CN204497240U - A kind of passivated reflection reducing of crystalline silicon high-efficiency black appliances pond penetrates multilayer film - Google Patents
A kind of passivated reflection reducing of crystalline silicon high-efficiency black appliances pond penetrates multilayer film Download PDFInfo
- Publication number
- CN204497240U CN204497240U CN201420869295.1U CN201420869295U CN204497240U CN 204497240 U CN204497240 U CN 204497240U CN 201420869295 U CN201420869295 U CN 201420869295U CN 204497240 U CN204497240 U CN 204497240U
- Authority
- CN
- China
- Prior art keywords
- layer
- refractive index
- sinx
- reflection
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910021419 crystalline silicon Inorganic materials 0.000 title claims abstract description 10
- 239000010410 layer Substances 0.000 claims abstract description 121
- 238000002161 passivation Methods 0.000 claims abstract description 28
- 229910004205 SiNX Inorganic materials 0.000 claims abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 21
- 229910020286 SiOxNy Inorganic materials 0.000 claims abstract description 18
- 239000002356 single layer Substances 0.000 claims abstract description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 230000000694 effects Effects 0.000 abstract description 10
- 238000002310 reflectometry Methods 0.000 abstract description 8
- 238000003475 lamination Methods 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 15
- 238000000576 coating method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本实用新型涉及一种晶硅高效黑电池的钝化减反射多层膜,所述钝化减反射多层膜底层为SiOx层,SiOx层折射率为1.48-1.8,厚度为2-20nm;多层钝化减反射膜中间层为SiNx层,SiNx层可以是单层SiN,也可以是不同折射率的多层SiN,折射率范围是1.9-2.20,厚度为30-70nm;钝化减反射多层膜顶层为SiOxNy层,SiOxNy层折射率为1.6-1.95,厚度为20-60nm;钝化减反射多层膜的总膜厚为80-140um,折射率1.9-2.1。该高效黑太阳电池的多层钝化减反射膜既可以降低电池片表面界面态,提高钝化效果,又可以降低电池片表面反射率,提高短路电流,同时还具有较好的抗PID衰减特性,且制备的黑电池层压后颜色较暗、均匀、无色差。
The utility model relates to a passivation anti-reflection multilayer film for a crystalline silicon high-efficiency black battery. The bottom layer of the passivation anti-reflection multilayer film is a SiOx layer, the SiOx layer has a refractive index of 1.48-1.8 and a thickness of 2-20nm; The middle layer of the passivation anti-reflection film is a SiNx layer. The SiNx layer can be a single-layer SiN or a multi-layer SiN with different refractive indices. The range of the refractive index is 1.9-2.20 and the thickness is 30-70nm; The top layer of the layer film is a SiOxNy layer, the refractive index of the SiOxNy layer is 1.6-1.95, and the thickness is 20-60nm; the total film thickness of the passivation anti-reflection multilayer film is 80-140um, and the refractive index is 1.9-2.1. The multi-layer passivation anti-reflection film of the high-efficiency black solar cell can not only reduce the surface state of the battery sheet, improve the passivation effect, but also reduce the surface reflectivity of the battery sheet, increase the short-circuit current, and also have good anti-PID attenuation characteristics , and the color of the prepared black battery after lamination is darker, uniform and without color difference.
Description
技术领域 technical field
本实用新型涉及太阳能电池领域,尤其是一种晶硅高效黑电池的钝化减反射多层膜。 The utility model relates to the field of solar cells, in particular to a passivation anti-reflection multilayer film for crystalline silicon high-efficiency black cells.
背景技术 Background technique
目前,随着环境问题和能源问题得到越来越多人的关注,太阳电池作为一种清洁能源,人们对其研究开发已经进入到了一个新的阶段。 At present, with the environmental problems and energy problems getting more and more people's attention, the research and development of solar cells as a clean energy has entered a new stage.
