CN204496045U - A kind of array type optical isolator - Google Patents
A kind of array type optical isolator Download PDFInfo
- Publication number
- CN204496045U CN204496045U CN201520142755.5U CN201520142755U CN204496045U CN 204496045 U CN204496045 U CN 204496045U CN 201520142755 U CN201520142755 U CN 201520142755U CN 204496045 U CN204496045 U CN 204496045U
- Authority
- CN
- China
- Prior art keywords
- array
- high density
- density arrays
- collimating apparatus
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Abstract
Description
技术领域 technical field
本实用新型涉及光纤通讯、激光领域,尤其是指一种阵列型光隔离器。 The utility model relates to the field of optical fiber communication and laser, in particular to an array type optical isolator.
背景技术 Background technique
光隔离器是应用广泛的一种光无源器件,信号光从光源到接收系统的传输过程中,经过许多界面反射,反射光最终回到输入端,增加了系统的损伤危险性,因此需要加入光隔离器以减少回返光对系统的影响。 The optical isolator is a widely used optical passive device. During the transmission process of the signal light from the light source to the receiving system, it is reflected by many interfaces, and the reflected light finally returns to the input end, which increases the risk of damage to the system. Therefore, it is necessary to add Optical isolators to reduce the impact of returning light on the system.
随着WDM光网络技术的飞速发展,需要在光域上进行复用与交叉链接。在N×M的光纤阵列中,如果用传统的光隔离器,就需要N×M个单通道的器件,并且要求每个准直器和聚焦透镜都对准自己的光纤,且聚焦透镜要准确对准准直透镜光束。即使不考虑光纤数码,每对准直器在安装或调试上的对准难度很高,对准过程将变得更加繁琐和耗时。 With the rapid development of WDM optical network technology, it is necessary to perform multiplexing and cross-linking in the optical domain. In an N×M fiber array, if a traditional optical isolator is used, N×M single-channel devices are required, and each collimator and focusing lens are required to align with its own fiber, and the focusing lens must be accurate Align the collimating lens beam. Even if fiber optic digital is not considered, the alignment of each pair of collimators is very difficult to install or debug, and the alignment process will become more cumbersome and time-consuming.
此外,每个准直器透镜、聚焦透镜和光纤都需要横向支撑,这将导致系统体积大,且很难组合成一个完整的个体。因此,需要引入阵列型高密度准直器,使其体积小、结构紧凑、成本更低,也易于调试,能够处理多个紧凑的光隔离器。 In addition, each collimator lens, focusing lens, and optical fiber needs lateral support, which will make the system bulky and difficult to combine into a complete unit. Therefore, it is necessary to introduce an array-type high-density collimator to make it small in size, compact in structure, lower in cost, easy to debug, and capable of handling multiple compact optical isolators.
实用新型内容 Utility model content
本实用新型解决了上述技术问题,提供一种阵列型光隔离器。 The utility model solves the above technical problems and provides an array type optical isolator.
为了解决上述技术问题,本实用新型的技术方案为:一种阵列型光隔离器,沿正向光路依次包括第一高密度阵列准直器、walk-off型隔离器组件和第二高密度阵列准直器,所述的walk-off型隔离器组件沿正向光路依次包括第一双折射晶体、Garnet旋光晶体、1/2波片和第二双折射晶体,入射光通过第一高密度阵列准直器准直为平行入射光进入walk-off型隔离器组件,平行入射光进入第一双折射晶体后分解为两个偏振态互相垂直的偏振光,两个偏振光依次传输进入Garnet旋光晶体和1/2波片后两个偏振光的偏振态转换,再通过第二双折射晶体耦合在一起传输到第二高密度阵列准直器,入射光通过第二高密度阵列准直器准直为平行入射光进入walk-off型隔离器组件,平行入射光进入第二双折射晶体后分解为两个偏振态互相垂直的偏振光,两个偏振光依次传输进入1/2波片和Garnet旋光晶体后两个偏振光的偏振态没有转换,两个偏振光分别从不同位置经过第一双折射晶体,无法耦合成为一束光。 In order to solve the above technical problems, the technical solution of the utility model is: an array type optical isolator, which sequentially includes a first high-density array collimator, a walk-off type isolator assembly and a second high-density array along the forward optical path Collimator, the walk-off type isolator assembly sequentially includes a first birefringent crystal, a Garnet optical active crystal, a 1/2 wave plate and a second birefringent crystal along the forward optical path, and the incident light passes through the first high-density array The collimator is collimated so that the parallel incident light enters the walk-off type isolator assembly, and the parallel incident light enters the first birefringent crystal and decomposes into two polarized lights whose polarization states are perpendicular to each other, and the two polarized lights are sequentially transmitted into the Garnet optical rotation crystal The polarization state conversion of the two polarized lights after the 1/2 wave plate is coupled together through the second birefringent crystal and transmitted to the second high-density array collimator, and the incident light is collimated by the second high-density array collimator The parallel incident light enters the walk-off type isolator component, and the parallel incident light enters the second birefringent crystal and decomposes into two polarized lights with polarization states perpendicular to each other. The polarization states of the two polarized lights behind the crystal are not converted, and the two polarized lights pass through the first birefringent crystal from different positions respectively, and cannot be coupled into a beam of light.
