of side slope surface stress strain |
CN109537650A (en) * | 2018-12-29 | 2019-03-29 | 中国矿业大学 | Side slope wide-range finder and side slope deformation real-time monitoring method |
CN109537650B (en) * | 2018-12-29 | 2023-10-10 | 中国矿业大学 | A large-range distance meter for slopes and a real-time monitoring method for slope deformation |
CN110849306A (en) * | 2019-12-12 | 2020-02-28 | 深圳市地质环境研究院有限公司 | A crack dislocation displacement measurement system and measurement method |
CN111044369A (en) * | 2020-01-02 | 2020-04-21 | 大连理工大学 | A temperature-controlled optical fiber-soil pulling test device and using method thereof |
CN111044369B (en) * | 2020-01-02 | 2024-05-03 | 大连理工大学 | Temperature control optical fiber-soil body drawing test device and application method thereof |
CN111287225A (en) * | 2020-02-20 | 2020-06-16 | 中南大学 | Anchor rod stress monitoring and reconstruction slope stability evaluation method for anchoring type slope |
CN111287225B (en) * | 2020-02-20 | 2021-05-07 | 中南大学 | Anchor stress monitoring of anchored slopes and evaluation method for the stability of reconstructed slopes |
CN111811422A (en) * | 2020-07-30 | 2020-10-23 | 中国水利水电科学研究院 | An online monitoring and acquisition device for rock slope deformation based on anchor cable stabilization |
CN112833851A (en) * | 2021-02-04 | 2021-05-25 | 乔晓冬 | Building slope deformation monitoring devices |
CN112833851B (en) * | 2021-02-04 | 2024-02-02 | 乔晓冬 | Building side slope deformation monitoring device |
CN115046899A (en) * | 2022-04-13 | 2022-09-13 | 煤炭科学研究总院有限公司 | Slope seepage-proofing detection equipment |
CN115112485A (en) * | 2022-06-22 | 2022-09-27 | 中国水利水电科学研究院 | Soil strength, deformation characteristic and seepage characteristic integrated detection device |
CN115112485B (en) * | 2022-06-22 | 2023-03-31 | 中国水利水电科学研究院 | Soil strength, deformation characteristic and seepage characteristic integrated detection device |
CN115341590A (en) * | 2022-08-10 | 2022-11-15 | 武汉理工大学 | Side slope monitoring system based on distributed optical fiber sensing technology |
CN115539038A (en) * | 2022-09-19 | 2022-12-30 | 云南端田矿业科技开发有限公司 | Strip mine side coal-pressing recovery method capable of monitoring stress displacement |
CN115655366B (en) * | 2022-10-25 | 2024-02-02 | 广东御鑫建筑工程有限公司 | Side slope geotechnical engineering monitoring system |
CN115655366A (en) * | 2022-10-25 | 2023-01-31 | 广东御鑫建筑工程有限公司 | Slope geotechnical engineering monitoring system |
CN116086544B (en) * | 2023-02-23 | 2023-10-13 | 中国水利水电科学研究院 | Dam face multiple physical quantity integrated monitoring method and device |
CN116086544A (en) * | 2023-02-23 | 2023-05-09 | 中国水利水电科学研究院 | A multi-physical quantity integrated monitoring method and device for a dam surface |
CN116556305A (en) * | 2023-05-04 | 2023-08-08 | 中国水利水电第十一工程局有限公司 | A Dynamic Compaction Construction Method Suitable for Roads in Mountainous Areas |
CN118500350A (en) * | 2024-07-18 | 2024-08-16 | 山东省地质科学研究院 | Slope settlement monitoring equipment and monitoring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204514375U (en) | A kind of anchored slope distortion intelligent monitor system | |
CN111382504B (en) | Method for identifying subsidence state of mining overburden of coal seam | |
CN106767476B (en) | Slope stability monitoring and landslide early warning forecasting method based on all-fiber sensing network | |
CN102829728A (en) | Comprehensive monitoring system for side slope and landslip | |
CN104596405B (en) | Rain dirty pipe deforming contact real-time monitoring device and method on ground | |
CN203551406U (en) | Soil-rock mass in-situ direct shear test device with automatic data acquisition system | |
Adamo et al. | Dam safety: Use of instrumentation in dams | |
CN204730824U (en) | A kind of distributed settlement measuring device | |
CN103645061A (en) | Lattice anchoring technology large-scale physical model test method | |
CN108661091A (en) | A kind of in due course test device of Deep Plate Load Test and test method | |
CN102269578A (en) | Space structure vertical deformation measurement device | |
CN106018755A (en) | Experimental system for large-sized ground fracture physical model | |
CN107643138A (en) | Miniature steel-pipe pile body stress test device | |
CN207215329U (en) | Miniature steel-pipe pile body stress test device | |
CN108663013A (en) | Single-point displacement meter and method for measuring deformation of core soil in advance of tunnel excavation | |
CN104316029B (en) | A kind of geology settlement monitoring device and monitoring method | |
Fearnhead et al. | Deep excavations: monitoring mechanisms of ground displacement | |
CN109682347B (en) | A method for measuring the expansion of expansive soil at different depths when it encounters water | |
CN114689017B (en) | Intelligent monitoring and early warning device for geotechnical engineering side slope | |
CN108168510A (en) | Subgrade settlement DEFORMATION MONITORING SYSTEM and its installation method based on fiber grating | |
CN204154307U (en) | A kind of geology settlement monitoring device | |
CN208563407U (en) | Timely test device for deep load test | |
CN107703055B (en) | Surrounding rock relaxation monitoring device and relaxation depth judging method thereof | |
CN118036371A (en) | Method and system for constructing failure model of high-voltage transmission line iron tower under geological disaster | |
CN201803708U (en) | Vertical deformation measuring device of spatial structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150729 Termination date: 20180326 |
|
CF01 | Termination of patent right due to non-payment of annual fee |