投射到太阳电池阵列上的太阳光只有部分透射到电池内部被转化成电能,而另一部分则被其表面反射。为此,目前主要由两种方法被用来最大限度的降低反射率,一是将电池表面腐蚀制成绒面,在其表面形成多次反射,增加光与硅片表面的作用次数,从而提高电池对光的吸收;二是在电池表面镀上光学减反射膜,通常其光学厚度为波长的的四分之一或者二分之一。对于单层减反射膜,其仅对单一波长具有较好的减反射效果,而多层减反射膜系统能够在宽光谱范围内对太阳光产生有效的减反射效果。目前,大规模生产中常用的减反射膜多为单层氮化硅减反射膜,具有相对较高的反射率和较差的钝化效果。能够降低反射率并提高钝化效果的减反射膜是太阳电池研究的热点。 Only part of the sunlight projected on the solar cell array is transmitted to the inside of the cell and converted into electrical energy, while the other part is reflected by its surface. For this reason, two methods are currently used to reduce the reflectivity to the greatest extent. One is to corrode the surface of the battery into a suede surface, forming multiple reflections on the surface, increasing the number of interactions between light and the surface of the silicon wafer, thereby improving The absorption of light by the battery; the second is to coat the surface of the battery with an optical anti-reflection film, usually with an optical thickness of 1/4 or 1/2 of the wavelength. For a single-layer anti-reflection coating, it only has a good anti-reflection effect on a single wavelength, while a multi-layer anti-reflection coating system can produce effective anti-reflection effects on sunlight in a wide spectral range. At present, most of the anti-reflection coatings commonly used in mass production are single-layer silicon nitride anti-reflection coatings, which have relatively high reflectivity and poor passivation effect. Anti-reflection coatings that can reduce reflectivity and improve passivation effect are hot spots in solar cell research.
另一方面,传统太阳能单晶硅电池表面的SiNx钝化减反射膜层几乎都因折射率较低使得PID衰减较为严重;或者为了追求PID Free,都是提高SiNx钝化减反射膜层的折射率,使得晶硅电池转换效率较常规工艺降低1-2%。,且目前太阳能电池板制备过程中,市场对层压后电池片色差问题越来越重视,少数企业或科研机构针对色差问题推出其解决问题的产品:黑电池,但这些黑电池要么 制备流程繁琐、复杂,要么降低电池片转换效率,虽然在产线大规模生产,但是降低了经济效益。 On the other hand, the SiNx passivation anti-reflection coating on the surface of traditional solar monocrystalline silicon cells is almost always due to the low refractive index, which makes the PID attenuation more serious; or in order to pursue PID Free, the refraction of the SiNx passivation anti-reflection coating is increased. The conversion efficiency of crystalline silicon cells is reduced by 1-2% compared with conventional processes. , and in the current solar panel preparation process, the market pays more and more attention to the problem of chromatic aberration of laminated cells. A few companies or scientific research institutions have launched products to solve the problem of chromatic aberration: black batteries, but these black batteries are either cumbersome to prepare , complex, or reduce the conversion efficiency of the cell, although it is mass-produced in the production line, it reduces the economic benefits.
实用新型内容 Utility model content
本实用新型要解决的技术问题是:提供一种晶硅高效黑电池的钝化减反射多层膜,这种多层膜能够降低反射率,提高钝化效果,提高太阳电池效率,具有优良的抗PID衰减特性,且电池片层压后颜色较暗、均匀、无色差。 The technical problem to be solved by the utility model is: to provide a passivation anti-reflection multilayer film for crystalline silicon high-efficiency black batteries. This multilayer film can reduce reflectivity, improve passivation effect, and improve solar cell efficiency. Anti-PID attenuation characteristics, and the color of the cells after lamination is darker, uniform, and without color difference.
本实用新型所采用的技术方案为:一种晶硅高效黑电池的钝化减反射多层膜,包括在硅片表面依次沉积的SiOx层、单层SiNx或双层SiNx层和SiOxNy层;所述的SiOx层、单层或双层SiNx层和SiOxNy层的总膜厚为80~140nm,折射率为1.9~2.1; The technical scheme adopted by the utility model is: a passivation anti-reflection multilayer film for a crystalline silicon high-efficiency black battery, including a SiOx layer, a single-layer SiNx or a double-layer SiNx layer and a SiOxNy layer deposited sequentially on the surface of a silicon wafer; The total film thickness of the SiOx layer, single-layer or double-layer SiNx layer and SiOxNy layer is 80-140nm, and the refractive index is 1.9-2.1;
所述的SiOx层、单层或双层SiNx层和SiOxNy层中,SiOx层为底层;所述的底层SiOx层的膜厚为2~20nm,折射率为1.48~1.8; In the SiOx layer, single-layer or double-layer SiNx layer and SiOxNy layer, the SiOx layer is the bottom layer; the thickness of the bottom layer SiOx layer is 2-20nm, and the refractive index is 1.48-1.8;
所述的SiOx层、单层或双层SiNx层和SiOxNy层中,单层或多层SiNx层为中间层;所述的中间层的总膜厚为30~70nm,折射率为1.9~2.2; In the SiOx layer, single-layer or double-layer SiNx layer and SiOxNy layer, the single-layer or multi-layer SiNx layer is an intermediate layer; the total film thickness of the intermediate layer is 30-70 nm, and the refractive index is 1.9-2.2;
所述的SiOx层、单层或双层SiNx层和SiOxNy层中,SiOxNy层为顶层;所述的顶层SiOxNy层的膜厚为20~60nm,折射率为1.6~1.95。 Among the SiOx layer, single or double-layer SiNx layer and SiOxNy layer, the SiOxNy layer is the top layer; the film thickness of the top SiOxNy layer is 20-60 nm, and the refractive index is 1.6-1.95.