进一步的,第一高密度阵列准直器和第二高密度阵列准直器均为光束相互平行的阵列准直器,第一高密度阵列准直器的入射端口与第二高密度阵列准直器的出射端口错开一个端口的位置。 Further, both the first high-density array collimator and the second high-density array collimator are array collimators whose beams are parallel to each other, and the incident port of the first high-density array collimator is collimated with the second high-density array collimator The output port of the device is staggered by one port position.
进一步的,第一高密度阵列准直器和第二高密度阵列准直器均包括高密度光纤头阵列、透镜和由玻璃或者金属制成的管。 Further, both the first high-density array collimator and the second high-density array collimator include a high-density optical fiber head array, a lens, and a tube made of glass or metal.
进一步的,所述的高密度光纤头阵列采用由普通单模光纤一端熔接更小外径的单模光纤组成的阵列、由V-groove耦合普通单模光纤阵列或者小外径光纤阵列。 Further, the high-density optical fiber head array adopts an array composed of a single-mode optical fiber with a smaller outer diameter fused to one end of an ordinary single-mode optical fiber, an array of ordinary single-mode optical fibers or an array of optical fibers with a small outer diameter coupled by V-groove.
进一步的,所述的第一双折射晶体和第二双折射晶体采用钒酸钇或者铌酸锂。 Further, the first birefringent crystal and the second birefringent crystal use yttrium vanadate or lithium niobate.
进一步的,所述的第一高密度阵列准直器和第二高密度阵列准直器之间采用两个walk-off型隔离器组件串联。 Further, two walk-off type isolator assemblies are connected in series between the first high-density array collimator and the second high-density array collimator.
本实用新型的阵列型光隔离器具有良好的温度稳定性、阵列数量大、体积尺寸小、易于实现模块化。 The array type optical isolator of the utility model has good temperature stability, large number of arrays, small size and easy realization of modularization.
附图说明 Description of drawings
下面结合附图对本实用新型的具体实施方式作进一步详细的说明。 Below in conjunction with accompanying drawing, the specific embodiment of the present utility model is described in further detail.
图1是本实用新型结构示意图; Fig. 1 is a structural representation of the utility model;
图2是本实用新型walk-off型隔离器组件的反向光路; Fig. 2 is the reverse optical path of the walk-off type isolator assembly of the utility model;
图3是本实用新型高密度阵列光纤头端面示意图。 Fig. 3 is a schematic diagram of the end face of the high-density array optical fiber head of the present invention.
具体实施方式 Detailed ways
下面结合附图和具体实施方式,对本实用新型做进一步说明。 Below in conjunction with accompanying drawing and specific embodiment, the utility model is described further.
