[go: up one dir, main page]

CN204230626U - Broadband tunable continuous wave 530-780nm optical parametric oscillator - Google Patents

Broadband tunable continuous wave 530-780nm optical parametric oscillator Download PDF

Info

Publication number
CN204230626U
CN204230626U CN201420545864.7U CN201420545864U CN204230626U CN 204230626 U CN204230626 U CN 204230626U CN 201420545864 U CN201420545864 U CN 201420545864U CN 204230626 U CN204230626 U CN 204230626U
Authority
CN
China
Prior art keywords
mirror
laser
optical parametric
parametric oscillator
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420545864.7U
Other languages
Chinese (zh)
Inventor
姚文明
高静
田玉冰
张龙
檀慧明
武晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Biomedical Engineering and Technology of CAS
Original Assignee
Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Biomedical Engineering and Technology of CAS filed Critical Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority to CN201420545864.7U priority Critical patent/CN204230626U/en
Application granted granted Critical
Publication of CN204230626U publication Critical patent/CN204230626U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本实用新型是宽波段可调谐的连续波530-780nm光学参量振荡器,使用半导体激光阵列驱动近红外激光光源并对其进行倍频产生短波长可见光激光,进一步驱动光学参量振荡器-倍频,使得在全固态组件的情况下产生宽调谐范围的可见光激光输出,使得从成本、体积、可靠性、稳定性和耐用性的立场来看所述激光系统对于医学应用和科学研究是可行的。采用本实用新型技术方案,能在降低系统阈值、提高近红外到可见光转换效率、减少成本的情况下获得宽波段可调谐连续波可见光输出,光谱范围覆盖530-780nm。

The utility model is a wide-band tunable continuous wave 530-780nm optical parametric oscillator, which uses a semiconductor laser array to drive a near-infrared laser light source and performs frequency doubling on it to generate a short-wavelength visible light laser, further driving the optical parametric oscillator-frequency doubling, Enabling a wide tuning range of visible laser output with all solid-state components makes the laser system feasible for medical applications and scientific research from a standpoint of cost, volume, reliability, stability and durability. By adopting the technical scheme of the utility model, it is possible to obtain a wide-band tunable continuous wave visible light output with a spectral range covering 530-780nm while reducing the system threshold, improving the conversion efficiency from near-infrared to visible light, and reducing costs.

Description

宽波段可调谐的连续波530-780nm光学参量振荡器Broadband Tunable CW 530-780nm Optical Parametric Oscillator

技术领域 technical field

本实用新型属于光电子与激光技术领域,涉及一种全固态连续波可见光宽波段可调谐光学参量振荡器激光器,它适用于激光医学、医学显微成像、激光光谱学、精密光学测量和科学研究等领域的应用。 The utility model belongs to the field of optoelectronics and laser technology, and relates to an all-solid-state continuous wave visible light wide-band tunable optical parametric oscillator laser, which is suitable for laser medicine, medical microscopic imaging, laser spectroscopy, precision optical measurement and scientific research, etc. field applications.

背景技术 Background technique

可见光波段的激光在光谱分析、量子力学、信息处理、原子物理学、生物医学影像、超高分辨率显微镜和医疗等领域具有重要的应用价值。尤其是由于血液中的脱氧血红蛋白在580nm处达到摩尔消光系数峰值,而氧合血红蛋白在550nm和600nm处达到峰值;皮肤中表皮层内的黑色素对530~780nm波段也有较强的吸收;水对于530~780nm波段几乎透明;618~780nm波段恰好处于生物组织光学窗口(618~1316nm)范围内,因此,对于生物医学成像、激光医疗和光与生物组织的相互作用研究等应用而言,选择位于530~780nm波长范围内合适的连续波激光光源,对于提高成像质量、治疗效率、穿透深度和降低光致组织损伤,有着十分重要的意义。目前,可见光波段的激光主要由半导体激光器、固体激光器、气体激光器、染料激光器和光纤激光器等激光器直接输出,或者是通过倍频、和频和差频等非线性频率变换技术实现输出,但这些激光器和技术手段只能获得某些特定波长激光的输出。其中输出波长可调谐范围较宽的掺钛宝石激光器的输出光谱范围也只能达到660~1180nm,不能覆盖可见光530~660nm波段。利用二阶非线性光学混频实现光学频率变换的光学参量振荡器调谐范围很宽,可从紫外到远红外,弥补了普通激光器及其倍频只能输出某些特定波长激光的缺陷,是获得宽波段可调谐、高相干辐射光源和新波段激光系统的重要途径。光学参量振荡器已在中红外波段得到成功应用,但在可见光波段的公开报道较少,而且大部分集中在脉冲泵浦运转方式。连续波泵浦的光学参量振荡器相对于其他运转方式具有更高的振荡阈值,需要泵浦源能够提供较高的泵浦功率,而且非线性晶体也要具备更大的非线性系数,所以连续波光学参量振荡器比其他运转方式光学参量振荡器的实现都要困难。 Lasers in the visible light band have important application value in the fields of spectral analysis, quantum mechanics, information processing, atomic physics, biomedical imaging, ultra-high resolution microscopy and medical treatment. Especially because the deoxygenated hemoglobin in the blood reaches the peak value of the molar extinction coefficient at 580nm, while the oxygenated hemoglobin reaches the peak value at 550nm and 600nm; The ~780nm band is almost transparent; the 618~780nm band is just in the range of the optical window (618~1316nm) of biological tissue. Therefore, for applications such as biomedical imaging, laser medical treatment, and the study of the interaction between light and biological tissue, the choice is between 530~ A suitable continuous wave laser source in the 780nm wavelength range is of great significance for improving imaging quality, treatment efficiency, penetration depth and reducing photoinduced tissue damage. At present, lasers in the visible light band are mainly output directly by lasers such as semiconductor lasers, solid-state lasers, gas lasers, dye lasers, and fiber lasers, or through nonlinear frequency conversion technologies such as frequency doubling, sum frequency, and difference frequency. However, these lasers And technical means can only obtain the output of certain specific wavelength lasers. Among them, the output spectral range of the titanium-sapphire laser with a wide output wavelength tunable range can only reach 660~1180nm, which cannot cover the 530~660nm band of visible light. The optical parametric oscillator, which uses second-order nonlinear optical mixing to realize optical frequency conversion, has a wide tuning range, from ultraviolet to far infrared, which makes up for the defect that ordinary lasers and their frequency multipliers can only output lasers of certain wavelengths. An important approach to broadband tunable, highly coherent radiation sources and new-band laser systems. Optical parametric oscillators have been successfully applied in the mid-infrared band, but there are few public reports in the visible band, and most of them focus on the pulse pumping operation mode. The continuous wave pumped optical parametric oscillator has a higher oscillation threshold than other modes of operation, requiring the pump source to provide higher pump power, and the nonlinear crystal also has a larger nonlinear coefficient, so the continuous wave Realization of wave-optical parametric oscillators is more difficult than other operating mode optical parametric oscillators.