所述多层膜将直接沉积在硅衬底上的第一层薄膜定义为最底层,远离衬底的则为相对的上层。高效黑电池的钝化减反射多层膜底层为SiOx层,多层膜中间层为单层或多层SiNx层;多层膜顶层为SiOxNy层。 In the multi-layer film, the first thin film deposited directly on the silicon substrate is defined as the bottom layer, and the one away from the substrate is the opposite upper layer. The bottom layer of the passivation anti-reflection multilayer film of the high-efficiency black battery is an SiO x layer, the middle layer of the multilayer film is a single or multilayer SiN x layer; the top layer of the multilayer film is a SiO x N y layer.
目前大规模生产的减反射膜多为单层或双层氮化硅减反射膜,其减反射效果和钝化效果都相对较差。发明人在经过研究后发现,在底层引入SiOx层,由于SiOx层较SiNx层有优良的导电性,可以将富集的一部分电荷导走从而防止因 电荷堆积而导致钝化减反射膜钝化效果减弱,有效降低电池片的表面复合速率,提高膜层钝化效果,同时,SiOx层还可以提高电池的开路电压,降低钝化减反射层的整体折射率。中间SiNx层可以进一步的降低PID衰减,而SiNx层和Si OxNy层叠层可以大幅降低电池片迎光面的反射率,Si OxNy层能够有效降低中短波波段的反射率,提高电池片的短路电流,且电池片层压后颜色较暗,整体均匀无色差。 At present, most of the anti-reflection coatings produced on a large scale are single-layer or double-layer silicon nitride anti-reflection coatings, and their anti-reflection effects and passivation effects are relatively poor. The inventor found after research that introducing the SiOx layer into the bottom layer, because the SiOx layer has excellent conductivity compared with the SiNx layer, can lead away a part of the enriched charge to prevent the passivation of the anti-reflection film due to charge accumulation. The SiO x layer can also increase the open circuit voltage of the battery and reduce the overall refractive index of the passivation anti-reflection layer. The middle SiNx layer can further reduce PID attenuation, and the SiNx layer and Si O x N y layer stack can greatly reduce the reflectivity of the light-facing surface of the cell, and the Si O x N y layer can effectively reduce the reflectivity of the medium and short wavelength bands and improve The short-circuit current of the battery sheet, and the color of the battery sheet after lamination is darker, and the overall uniformity has no color difference.
本实用新型的有益效果是:本实用新型高效晶硅黑电池的钝化减反射多层膜由于底层引入SiOx层能够有效降低硅片表面界面态,提高表面钝化效果,同时降低减反射膜的整体折射率,增加抗PID衰减特性;中间层采用单层或双层SiNx可以有效降低PID衰减;顶层采用Si OxNy层,与中间层形成叠层,与传统减反射膜对比,可以降低中短波波段反射率,提高电池片的短路电流,并且使电池片层压后整体膜色为黑色,整体膜厚范围在80nm-140nm内无色差,均为黑色。本实用新型高效晶硅黑电池的钝化减反射多层膜基于传统单晶硅电池工艺,只改变钝化减反射膜的膜质结构,可与传统晶硅电池工艺兼容,对普通PECVD设备无特殊要求,易于实现,适用于规模化生产,也可运用于一些先进电池工艺,如:背钝化电池、N型双面电池、MWT电池等。 The beneficial effects of the utility model are: the passivation anti-reflection multilayer film of the high-efficiency crystalline silicon black battery of the utility model can effectively reduce the surface interface state of the silicon chip due to the introduction of the SiO x layer at the bottom layer, improve the surface passivation effect, and reduce the anti-reflection film simultaneously. The overall refractive index increases the anti-PID attenuation characteristics; the middle layer adopts single-layer or double-layer SiNx to effectively reduce PID attenuation; the top layer adopts Si O x N y layer, which forms a stack with the middle layer. Compared with the traditional anti-reflection film, it can Reduce the reflectivity of the medium and short wave bands, increase the short-circuit current of the battery sheet, and make the overall film color of the battery sheet black after lamination, and the overall film thickness ranges from 80nm to 140nm without color difference, all black. The passivation anti-reflection multilayer film of the high-efficiency crystalline silicon black battery of the utility model is based on the traditional monocrystalline silicon battery technology, only changes the film quality structure of the passivation anti-reflection film, is compatible with the traditional crystalline silicon battery technology, and has no effect on ordinary PECVD equipment Special requirements, easy to implement, suitable for large-scale production, and can also be used in some advanced battery technology, such as: back passivation battery, N-type double-sided battery, MWT battery, etc.