图1所示一种阵列型光隔离器,沿正向光路依次包括第一高密度阵列准直器11、walk-off型隔离器组件12和第二高密度阵列准直器13,所述的walk-off型隔离器组件13沿正向光路依次包括第一双折射晶体104、Garnet旋光晶体105、1/2波片106和第二双折射晶体107,入射光通过第一高密度阵列准直器11准直为平行入射光进入walk-off型隔离器组件12,平行入射光进入第一双折射晶体104后分解为两个偏振态互相垂直的偏振光,垂直偏振光直接通过第一双折射晶体104,水平偏振光偏振通过,两个偏振光之间产生一定的位置,两个偏振光进入Garnet旋光晶体105后,偏振态都顺时针旋转了45°,再经1/2波片106后,偏振态又被顺时针旋转45°,两次旋转后两个偏振光的偏振态转换,即原来的垂直偏振光变为水平偏振光,原来的水平偏振光变为垂直偏振光,转换后的偏振光再通过第二双折射晶体107耦合在一起传输到第二高密度阵列准直器13。 An array type optical isolator shown in Fig. 1 includes a first high-density array collimator 11, a walk-off type isolator assembly 12 and a second high-density array collimator 13 in sequence along the forward optical path. The walk-off type isolator assembly 13 sequentially includes a first birefringent crystal 104, a Garnet optically active crystal 105, a 1/2 wave plate 106 and a second birefringent crystal 107 along the forward optical path, and the incident light is collimated through the first high-density array The collimator 11 is collimated so that the parallel incident light enters the walk-off type isolator assembly 12, and the parallel incident light enters the first birefringent crystal 104 and is decomposed into two polarized lights whose polarization states are perpendicular to each other, and the vertically polarized light directly passes through the first birefringent crystal 104 Crystal 104, the polarization of horizontally polarized light passes through, and a certain position is generated between the two polarized lights. After the two polarized lights enter the Garnet optical rotation crystal 105, the polarization states are both rotated clockwise by 45°, and then pass through the 1/2 wave plate 106 , the polarization state is rotated clockwise by 45°, the polarization state of the two polarized lights is converted after two rotations, that is, the original vertically polarized light becomes horizontally polarized light, the original horizontally polarized light becomes vertically polarized light, and the transformed The polarized light is then coupled together through the second birefringent crystal 107 and transmitted to the second high-density array collimator 13 .
图2所示入射光通过第二高密度阵列准直器13准直为平行入射光进入walk-off型隔离器组件12,平行入射光进入第二双折射晶体107后分解为两个偏振态互相垂直的偏振光,两个偏振光通过1/2波片106逆时针旋转45°,再通过Garnet旋光晶体105,光束被顺时针旋转45°,两次旋转后偏振态未发生改变,经过第一双折射晶体104两束偏振光通过不同位置输出,无法耦合,故无法继续传输,达到反向隔离的效果。 The incident light shown in Figure 2 is collimated by the second high-density array collimator 13 into parallel incident light entering the walk-off type isolator assembly 12, and the parallel incident light enters the second birefringent crystal 107 and decomposes into two polarization states mutually For vertically polarized light, the two polarized lights are rotated counterclockwise by 1/2 wave plate 106 for 45°, and then passed through the Garnet optical rotation crystal 105, the light beam is rotated by 45° clockwise, the polarization state does not change after the two rotations, and after the first The two beams of polarized light of the birefringent crystal 104 are output through different positions and cannot be coupled, so they cannot continue to transmit, achieving the effect of reverse isolation.
上述实施例中,第一双折射晶体104和第二双折射晶体107采用钒酸钇或者铌酸锂,第一高密度阵列准直器11和第二高密度阵列准直器13之间采用两个walk-off型隔离器组件12串联,可以达到更好地隔离效果。 In the above embodiment, the first birefringent crystal 104 and the second birefringent crystal 107 use yttrium vanadate or lithium niobate, and two high-density array collimators 11 and the second high-density array collimator 13 are used Several walk-off type isolator assemblies 12 are connected in series to achieve better isolation effect.
上述实施例中,第一高密度阵列准直器11和第二高密度阵列准直器12为光束相互平行的阵列准直器,第一高密度阵列准直器11的入射端口与第二高密度阵列准直器12的出射端口上下或者左右错开一个端口的位置,第一高密度阵列准直器11和第二高密度阵列准直器12均包括高密度光纤头阵列101、透镜102、玻璃或者金属制成的管103组成,所述的高密度光纤头101阵列采用由普通单模光纤一端熔接更小外径的单模光纤组成的阵列、由V-groove耦合普通单模光纤阵列或者小外径光纤阵列,高密度光纤头101的端面如图3所示,以φ36μm光纤来制作准直器阵列,最大间隔144μm-36μm=108μm,夹角约3.8??,对相关光学参数影响不大。 In the above embodiment, the first high-density array collimator 11 and the second high-density array collimator 12 are array collimators whose beams are parallel to each other, and the incident port of the first high-density array collimator 11 is connected to the second high-density array collimator. The output port of the density array collimator 12 is staggered up and down or left and right by a port position, and the first high density array collimator 11 and the second high density array collimator 12 both include a high density fiber optic head array 101, a lens 102, a glass Or tube 103 made of metal, the high-density optical fiber head 101 array adopts an array composed of a single-mode optical fiber with a smaller outer diameter welded at one end of an ordinary single-mode optical fiber, an array of ordinary single-mode optical fibers coupled by a V-groove or a small Outer diameter optical fiber array, the end face of the high-density optical fiber head 101 is shown in Figure 3. The collimator array is made of φ36μm optical fiber, the maximum interval is 144μm-36μm=108μm, and the included angle is about 3.8??, which has little influence on the relevant optical parameters. .