实用新型内容 Utility model content

为了克服现有可见光波段缺少宽波段可调谐的连续波激光器的不足,本实用新型提供了一种连续波光学参量振荡器系统,该连续波光学参量振荡器系统能在可见光波段范围内输出宽波段可调谐激光。 In order to overcome the lack of a wide-band tunable continuous wave laser in the existing visible light band, the utility model provides a continuous wave optical parametric oscillator system, the continuous wave optical parametric oscillator system can output a wide band within the visible light band Tunable laser.

为实现上述技术目的,达到上述技术效果,本实用新型通过以下技术方案实现: In order to achieve the above-mentioned technical purpose and achieve the above-mentioned technical effect, the utility model is realized through the following technical solutions:

宽波段可调谐的连续波530-780nm光学参量振荡器,包括依次设置在光路上的泵浦激光器、光束耦合系统I、输入镜I、激光晶体、反射镜I、倍频非线性晶体I、输出镜I、反射镜II、光束耦合系统II、输入镜II、光学参量振荡器非线性晶体、反射镜III、反射镜IV、光学参量振荡器-倍频非线性晶体II、输出镜II,所述输入镜I、反射镜I和输出镜I构成短波长激光的谐振腔,光束耦合系统I位于泵浦激光器和输入镜I之间,所述光束耦合系统I的中心轴线与泵浦激光器的出光方向重合,激光晶体位于输入镜I和反射镜I之间,倍频非线性晶体I位于反射镜I和输出镜I之间,所述输入镜II、反射镜III、反射镜IV、输出镜II,构成可见光光学参量振荡器的谐振腔,光束耦合系统II位于反射镜II和输入镜II之间,所述光束耦合系统II的中心轴线与反射镜II反射光方向重合,光学参量振荡器非线性晶体位于输入镜II和反射镜III之间,光学参量振荡器-倍频非线性晶体II位于反射镜IV和输出镜II之间; Broadband tunable continuous wave 530-780nm optical parametric oscillator, including pump laser, beam coupling system I, input mirror I, laser crystal, reflector I, frequency doubling nonlinear crystal I, output mirror I, reflector II, beam coupling system II, input mirror II, optical parametric oscillator nonlinear crystal, reflector III, reflector IV, optical parametric oscillator-frequency doubling nonlinear crystal II, output mirror II, the The input mirror I, the reflection mirror I and the output mirror I form the resonant cavity of the short-wavelength laser, and the beam coupling system I is located between the pump laser and the input mirror I, and the central axis of the beam coupling system I is in the same direction as the pump laser. Coincidentally, the laser crystal is located between the input mirror I and the reflector I, and the frequency doubling nonlinear crystal I is located between the reflector I and the output mirror I, the input mirror II, the reflector III, the reflector IV, and the output mirror II, A resonant cavity constituting a visible light optical parametric oscillator, the beam coupling system II is located between the mirror II and the input mirror II, the central axis of the beam coupling system II coincides with the reflected light direction of the mirror II, and the optical parametric oscillator nonlinear crystal Located between the input mirror II and the mirror III, the optical parametric oscillator-frequency doubling nonlinear crystal II is located between the mirror IV and the output mirror II;

泵浦激光器发射的泵浦激光经过光束耦合系统I后入射至输入镜I,经输入镜I透过的泵浦激光入射至激光晶体,激光晶体将所述泵浦激光转换为近红外激光,从激光晶体出射的近红外激光入射至反射镜I,经反射镜I反射的近红外激光入射至倍频非线性晶体I,倍频非线性晶体I将所述近红外激光转换为短波长可见光激光,从倍频非线性晶体I出射的短波长可见光激光入射至输出镜I,从倍频非线性晶体I透射出的近红外激光经输出镜I反射再次入射至倍频非线性晶体I,经倍频非线性晶体I透射的近红外激光入射至反射镜I,经反射镜I反射的近红外激光入射至输入镜I并在谐振腔内继续振荡,经输出镜I出射的短波长可见光激光入射至反射镜II,经反射镜II反射的短波可见光激光入射至光束耦合系统II,经光束耦合系统II透过的短波可见光激光入射至输入镜II,经输入镜II透射的短波可见光激光入射至光学参量振荡器非线性晶体,光学参量振荡器非线性晶体将短波可见光激光转换为宽波段近红外激光,从光学参量振荡器非线性晶体透射出的短波可见光激光经反射镜III透射到谐振腔外,从光学参量振荡器非线性晶体出射的宽波段近红外激光入射至反射镜III,经反射镜III反射的宽波段近红外激光入射至光学参量振荡器-倍频非线性晶体II,光学参量振荡器-倍频非线性晶体II将宽波段近红外激光转换为宽波段可见光激光,从光学参量振荡器-倍频非线性晶体II出射的宽波段可见光激光入射至输出镜II并经输出镜II透射到光学参量振荡器-倍频谐振腔外,从光学参量振荡器-倍频非线性晶体II透射的宽波段近红外激光入射至输出镜II,经输出镜II反射的宽波段近红外激光入射至输入镜II并在光学参量振荡器-倍频谐振腔内继续振荡。 The pump laser light emitted by the pump laser is incident on the input mirror I after passing through the beam coupling system I, and the pump laser light transmitted through the input mirror I is incident on the laser crystal, and the laser crystal converts the pump laser light into near-infrared laser light, from The near-infrared laser emitted by the laser crystal is incident on the mirror I, and the near-infrared laser reflected by the mirror I is incident on the frequency-doubled nonlinear crystal I, and the frequency-doubled nonlinear crystal I converts the near-infrared laser into a short-wavelength visible laser, The short-wavelength visible laser emitted from the frequency-doubling nonlinear crystal I is incident on the output mirror I, and the near-infrared laser transmitted from the frequency-doubling nonlinear crystal I is reflected by the output mirror I and then incident on the frequency-doubling nonlinear crystal I. The near-infrared laser transmitted by the nonlinear crystal I enters the mirror I, the near-infrared laser reflected by the mirror I enters the input mirror I and continues to oscillate in the resonant cavity, and the short-wavelength visible laser emitted by the output mirror I enters the reflector Mirror II, the short-wave visible laser reflected by the mirror II enters the beam coupling system II, the short-wave visible laser transmitted by the beam coupling system II enters the input mirror II, and the short-wave visible laser transmitted by the input mirror II enters the optical parameter oscillation The nonlinear crystal of the optical parametric oscillator converts the short-wave visible laser into a wide-band near-infrared laser. The broadband near-infrared laser emitted by the nonlinear crystal of the parametric oscillator is incident on the mirror III, and the broadband near-infrared laser reflected by the mirror III is incident on the optical parametric oscillator-frequency doubling nonlinear crystal II, and the optical parametric oscillator-times The frequency nonlinear crystal II converts the broadband near-infrared laser into a broadband visible laser, and the broadband visible laser emitted from the optical parametric oscillator-frequency doubling nonlinear crystal II enters the output mirror II and transmits to the optical parameter through the output mirror II Outside the oscillator-frequency-doubling resonant cavity, the broadband near-infrared laser transmitted from the optical parametric oscillator-frequency-doubling nonlinear crystal II is incident on the output mirror II, and the broadband near-infrared laser reflected by the output mirror II is incident on the input mirror II And continue to oscillate in the optical parametric oscillator-frequency doubling resonant cavity.