附图说明 Description of drawings
下面结合附图和实施例对本实用新型进一步说明。 Below in conjunction with accompanying drawing and embodiment the utility model is further described.
图1是本实用新型的优选实施例的结构示意图; Fig. 1 is the structural representation of the preferred embodiment of the present utility model;
图中:1.SiOx层,2.单层或双层SiNx层,3.SiOxNy层。 In the figure: 1. SiOx layer, 2. Single or double-layer SiNx layer, 3. SiOxNy layer.
具体实施方式 Detailed ways
现在结合附图和优选实施例对本实用新型作进一步详细的说明。这些附图 均为简化的示意图,仅以示意方式说明本实用新型的基本结构,因此其仅显示与本实用新型有关的构成。 Now in conjunction with accompanying drawing and preferred embodiment the utility model is described in further detail. These accompanying drawings all are simplified schematic diagrams, only illustrate the basic structure of the utility model in a schematic way, so it only shows the formation relevant to the utility model.
实施例1 Example 1
本实施例提供的一种高效太阳能钝化减反射多层膜黑电池制备方法,含以下步骤: A method for preparing a high-efficiency solar passivation anti-reflection multilayer film black battery provided in this embodiment includes the following steps:
1).将原始硅片预处理,该预处理包括电池工艺中的制绒、扩散和刻蚀等工艺; 1). Pretreatment of the original silicon wafer, the pretreatment includes the processes of texturing, diffusion and etching in the battery process;
2).使用PECVD设备在扩散面镀该钝化减反射多层膜膜,底层为SiOx层1,折射率为1.50,膜层厚度为2nm;中间层为单层SiNx层,折射率为2.05,膜层厚度为60nm;顶层为Si OxNy层3,折射率为1.75,膜层厚度为25nm; 2). Use PECVD equipment to coat the passivation anti-reflection multilayer film on the diffusion surface. The bottom layer is SiOx layer 1 with a refractive index of 1.50 and a film thickness of 2nm; the middle layer is a single layer of SiNx layer with a refractive index of 2.05 , the film thickness is 60nm; the top layer is Si O x N y layer 3, the refractive index is 1.75, and the film thickness is 25nm;
3).使用传统电池印刷工艺印刷背电极、铝背场、正栅线和正电极,并烧结; 3).Use the traditional battery printing process to print the back electrode, aluminum back field, positive grid line and positive electrode, and sinter them;
经过检测发现,本实施例获得的太阳能电池片的光电转换效率以及抗电位诱发衰减PID特性有所提高,且采用黑背板制备成组件后整体颜色较暗、均匀、无色差。具体数据见下表1: After testing, it is found that the photoelectric conversion efficiency and PID resistance of the solar cells obtained in this embodiment are improved, and the overall color of the solar cell is darker, uniform and free of color difference after being prepared with a black backplane. The specific data are shown in Table 1 below:
表1本实施例获得的太阳能电池的光电转换效率及PID The photoelectric conversion efficiency and PID of the solar cell that the present embodiment of table 1 obtains
从表1可以看出:该方法制备的叠层减反射膜工艺效率增益0.2%,主要由于短路电流增益70毫安;同时PID(电势诱导衰减)功率衰减只有3.5%,且制备的黑电池颜色均匀无色差。 As can be seen from Table 1: the process efficiency gain of the laminated anti-reflection film prepared by this method is 0.2%, mainly due to the short-circuit current gain of 70 milliamps; while the PID (potential-induced decay) power attenuation is only 3.5%, and the color of the black battery prepared is Uniform and no color difference.