尽管结合优选实施方案具体展示和介绍了本实用新型,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本实用新型的精神和范围内,在形式上和细节上对本实用新型做出各种变化,均为本实用新型的保护范围。 Although the present utility model has been specifically shown and described in conjunction with preferred embodiments, those skilled in the art should understand that, without departing from the spirit and scope of the present utility model defined by the appended claims, changes in form and details have been made to the present utility model. Various changes are made in the utility model, all of which are within the protection scope of the utility model.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520142755.5U CN204496045U (en) | 2015-03-13 | 2015-03-13 | A kind of array type optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520142755.5U CN204496045U (en) | 2015-03-13 | 2015-03-13 | A kind of array type optical isolator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204496045U true CN204496045U (en) | 2015-07-22 |
Family
ID=53575348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520142755.5U Expired - Lifetime CN204496045U (en) | 2015-03-13 | 2015-03-13 | A kind of array type optical isolator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204496045U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018177119A1 (en) * | 2017-03-31 | 2018-10-04 | 珠海光库科技股份有限公司 | Optical isolator and control method thereof |
JP2019113707A (en) * | 2017-12-25 | 2019-07-11 | アダマンド並木精密宝石株式会社 | Optical isolator module |
-
2015
- 2015-03-13 CN CN201520142755.5U patent/CN204496045U/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018177119A1 (en) * | 2017-03-31 | 2018-10-04 | 珠海光库科技股份有限公司 | Optical isolator and control method thereof |
JP2019113707A (en) * | 2017-12-25 | 2019-07-11 | アダマンド並木精密宝石株式会社 | Optical isolator module |
JP7037171B2 (en) | 2017-12-25 | 2022-03-16 | アダマンド並木精密宝石株式会社 | Optical isolator module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103913857B (en) | Optical isolation method and optical isolation device | |
CN202794598U (en) | Optical isolator and optical circulator | |
CN103424896B (en) | Optical path control device | |
CN204557003U (en) | The online optical-fiber laser isolator of a kind of compact reflection-type | |
CN104838299B (en) | Grating coupling process, the apparatus and system of grating coupler | |
CN101916957A (en) | A 2μm polarization orthogonal laser emission system based on acousto-optic modulation for laser heterodyne interferometer | |
CN104216050A (en) | Polarization beam splitting and combining device | |
CN204496133U (en) | A kind of polarized light beam combining device of reverse isolation | |
CN204496045U (en) | A kind of array type optical isolator | |
CN102360131B (en) | Multifunctional high-power polarization preserving fiber isolator | |
CN202956502U (en) | Optical circulator | |
CN201072456Y (en) | Four-port circulator | |
CN206741026U (en) | A Planar Optical Waveguide Type Polarization Maintaining Fiber Splitter | |
CN203881971U (en) | Solid-state high-speed 1x2 switch | |
CN103576240A (en) | Compact type four-port optical circulator | |
CN214375390U (en) | Silicon optical isolator engine | |
CN112965172B (en) | Silicon Optical Isolator Engine | |
CN201352291Y (en) | Laser attenuator | |
CN202075526U (en) | Optical isolator | |
CN1399151A (en) | Optical circulator | |
CN102902014B (en) | Optical isolator | |
CN103728697A (en) | Three-port optical circulator | |
CN104391358B (en) | A kind of four port polarization-maintaining optical circulators | |
CN203745681U (en) | Multiple-input high-power multi-mode fiber collimator | |
CN110568637B (en) | Optical fiber isolator, laser and industrial equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20150722 |