进一步的,所述泵浦激光器是半导体激光器,所述激光器的中心波长为800-900nm。 Further, the pump laser is a semiconductor laser, and the center wavelength of the laser is 800-900nm.

进一步的,所述光束耦合系统I为几何耦合系统、光谱耦合系统中的至少一种;所述光束耦合系统I为透镜、空间滤波器、光隔离器、光栅、多模光纤中的至少一种。 Further, the beam coupling system I is at least one of a geometric coupling system and a spectral coupling system; the beam coupling system I is at least one of a lens, a spatial filter, an optical isolator, a grating, and a multimode fiber .

进一步的,所述输入镜I朝向光束耦合系统I的平面镀有800-900nm增透膜,所述输入镜I另一面镀有800-900nm增透膜且400-540nm和1μm高反膜;所述反射镜I朝向短波长可见光激光谐振腔的镜面镀有400-540nm和1μm高反膜;所述输出镜I朝向短波长可见光激光谐振腔的镜面镀有400-540nm增透且1μm高反膜,所述的输出镜I的另一面镀400-540nm增透膜。 Further, the plane of the input mirror 1 facing the beam coupling system 1 is coated with an 800-900nm antireflection coating, and the other side of the input mirror 1 is coated with an 800-900nm antireflection coating and a 400-540nm and 1 μm high reflection coating; The mirror I facing the short-wavelength visible laser resonator is coated with a 400-540nm and 1 μm high-reflection film; the output mirror I is coated with a 400-540nm anti-reflective and 1 μm high-reflection film facing the mirror of the short-wavelength visible laser resonator , the other side of the output mirror I is plated with a 400-540nm anti-reflection coating.

进一步的,所述激光晶体为掺钕离子单晶或者陶瓷,并且激光晶体的形状为圆柱形、板条形、六面体形、波导形、碟片形、光纤形中的任一种;所述激光晶体的两个通光面镀有400-540nm增透,800-900nm增透且1μm增透膜。 Further, the laser crystal is a neodymium-doped ion single crystal or ceramics, and the shape of the laser crystal is any one of cylinder, slab, hexahedral, waveguide, disc, and fiber; The two transparent surfaces of the crystal are coated with 400-540nm anti-reflection, 800-900nm anti-reflection and 1μm anti-reflection coatings.

进一步的,所述倍频非线性晶体I为铌酸钾、偏硼酸钡、硼酸铋、三硼酸锂、铌酸钾、磷酸钛氧钾、周期性极化铌酸锂、周期性极化磷酸钛氧钾晶体中的任一种;所述倍频非线性晶体I的两个通光面镀有400-540nm增透,800-900nm增透且1μm增透膜。 Further, the frequency-doubling nonlinear crystal I is potassium niobate, barium metaborate, bismuth borate, lithium triborate, potassium niobate, potassium titanyl phosphate, periodically poled lithium niobate, periodically poled titanium phosphate Any one of the oxypotassium crystals; the two light-passing surfaces of the frequency-doubling nonlinear crystal I are coated with 400-540nm anti-reflection, 800-900nm anti-reflection and 1 μm anti-reflection coatings.

进一步的,所述的反射镜II面向输出镜I的镜面镀有400-540nm高反膜;所述的光束耦合系统II为几何耦合系统、光谱耦合系统中的至少一种;所述的光束耦合系统II为透镜、空间滤波器、光隔离器、半波片、光栅、多模光纤中的至少一种。 Further, the mirror surface of the mirror II facing the output mirror I is coated with a 400-540nm high-reflection film; the beam coupling system II is at least one of a geometric coupling system and a spectral coupling system; the beam coupling system System II is at least one of a lens, a spatial filter, an optical isolator, a half-wave plate, a grating, and a multimode fiber.

进一步的,所述输入镜II朝向光束耦合系统II的镜面镀有400-540nm增透膜,所述输入镜II另一面镀有400-540nm增透膜且近红外高反膜;所述反射镜III朝向谐振腔内侧的镜面镀有400-540nm部分透射且近红外高反膜;所述反射镜IV朝向谐振腔内侧的镜面镀有400-540nm部分透射且近红外高反膜;所述输出镜II朝向谐振腔内侧的镜面镀有近红外部分透射且530-800nm增透膜,所述输出镜II的另一面镀有近红外增透且530-800nm增透膜。 Further, the mirror surface of the input mirror II facing the beam coupling system II is coated with a 400-540nm anti-reflection coating, and the other side of the input mirror II is coated with a 400-540nm anti-reflection coating and a near-infrared high-reflection coating; the reflector The mirror surface of III towards the inner side of the resonant cavity is coated with a 400-540nm partial transmission and near-infrared high-reflection film; the mirror IV is coated with a 400-540nm partial transmission and near-infrared high-reflection film towards the inner side of the resonant cavity; the output mirror The mirror surface of II facing the inner side of the resonant cavity is coated with near-infrared partial transmission and 530-800nm anti-reflection coating, and the other side of the output mirror II is coated with near-infrared anti-reflection coating and 530-800nm anti-reflection coating.

进一步的,所述光学参量振荡器非线性晶体为单块晶体、多块级联中的任一种;所述光学参量振荡器非线性晶体为周期性极化化学计量比钽酸锂、周期性极化铌酸锂、周期性极化掺氧化镁铌酸锂、周期性极化磷酸钛氧钾、周期性极化砷酸钛氧铷中的任一种;所述光学参量振荡器非线性晶体的两个通光面镀有400-540nm增透且近红外增透膜;所述光学参量振荡器非线性晶体采用准相位匹配方式;所述光学参量振荡器非线性晶体为室温、温控炉控温状态中的任一种。 Further, the nonlinear crystal of the optical parametric oscillator is any one of a single crystal and multiple cascades; the nonlinear crystal of the optical parametric oscillator is a periodically polarized stoichiometric ratio lithium tantalate, a periodic Any one of poled lithium niobate, periodically poled magnesium oxide-doped lithium niobate, periodically poled potassium titanyl phosphate, and periodically poled rubidium titanyl arsenate; the optical parametric oscillator nonlinear crystal The two transparent surfaces of the optical parametric oscillator are coated with 400-540nm anti-reflection and near-infrared anti-reflection coatings; the nonlinear crystal of the optical parametric oscillator adopts a quasi-phase matching method; the nonlinear crystal of the optical parametric oscillator is a room temperature, temperature-controlled furnace Any of the temperature control states.

进一步的,所述光学参量振荡器-倍频非线性晶体II为铌酸钾、偏硼酸钡、硼酸铋、三硼酸锂、铌酸钾、磷酸钛氧钾、周期性极化铌酸锂、周期性极化磷酸钛氧钾晶体中的任一种;所述光学参量振荡器-倍频非线性晶体II的两个通光面镀有400-800nm增透且近红外增透膜。 Further, the optical parametric oscillator-frequency doubling nonlinear crystal II is potassium niobate, barium metaborate, bismuth borate, lithium triborate, potassium niobate, potassium titanyl phosphate, periodically poled lithium niobate, periodic Any one of the polarized potassium titanyl phosphate crystals; the two light-transmitting surfaces of the optical parametric oscillator-frequency doubling nonlinear crystal II are coated with 400-800nm anti-reflection and near-infrared anti-reflection coatings.