实施例2 Example 2
本实施例提供的一种高效太阳能钝化减反射多层膜黑电池制备方法,含以下步骤: A method for preparing a high-efficiency solar passivation anti-reflection multilayer film black battery provided in this embodiment includes the following steps:
1).将原始硅片预处理,该预处理包括电池工艺中的制绒、扩散和刻蚀等工艺; 1). Pretreatment of the original silicon wafer, the pretreatment includes the processes of texturing, diffusion and etching in the battery process;
2).使用PECVD设备在扩散面镀该钝化减反射多层膜膜,底层为SiOx层1,折射率为1.65,膜层厚度为20nm;中间层为双层SiNx层,底层SiN折射率为2.15,膜层厚度为10nm,上层SiN折射率为2.0,膜层厚度为50nm,;顶层为SiOxNy层3,折射率为1.8,膜层厚度为50nm; 2). Use PECVD equipment to coat the passivation anti-reflection multilayer film on the diffusion surface. The bottom layer is SiOx layer 1, the refractive index is 1.65, and the thickness of the film layer is 20nm; the middle layer is a double-layer SiNx layer, and the bottom layer SiN has a refractive index. 2.15, the film thickness is 10nm, the upper SiN refractive index is 2.0, and the film thickness is 50nm; the top layer is SiOxNy layer 3, the refractive index is 1.8, and the film thickness is 50nm;
3).使用传统电池印刷工艺印刷背电极、铝背场、正栅线和正电极,并烧结; 3).Use the traditional battery printing process to print the back electrode, aluminum back field, positive grid line and positive electrode, and sinter them;
经过检测发现,本实施例获得的太阳能电池片的光电转换效率以及抗电位诱发衰减PID特性有所提高,且采用黑背板制备成组件后整体颜色较暗、均匀、无色差。具体数据见下表1: After testing, it is found that the photoelectric conversion efficiency and PID resistance of the solar cells obtained in this embodiment are improved, and the overall color of the solar cell is darker, uniform and free of color difference after being prepared with a black backplane. The specific data are shown in Table 1 below:
表1本实施例获得的太阳能电池的光电转换效率及PID The photoelectric conversion efficiency and PID of the solar cell that the present embodiment of table 1 obtains
从表1可以看出:该方法制备的叠层减反射膜工艺效率增益0.3%,主要由于短路电流增益120毫安;同时PID(电势诱导衰减)功率衰减只有3.5%,且制备的黑电池颜色均匀无色差。 As can be seen from Table 1: the process efficiency gain of the laminated anti-reflection film prepared by this method is 0.3%, mainly due to the short-circuit current gain of 120 milliamps; while the PID (potential-induced decay) power attenuation is only 3.5%, and the color of the black battery prepared is Uniform and no color difference.
以上说明书中描述的只是本实用新型的具体实施方式,各种举例说明不对本实用新型的实质内容构成限制,所属技术领域的普通技术人员在阅读了说明 书后可以对以前所述的具体实施方式做修改或变形,而不背离实用新型的实质和范围。 What is described in the above description is only the specific implementation of the present utility model, and various illustrations do not limit the essential content of the present utility model, and those of ordinary skill in the art can make the specific implementation described before after reading the description modification or deformation without departing from the essence and scope of the utility model.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420869295.1U CN204497240U (en) | 2014-12-31 | 2014-12-31 | A kind of passivated reflection reducing of crystalline silicon high-efficiency black appliances pond penetrates multilayer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420869295.1U CN204497240U (en) | 2014-12-31 | 2014-12-31 | A kind of passivated reflection reducing of crystalline silicon high-efficiency black appliances pond penetrates multilayer film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204497240U true CN204497240U (en) | 2015-07-22 |
Family
ID=53576534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420869295.1U Expired - Fee Related CN204497240U (en) | 2014-12-31 | 2014-12-31 | A kind of passivated reflection reducing of crystalline silicon high-efficiency black appliances pond penetrates multilayer film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204497240U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111106186A (en) * | 2019-12-31 | 2020-05-05 | 广东爱旭科技有限公司 | Solar cell for all-black crystalline silicon photovoltaic module and preparation method thereof |
CN112531035A (en) * | 2020-12-03 | 2021-03-19 | 通威太阳能(成都)有限公司 | Solar cell, preparation method thereof and solar cell back surface multilayer composite passivation film |
WO2023226487A1 (en) | 2022-05-23 | 2023-11-30 | 横店集团东磁股份有限公司 | All-black crystalline silicon solar cell and preparation method therefor, and photovoltaic module |