本实用新型的有益效果是: The beneficial effects of the utility model are:

本实用新型所述的宽波段可调谐的连续波530-780nm可见光光学参量振荡器采用全固态结构、短波长可见光泵浦和谐振腔腔内倍频等方式,能在降低系统阈值、提高近红外到可见光转换效率、减少成本的情况下获得宽波段可调谐连续波可见光输出,光谱范围覆盖530-780nm。 The wide-band tunable continuous wave 530-780nm visible light optical parametric oscillator described in the utility model adopts all-solid-state structure, short-wavelength visible light pumping and frequency doubling in the resonant cavity, which can reduce the system threshold and improve near-infrared The wide-band tunable continuous wave visible light output can be obtained under the condition of reducing the conversion efficiency of visible light and reducing the cost, and the spectral range covers 530-780nm.

附图说明 Description of drawings

图1为本实用新型的结构示意图。 Fig. 1 is the structural representation of the utility model.

图中标号说明:1. 泵浦激光器,2. 光束耦合系统I,3. 输入镜I,4. 激光晶体,5. 反射镜I,6. 倍频非线性晶体I,7. 输出镜I,8. 反射镜II,9. 光束耦合系统II,10. 输入镜II,11. 光学参量振荡器非线性晶体,12. 反射镜III,13. 反射镜IV,14. 光学参量振荡器-倍频非线性晶体II,15. 输出镜II。 Explanation of symbols in the figure: 1. Pump laser, 2. Beam coupling system I, 3. Input mirror I, 4. Laser crystal, 5. Reflector I, 6. Frequency-doubling nonlinear crystal I, 7. Output mirror I, 8. Mirror II, 9. Beam coupling system II, 10. Input mirror II, 11. Optical parametric oscillator nonlinear crystal, 12. Mirror III, 13. Mirror IV, 14. Optical parametric oscillator - frequency doubling Nonlinear Crystals II, 15. Output Mirrors II.

具体实施方式 Detailed ways

下面将参考附图并结合实施例,来详细说明本实用新型。 The utility model will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.

为了解决激光器输出波长调谐范围不能覆盖可见光波段的问题,本实用新型实施例提供了一种宽波段可调谐的连续波530-780 nm可见光光学参量振荡器系统,本实用新型通过短波长可见光激光泵浦准相位匹配光学参量振荡器,进而对其闲频光进行倍频获得可见光激光输出,这样做的好处是:全固态结构使激光器比较紧凑、稳定,准相位匹配可以利用非线性晶体的最大非线性系数,而且可以调节腔内闲频光的功率密度,使之倍频效率达到最大,从而提高总的转换效率,同时通过多种调谐方式获得宽波段可调谐的连续波可见光激光输出,以下优选实施例更详细地对本实用新型进行说明: In order to solve the problem that the laser output wavelength tuning range cannot cover the visible light band, the embodiment of the utility model provides a wide-band tunable continuous wave 530-780 nm visible light optical parametric oscillator system. The utility model uses a short-wavelength visible light laser pump The quasi-phase-matched optical parametric oscillator is used to double the frequency of its idler light to obtain visible light laser output. The advantage of this is that the all-solid-state structure makes the laser relatively compact and stable, and the quasi-phase-matched can take advantage of the maximum nonlinearity of the nonlinear crystal Linear coefficient, and can adjust the power density of the idler light in the cavity to maximize the frequency doubling efficiency, thereby improving the overall conversion efficiency, and at the same time obtain a wide-band tunable continuous wave visible laser output through a variety of tuning methods, the following is preferred Embodiment illustrates the utility model in more detail:

参照图1所示,宽波段可调谐的可见光光学参量振荡器-倍频包括依次设置在光路上的泵浦激光器1、光束耦合系统I2、输入镜I3、激光晶体4、反射镜I5、倍频非线性晶体I6、输出镜I7、反射镜II8、光束耦合系统II9、输入镜II10、光学参量振荡器非线性晶体11、反射镜III12、反射镜IV13、光学参量振荡器-倍频非线性晶体II14、输出镜II15,所述输入镜I3、反射镜I5和输出镜I7构成短波长激光的谐振腔,光束耦合系统I2位于泵浦激光器1和输入镜I3之间,所述光束耦合系统I2的中心轴线与泵浦激光器1的出光方向重合,激光晶体4位于输入镜I3和反射镜I5之间,倍频非线性晶体I6位于反射镜I5和输出镜I7之间,所述输入镜II10、反射镜III12、反射镜IV13、输出镜II15,构成可见光光学参量振荡器的谐振腔,光束耦合系统II9位于反射镜II8和输入镜II10之间,所述光束耦合系统II9的中心轴线与反射镜II8反射光方向重合,光学参量振荡器非线性晶体11位于输入镜II10和反射镜III12之间,光学参量振荡器-倍频非线性晶体II14位于反射镜IV13和输出镜II15之间。 Referring to Figure 1, the wide-band tunable visible light optical parametric oscillator-frequency multiplication includes a pump laser 1, a beam coupling system I2, an input mirror I3, a laser crystal 4, a mirror I5, and a frequency multiplication device sequentially arranged on the optical path. Nonlinear crystal I6, output mirror I7, mirror II8, beam coupling system II9, input mirror II10, optical parametric oscillator nonlinear crystal 11, mirror III12, mirror IV13, optical parametric oscillator - frequency doubling nonlinear crystal II14 , output mirror II15, described input mirror I3, reflecting mirror I5 and output mirror I7 constitute the resonant cavity of short-wavelength laser, beam coupling system I2 is positioned between pumping laser 1 and input mirror I3, the center of described beam coupling system I2 The axis coincides with the light output direction of the pump laser 1, the laser crystal 4 is located between the input mirror I3 and the reflector I5, the frequency-doubling nonlinear crystal I6 is located between the reflector I5 and the output mirror I7, the input mirror II10, the reflector III12, mirror IV13, and output mirror II15 constitute the resonant cavity of the visible light optical parametric oscillator, and the beam coupling system II9 is located between the mirror II8 and the input mirror II10, and the central axis of the beam coupling system II9 and the reflected light of the mirror II8 The directions coincide, the optical parametric oscillator nonlinear crystal 11 is located between the input mirror II10 and the reflecting mirror III12, and the optical parametric oscillator-frequency doubling nonlinear crystal II14 is located between the reflecting mirror IV13 and the output mirror II15.

在本实施例中,具体实现时,泵浦激光器1是半导体激光器,其中心波长为808nm,808nm激光经芯径200μm,数值孔径0.22的传能光纤传输至光束耦合系统I2。光束耦合系统I2为两片焦距为40mm,平面和曲面均镀有808nm增透膜(透过率大于99%)的平凸透镜组成的几何耦合系统,可以将808nm激光耦合聚焦至短波长可见光激光谐振腔中。 In this embodiment, the pump laser 1 is a semiconductor laser with a central wavelength of 808nm, and the 808nm laser is transmitted to the beam coupling system I2 through an energy-transmitting optical fiber with a core diameter of 200 μm and a numerical aperture of 0.22. The beam coupling system I2 is a geometric coupling system composed of two plano-convex lenses with a focal length of 40mm, both the plane and the curved surface are coated with an 808nm anti-reflection coating (the transmittance is greater than 99%), which can couple and focus the 808nm laser to short-wavelength visible laser resonance cavity.

激光谐振腔由输入镜I3、反射镜I5和输出镜I7组成,其中,输入镜I3为曲率半径为200mm的平凹镜,朝向光束耦合系统I2的平面镀有808nm增透膜,朝向谐振腔的一面镀有808nm增透膜(透过率大于99%)且532nm和1064nm高反膜(反射率大于99.8%);反射镜I5为平面镜,朝向谐振腔的镜面镀有532nm和1064nm高反膜;输出镜I7为曲率半径为200mm的平凹镜,朝向短波长谐振腔的镜面镀有532nm增透且1064nm高反膜,另一面镀532nm增透膜。激光晶体4置于输入镜I3和反射镜I5之间,为板条形掺杂浓度为1%的键合Nd:YVO4晶体,晶体尺寸为3×3×(2+10)mm,晶体两端的通光面镀有532nm增透,808nm增透且1064nm增透膜;808nm泵浦光通过激光晶体后产生1064nm激光,采用键合晶体可有效降低晶体的热透镜效应。倍频非线性晶体I6置于反射镜I5和输出镜I7之间,为板条形三硼酸锂晶体,晶体尺寸为3×3×10mm,切割角度为11.4o两端通光面均镀有532nm、808nm和1064nm增透膜,1064nm激光经过三硼酸锂晶体时,通过I类相位匹配转换为532nm激光。 The laser resonator consists of an input mirror I3, a reflection mirror I5 and an output mirror I7. The input mirror I3 is a plano-concave mirror with a radius of curvature of 200mm. The plane facing the beam coupling system I2 is coated with an 808nm anti-reflection film. One side is coated with 808nm anti-reflection coating (transmission rate greater than 99%) and 532nm and 1064nm high reflection coating (reflection rate is greater than 99.8%); mirror I5 is a flat mirror, and the mirror surface facing the resonant cavity is coated with 532nm and 1064nm high reflection coating; The output mirror I7 is a plano-concave mirror with a radius of curvature of 200mm. The mirror facing the short-wavelength resonator is coated with a 532nm anti-reflection and 1064nm high-reflection coating, and the other side is coated with a 532nm anti-reflection coating. The laser crystal 4 is placed between the input mirror I3 and the reflection mirror I5. It is a bonded Nd:YVO4 crystal with a doping concentration of 1% in a strip shape. The crystal size is 3×3×(2+10) mm. The transparent surface is coated with 532nm anti-reflection, 808nm anti-reflection and 1064nm anti-reflection coatings; 808nm pump light passes through the laser crystal to generate 1064nm laser. Using bonded crystal can effectively reduce the thermal lens effect of the crystal. The frequency doubling nonlinear crystal I6 is placed between the reflector I5 and the output mirror I7. It is a strip-shaped lithium triborate crystal with a crystal size of 3×3×10mm and a cutting angle of 11.4°. Both ends of the transparent surface are coated with 532nm , 808nm and 1064nm anti-reflection coatings, when the 1064nm laser passes through the lithium triborate crystal, it is converted into a 532nm laser through type I phase matching.

反射镜II8为平面镜,面向输出镜I7的镜面镀有532nm高反膜,并将经输出镜I7输出的532nm激光反射至光束耦合系统II9。光束耦合系统II9为焦距70mm的透镜和半波片组成的几何耦合系统,可控制532nm激光的偏振及耦合光斑直径,实现与振荡光的模式匹配。 Mirror II8 is a plane mirror, and the mirror surface facing output mirror I7 is coated with a 532nm high-reflection film, and reflects the 532nm laser output through output mirror I7 to beam coupling system II9. The beam coupling system II9 is a geometric coupling system composed of a lens with a focal length of 70mm and a half-wave plate, which can control the polarization of the 532nm laser and the diameter of the coupling spot to achieve mode matching with the oscillating light.

输入镜II10,反射镜III12,反射镜IV13和输出镜II15构成光学参量振荡器及其倍频谐振腔。其中,输入镜II10为平凹镜,曲率半径为200mm,朝向光束耦合系统II9的镜面镀有532nm增透膜(透过率大于96%),另一面镀有532nm增透膜(透过率大于96%)且800-1560nm高反膜(反射率大于99.8%);反射镜III12为平凹镜,曲率半径为200mm,且朝向谐振腔内侧的镜面镀有532nm部分透射(透过率大于90%)且800-1560nm高反膜;反射镜IV13为平面镜,朝向谐振腔内侧的镜面镀有800-1560nm高反膜;输出镜II15为平面镜朝向谐振腔内侧的镜面镀有1060-1560nm部分透射(透过率大于90%)且530-800nm增透膜(透过率大于98%),另一面镀有1060-1560nm增透且530-800nm增透膜(透过率大于98%)。 The input mirror II10, the reflection mirror III12, the reflection mirror IV13 and the output mirror II15 constitute an optical parametric oscillator and its frequency doubling resonant cavity. Among them, the input mirror II10 is a plano-concave mirror with a radius of curvature of 200mm. The mirror surface facing the beam coupling system II9 is coated with a 532nm anti-reflection coating (the transmittance is greater than 96%), and the other side is coated with a 532nm anti-reflection coating (the transmittance is greater than 96%) and 800-1560nm high-reflection film (reflectivity greater than 99.8%); mirror III12 is a plano-concave mirror with a radius of curvature of 200mm, and the mirror surface facing the inside of the resonator is coated with 532nm partial transmission (transmittance greater than 90%) ) and 800-1560nm high-reflection film; mirror IV13 is a plane mirror, and the mirror surface facing the inside of the resonator is coated with 800-1560nm high-reflection film; the output mirror II15 is a plane mirror, and the mirror surface facing the inside of the resonator is coated with 1060-1560nm partial transmission (transmission The transmission rate is greater than 90%) and 530-800nm anti-reflection coating (transmission rate is greater than 98%), and the other side is coated with 1060-1560nm anti-reflection coating and 530-800nm anti-reflection coating (transmission rate is greater than 98%).

光学参量振荡器非线性晶体11为单块多周期周期性极化化学计量比掺氧化镁钽酸锂晶体,晶体规格为0.5×8.2×30mm,极化周期为8.0-8.7μm,周期个数为12,晶体两端通光面镀有532nm增透且800-1560nm增透膜(透过率大于98%),光学参量振荡器采用准相位匹配方式和周期调谐与温度调谐相结合的组合调谐技术。 The optical parametric oscillator nonlinear crystal 11 is a monolithic multi-period periodic polarization stoichiometric ratio doped magnesium oxide lithium tantalate crystal, the crystal size is 0.5×8.2×30mm, the polarization period is 8.0-8.7μm, and the number of periods is 12. Both ends of the crystal are coated with 532nm anti-reflection and 800-1560nm anti-reflection coatings (the transmittance is greater than 98%), and the optical parametric oscillator adopts the combined tuning technology of quasi-phase matching method and period tuning and temperature tuning .