-
2014
- 2014-12-31 CN CN201420869295.1U patent/CN204497240U/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111106186A (en) * | 2019-12-31 | 2020-05-05 | 广东爱旭科技有限公司 | Solar cell for all-black crystalline silicon photovoltaic module and preparation method thereof |
CN112531035A (en) * | 2020-12-03 | 2021-03-19 | 通威太阳能(成都)有限公司 | Solar cell, preparation method thereof and solar cell back surface multilayer composite passivation film |
CN112531035B (en) * | 2020-12-03 | 2022-04-29 | 通威太阳能(成都)有限公司 | Solar cell, preparation method thereof and solar cell back surface multilayer composite passivation film |
WO2023226487A1 (en) | 2022-05-23 | 2023-11-30 | 横店集团东磁股份有限公司 | All-black crystalline silicon solar cell and preparation method therefor, and photovoltaic module |
US12369429B2 (en) | 2022-05-23 | 2025-07-22 | Hengdian Group Dmegc Magnetics Co., Ltd | All-black crystalline silicon solar cell and preparation method therefor, and photovoltaic module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104576770A (en) | Passivation and reflection reduction multi-layer film for high-efficiency black crystal silicon battery | |
CN103943717B (en) | Method for manufacturing solar cell laminated antireflective film through tubular PECVD | |
CN104752526B (en) | Passivating antireflection film of high PID resistance type polycrystalline cell and preparation process thereof | |
CN104916710B (en) | A kind of high-efficiency polycrystalline multilayer passivated reflection reducing of high PID resistances penetrates membrane structure | |
CN105845747A (en) | Solar cell structure | |
CN103700714A (en) | High-efficiency PID (Potential Included Degradation) Free solar single crystal silicon cell passivation antireflection film | |
CN204497240U (en) | A kind of passivated reflection reducing of crystalline silicon high-efficiency black appliances pond penetrates multilayer film | |
CN204332972U (en) | A kind of HIT solar cell | |
CN109244149A (en) | PECVD back film layer structure based on PERC single crystal battery and preparation method | |
CN103633193B (en) | A kind of micro structure for silicon-based thin film solar cell falls into light method | |
CN104576833A (en) | Method adopting PECVD for preparing back passivation film layer of solar back passivation battery | |
CN103000705A (en) | Crystalline silicon solar cell antireflection film | |
CN201655812U (en) | Three-layered antireflective passivation film for surfaces of solar cells | |
CN207542252U (en) | A kind of crystal silicon solar energy battery structure | |
CN205211772U (en) | High resistant photovoltaic module that waits | |
CN205723556U (en) | A kind of N-type IBC solar battery structure | |
CN203157263U (en) | Transparent conductive oxide (TCO) glass | |
CN105702749B (en) | The polycrystalline multilayer passivated reflection reducing of high PID resistances penetrates film and preparation method thereof | |
CN104752527B (en) | Passivation antireflection film of high-PID-resistance single crystal battery and preparation process thereof | |
CN204732419U (en) | A kind of high-efficiency polycrystalline multilayer passivated reflection reducing of high PID resistance penetrates membrane structure | |
CN211208454U (en) | Back membrane structure for improving double-sided rate of P-type double-sided battery | |
CN104993001A (en) | Selective filtering membrane, preparation method and solar cell module | |
CN201222505Y (en) | solar cell structure | |
CN204441294U (en) | A kind of passivated reflection reducing of high PID resistance single crystal battery penetrates film | |
CN204596799U (en) | A kind of passivated reflection reducing of high PID resistance polycrystalline battery penetrates film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP02 | Change in the address of a patent holder |
Address after: 213000 No. 99 Yang Hu Road, Wujin hi tech Industrial Development Zone, Jiangsu, Changzhou Patentee after: JIANGSU SHUNFENG PHOTOVOLTAIC TECHNOLOGY Co.,Ltd. Address before: 213169, Jiangsu province Changzhou city Wujin District snow town industrial concentration area Patentee before: JIANGSU SHUNFENG PHOTOVOLTAIC TECHNOLOGY Co.,Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150722 |