光学参量振荡器-倍频非线性晶体II14为周期性极化铌酸锂晶体,晶体规格为0.5×12×40mm,极化周期为6.5-21.2μm,周期个数为32,晶体两端的通光面镀有400-800nm增透且800-1560nm增透膜(透过率大于98%)。 Optical parametric oscillator-frequency doubling nonlinear crystal II14 is a periodically poled lithium niobate crystal, the crystal size is 0.5×12×40mm, the polarization period is 6.5-21.2μm, the number of periods is 32, and the light at both ends of the crystal The surface is coated with 400-800nm anti-reflection and 800-1560nm anti-reflection coating (the transmittance is greater than 98%).

本实用新型的原理: Principle of the utility model:

泵浦激光器1输出波长为800-900nm波段的激光,所述泵浦激光经过光束耦合系统I2后进入由输入镜I3、反射镜I5、输出镜I7构成的短波长可见光激光谐振腔,所述泵浦激光在短波长可见光激光谐振腔内依次经过输入镜I3、激光晶体4、反射镜I5、倍频非线性晶体I6和输出镜I7,激光晶体4在泵浦激光的作用下产生近红外激光,而所述近红外激光经过反射镜I5反射进入倍频非线性晶体I6,倍频非线性晶体I6在近红外激光的作用下产生短波长可见光激光,所述短波长可见光激光经过输出镜I7透射到短波长可见光激光谐振腔外,同时部分经过倍频非线性晶体I6透射出来的近红外激光经过输出镜I7、反射镜I5和输入镜I3反射,在短波长可见光激光谐振腔振荡,所述透射到短波长可见光激光谐振腔外的短波长可见光激光经反射镜反射镜II8反射到光束耦合系统II9,经过光束耦合系统II9后短波长可见光激光进入到由输入镜II10、反射镜III12、反射镜IV13和输出镜II15组成的光学参量振荡器-倍频谐振腔,所述短波长可见光激光在光学参量振荡器-倍频谐振腔内依次经过光学参量振荡器非线性晶体11和反射镜III12后透射到光学参量振荡器-倍频谐振腔外,光学参量振荡器非线性晶体11在短波长可见光激光的作用下产生宽波段可调谐的近红外激光,所述宽波段可调谐的近红外激光依次反射镜III12和反射镜IV13反射、光学参量振荡器-倍频非线性晶体II14透射、以及输出镜II15和输入镜II10反射,在光学参量振荡器-倍频谐振腔内振荡,光学参量振荡器-倍频非线性晶体II14在宽波段可调谐的近红外激光的作用下产生宽波段可调谐的可见光激光,所述宽波段可调谐的可见光激光经输出镜II15透射到光学参量振荡器-倍频谐振腔外。 The pump laser 1 outputs laser light with a wavelength of 800-900nm. The pump laser enters the short-wavelength visible laser resonator composed of the input mirror I3, the reflector I5 and the output mirror I7 after passing through the beam coupling system I2. The pump laser The pump laser passes through the input mirror I3, the laser crystal 4, the mirror I5, the frequency-doubling nonlinear crystal I6 and the output mirror I7 sequentially in the short-wavelength visible laser resonator, and the laser crystal 4 generates near-infrared laser under the action of the pump laser. The near-infrared laser is reflected by the mirror I5 and enters the frequency-doubled nonlinear crystal I6, and the frequency-doubled nonlinear crystal I6 generates a short-wavelength visible light laser under the action of the near-infrared laser, and the short-wavelength visible light laser is transmitted through the output mirror I7 to the Outside the short-wavelength visible laser resonator, part of the near-infrared laser transmitted through the frequency-doubling nonlinear crystal I6 is reflected by the output mirror I7, the reflector I5 and the input mirror I3, and oscillates in the short-wavelength visible laser resonator. The short-wavelength visible laser outside the short-wavelength visible laser resonator is reflected by the mirror II8 to the beam coupling system II9, and after passing through the beam coupling system II9, the short-wavelength visible laser enters the input mirror II10, mirror III12, mirror IV13 and The optical parametric oscillator-frequency doubling resonant cavity composed of the output mirror II15, the short-wavelength visible light laser in the optical parametric oscillator-frequency doubling resonant cavity sequentially passes through the optical parametric oscillator nonlinear crystal 11 and the mirror III12 and then transmits to the optical Parametric oscillator-outside the frequency doubling resonant cavity, the nonlinear crystal 11 of the optical parametric oscillator generates a wide-band tunable near-infrared laser under the action of a short-wavelength visible laser, and the wide-band tunable near-infrared laser is sequentially reflected by mirror III12 And reflective mirror IV13 reflection, optical parametric oscillator-frequency doubling nonlinear crystal II14 transmission, and output mirror II15 and input mirror II10 reflection, oscillate in the optical parametric oscillator-frequency doubling resonant cavity, optical parametric oscillator-frequency doubling nonlinear The linear crystal II14 generates a broadband tunable visible light laser under the action of a broadband tunable near-infrared laser, and the broadband tunable visible laser is transmitted through the output mirror II15 to the outside of the optical parametric oscillator-frequency doubling resonant cavity.

短波可见光泵浦光学参量振荡器,并在提高光学参量振荡器谐振腔内闲频光功率密度的同时内对其进行倍频,获得高效率连续波宽波段可调谐可见光激光输出。 The optical parametric oscillator is pumped by short-wave visible light, and its frequency is doubled while increasing the power density of the idler frequency in the resonant cavity of the optical parametric oscillator, so as to obtain a high-efficiency continuous wave wide-band tunable visible light laser output.

本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本实用新型实施例仅仅为了描述,不代表实施例的优劣。 Those skilled in the art can understand that the accompanying drawing is only a schematic diagram of a preferred embodiment, and the above-mentioned embodiments of the present invention are only for description, and do not represent the advantages and disadvantages of the embodiments.

以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。 The above descriptions are only preferred embodiments of the utility model, and are not intended to limit the utility model. For those skilled in the art, the utility model can have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the present utility model shall be included in the protection scope of the present utility model.

Claims (10)

1.宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,包括依次设置在光路上的泵浦激光器(1)、光束耦合系统I(2)、输入镜I(3)、激光晶体(4)、反射镜I(5)、倍频非线性晶体I(6)、输出镜I(7)、反射镜II(8)、光束耦合系统II(9)、输入镜II(10)、光学参量振荡器非线性晶体(11)、反射镜III(12)、反射镜IV(13)、光学参量振荡器-倍频非线性晶体II(14)、输出镜II(15),所述输入镜I(3)、反射镜I(5)和输出镜I(7)构成短波长激光的谐振腔,所述光束耦合系统I(2)的中心轴线与泵浦激光器(1)的出光方向重合,所述输入镜II(10)、反射镜III(12)、反射镜IV(13)、输出镜II(15)构成可见光光学参量振荡器的谐振腔,所述光束耦合系统II(9)的中心轴线与反射镜II(8)反射光方向重合; 1. A wide-band tunable continuous wave 530-780nm optical parametric oscillator, characterized in that it includes a pump laser (1), a beam coupling system I (2), an input mirror I (3), and Laser crystal (4), mirror I (5), frequency doubling nonlinear crystal I (6), output mirror I (7), mirror II (8), beam coupling system II (9), input mirror II (10 ), optical parametric oscillator nonlinear crystal (11), mirror III (12), mirror IV (13), optical parametric oscillator-frequency doubling nonlinear crystal II (14), output mirror II (15), and The input mirror I (3), reflecting mirror I (5) and output mirror I (7) constitute a short-wavelength laser resonant cavity, and the central axis of the beam coupling system I (2) is connected to the output light of the pump laser (1) The directions coincide, the input mirror II (10), mirror III (12), mirror IV (13), and output mirror II (15) constitute a resonant cavity of a visible light optical parametric oscillator, and the beam coupling system II (9 ) The central axis coincides with the reflected light direction of the reflector II (8); 所述泵浦激光器(1)发射的泵浦激光经过光束耦合系统I(2)后入射至输入镜I(3),经输入镜I(3)透过的泵浦激光入射至激光晶体(4),激光晶体(4)将所述泵浦激光转换为近红外激光,从激光晶体(4)出射的近红外激光入射至反射镜I(5),经反射镜I(5)反射的近红外激光入射至倍频非线性晶体I(6),倍频非线性晶体I(6)将所述近红外激光转换为短波长可见光激光,从倍频非线性晶体I(6)出射的短波长可见光激光入射至输出镜I(7),从倍频非线性晶体I(6)透射出的近红外激光经输出镜I(7)反射再次入射至倍频非线性晶体I(6),经倍频非线性晶体I(6)透射的近红外激光入射至反射镜I(5),经反射镜I(5)反射的近红外激光入射至输入镜I(3)并在谐振腔内继续振荡,经输出镜I(7)出射的短波长可见光激光入射至反射镜II(8),经反射镜II(8)反射的短波可见光激光入射至光束耦合系统II(9),经光束耦合系统II(9)透过的短波可见光激光入射至输入镜II(10),经输入镜II(10)透射的短波可见光激光入射至光学参量振荡器非线性晶体(11),光学参量振荡器非线性晶体(11)将短波可见光激光转换为宽波段近红外激光,从光学参量振荡器非线性晶体(11)透射出的短波可见光激光经反射镜III(12)透射到谐振腔外,从光学参量振荡器非线性晶体(11)出射的宽波段近红外激光入射至反射镜III(12),经反射镜III(12)反射的宽波段近红外激光入射至光学参量振荡器-倍频非线性晶体II(14),光学参量振荡器-倍频非线性晶体II(14)将宽波段近红外激光转换为宽波段可见光激光,从光学参量振荡器-倍频非线性晶体II(14)出射的宽波段可见光激光入射至输出镜II(15)并经输出镜II(15)透射到光学参量振荡器-倍频谐振腔外,从光学参量振荡器-倍频非线性晶体II(14)透射的宽波段近红外激光入射至输出镜II(15),经输出镜II(15)反射的宽波段近红外激光入射至输入镜II(10)并在光学参量振荡器-倍频谐振腔内继续振荡。 The pump laser light emitted by the pump laser (1) is incident on the input mirror I (3) after passing through the beam coupling system I (2), and the pump laser light transmitted through the input mirror I (3) is incident on the laser crystal (4 ), the laser crystal (4) converts the pump laser into a near-infrared laser, and the near-infrared laser emitted from the laser crystal (4) is incident on the mirror I (5), and the near-infrared laser reflected by the mirror I (5) The laser is incident on the frequency-doubling nonlinear crystal I (6), and the frequency-doubling nonlinear crystal I (6) converts the near-infrared laser into a short-wavelength visible light laser, and the short-wavelength visible light emitted from the frequency-doubling nonlinear crystal I (6) The laser is incident on the output mirror I (7), and the near-infrared laser transmitted from the frequency-doubling nonlinear crystal I (6) is reflected by the output mirror I (7) and then enters the frequency-doubling nonlinear crystal I (6). The near-infrared laser transmitted by the nonlinear crystal I (6) is incident on the mirror I (5), and the near-infrared laser reflected by the mirror I (5) is incident on the input mirror I (3) and continues to oscillate in the resonant cavity. The short-wavelength visible light laser emitted by the output mirror I (7) is incident on the reflector II (8), and the short-wavelength visible light laser reflected by the reflector II (8) is incident on the beam coupling system II (9), and passes through the beam coupling system II (9 ), the short-wave visible laser light transmitted by the input mirror II (10) is incident on the input mirror II (10), the short-wave visible light laser transmitted by the input mirror II (10) is incident on the nonlinear crystal of the optical parametric oscillator (11), and the nonlinear crystal of the optical parametric oscillator (11 ) to convert the short-wave visible laser into a wide-band near-infrared laser, and the short-wave visible laser transmitted from the optical parametric oscillator nonlinear crystal (11) is transmitted to the outside of the resonant cavity through the mirror III (12), and the optical parametric oscillator nonlinear The broadband near-infrared laser emitted by the crystal (11) is incident on the mirror III (12), and the broadband near-infrared laser reflected by the mirror III (12) is incident on the optical parametric oscillator-frequency-doubling nonlinear crystal II (14) , the optical parametric oscillator-frequency-doubling nonlinear crystal II (14) converts the broadband near-infrared laser into a broadband visible laser, and the broadband visible laser emitted from the optical parametric oscillator-frequency-doubling nonlinear crystal II (14) is incident To the output mirror II (15) and transmitted through the output mirror II (15) to the outside of the optical parametric oscillator-frequency doubling resonator, the broadband near-infrared laser transmitted from the optical parametric oscillator-frequency doubling nonlinear crystal II (14) Incident to the output mirror II (15), the broadband near-infrared laser reflected by the output mirror II (15) enters the input mirror II (10) and continues to oscillate in the optical parametric oscillator-frequency doubling resonant cavity. 2.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述泵浦激光器(1)是半导体激光器,所述激光器的中心波长为800-900nm。 2. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that the pump laser (1) is a semiconductor laser, and the center wavelength of the laser is 800-900nm . 3.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述光束耦合系统I(2)为几何耦合系统、光谱耦合系统中的至少一种;所述光束耦合系统I(2)为透镜、空间滤波器、光隔离器、光栅、多模光纤中的至少一种。 3. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that, the beam coupling system I (2) is at least one of a geometric coupling system and a spectral coupling system ; The beam coupling system I (2) is at least one of a lens, a spatial filter, an optical isolator, a grating, and a multimode fiber. 4.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述输入镜I(3)朝向光束耦合系统I(2)的平面镀有800-900nm增透膜,所述输入镜I(3)另一面镀有800-900nm增透膜且400-540nm和1μm高反膜;所述反射镜I(5)朝向短波长可见光激光谐振腔的镜面镀有400-540nm和1μm高反膜;所述输出镜I(7)朝向短波长可见光激光谐振腔的镜面镀有400-540nm增透且1μm高反膜,所述的输出镜I(7)的另一面镀400-540nm增透膜。 4. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that, the plane of the input mirror I (3) facing the beam coupling system I (2) is coated with 800- 900nm anti-reflection coating, the other side of the input mirror I (3) is coated with an 800-900nm anti-reflection coating and a 400-540nm and 1μm high-reflection coating; the mirror I (5) faces the mirror surface of the short-wavelength visible laser resonator Coated with 400-540nm and 1μm high-reflection film; the mirror surface of the output mirror I (7) facing the short-wavelength visible laser resonator is coated with 400-540nm anti-reflection and 1 μm high-reflection film, the output mirror I (7) The other side is coated with 400-540nm AR coating. 5.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述激光晶体(4)为掺钕离子单晶或者陶瓷,并且激光晶体(4)的形状为圆柱形、板条形、六面体形、波导形、碟片形、光纤形中的任一种;所述激光晶体(4)的两个通光面镀有400-540nm增透,800-900nm增透且1μm增透膜。 5. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that the laser crystal (4) is a neodymium-doped ion single crystal or ceramic, and the laser crystal (4) The shape of the laser crystal (4) is any one of cylindrical, slat-shaped, hexahedral, waveguide-shaped, disc-shaped, and fiber-shaped; the two transparent surfaces of the laser crystal (4) are coated with 400-540nm anti-reflection, 800 -900nm anti-reflection and 1μm anti-reflection coating. 6.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述倍频非线性晶体I(6)为铌酸钾、偏硼酸钡、硼酸铋、三硼酸锂、铌酸钾、磷酸钛氧钾、周期性极化铌酸锂、周期性极化磷酸钛氧钾晶体中的任一种;所述倍频非线性晶体I(6)的两个通光面镀有400-540nm增透,800-900nm增透且1μm增透膜。 6. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that, the frequency-doubling nonlinear crystal I (6) is potassium niobate, barium metaborate, bismuth borate , lithium triborate, potassium niobate, potassium titanyl phosphate, periodically poled lithium niobate, periodically poled potassium titanyl phosphate crystal; two of the frequency-doubling nonlinear crystal I (6) The first transparent surface is coated with 400-540nm anti-reflection, 800-900nm anti-reflection and 1μm anti-reflection coating. 7.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述的反射镜II(8)面向输出镜I(7)的镜面镀有400-540nm高反膜;所述的光束耦合系统II(9)为几何耦合系统、光谱耦合系统中的至少一种;所述的光束耦合系统II(9)为透镜、空间滤波器、光隔离器、半波片、光栅、多模光纤中的至少一种。 7. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that, the mirror surface of the mirror II (8) facing the output mirror I (7) is coated with 400- 540nm high reflection film; the beam coupling system II (9) is at least one of a geometric coupling system and a spectral coupling system; the beam coupling system II (9) is a lens, a spatial filter, an optical isolator, At least one of a half-wave plate, a grating, and a multimode fiber. 8.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述输入镜II(10)朝向光束耦合系统II(9)的镜面镀有400-540nm增透膜,所述输入镜II(10)另一面镀有400-540nm增透膜且近红外高反膜;所述反射镜III(12)朝向谐振腔内侧的镜面镀有400-540nm部分透射且近红外高反膜;所述反射镜IV(13)朝向谐振腔内侧的镜面镀有400-540nm部分透射且近红外高反膜;所述输出镜II(15)朝向谐振腔内侧的镜面镀有近红外部分透射且530-800nm增透膜,所述输出镜II(15)的另一面镀有近红外增透且530-800nm增透膜。 8. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that, the mirror surface of the input mirror II (10) facing the beam coupling system II (9) is coated with 400- 540nm anti-reflection coating, the other side of the input mirror II (10) is coated with a 400-540nm anti-reflection coating and a near-infrared high-reflection coating; the mirror surface of the mirror III (12) facing the inside of the resonant cavity is coated with a 400-540nm part Transmitting and near-infrared high-reflection film; the mirror surface of the mirror IV (13) facing the inside of the resonant cavity is coated with a 400-540nm partial transmission and near-infrared high-reflection film; the output mirror II (15) is facing the mirror surface inside the resonant cavity It is coated with near-infrared partial transmission and 530-800nm anti-reflection film, and the other side of the output mirror II (15) is coated with near-infrared anti-reflection film and 530-800nm anti-reflection film. 9.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述光学参量振荡器非线性晶体(11)为单块晶体、多块级联中的任一种;所述光学参量振荡器非线性晶体(11)为周期性极化化学计量比钽酸锂、周期性极化铌酸锂、周期性极化掺氧化镁铌酸锂、周期性极化磷酸钛氧钾、周期性极化砷酸钛氧铷中的任一种;所述光学参量振荡器非线性晶体(11)的两个通光面镀有400-540nm增透且近红外增透膜;所述光学参量振荡器非线性晶体(11)采用准相位匹配方式;所述光学参量振荡器非线性晶体(11)为室温、温控炉控温状态中的任一种。 9. The broadband tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that the nonlinear crystal (11) of the optical parametric oscillator is a single crystal and multiple cascaded Any one of: the optical parametric oscillator nonlinear crystal (11) is periodically poled stoichiometric lithium tantalate, periodically poled lithium niobate, periodically poled magnesium oxide doped lithium niobate, periodically Any one of poled potassium titanyl phosphate and periodically poled rubidium titanyl arsenate; the two transparent surfaces of the optical parametric oscillator nonlinear crystal (11) are coated with 400-540nm anti-reflection and near-infrared Anti-reflection coating; the optical parametric oscillator nonlinear crystal (11) adopts a quasi-phase matching method; the optical parametric oscillator nonlinear crystal (11) is in any one of room temperature and temperature control furnace temperature control states. 10.根据权利要求1所述的宽波段可调谐的连续波530-780nm光学参量振荡器,其特征在于,所述光学参量振荡器-倍频非线性晶体II(14)为铌酸钾、偏硼酸钡、硼酸铋、三硼酸锂、铌酸钾、磷酸钛氧钾、周期性极化铌酸锂、周期性极化磷酸钛氧钾晶体中的任一种;所述光学参量振荡器-倍频非线性晶体II(14)的两个通光面镀有400-800nm增透且近红外增透膜。 10. The wide-band tunable continuous wave 530-780nm optical parametric oscillator according to claim 1, characterized in that the optical parametric oscillator-frequency doubling nonlinear crystal II (14) is potassium niobate, partial Any one of barium borate, bismuth borate, lithium triborate, potassium niobate, potassium titanyl phosphate, periodically poled lithium niobate, and periodically poled potassium titanyl phosphate crystal; the optical parametric oscillator-time The two transparent surfaces of the frequency nonlinear crystal II (14) are coated with 400-800nm anti-reflection and near-infrared anti-reflection coatings.
CN201420545864.7U 2014-09-23 2014-09-23 Broadband tunable continuous wave 530-780nm optical parametric oscillator Expired - Fee Related CN204230626U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420545864.7U CN204230626U (en) 2014-09-23 2014-09-23 Broadband tunable continuous wave 530-780nm optical parametric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420545864.7U CN204230626U (en) 2014-09-23 2014-09-23 Broadband tunable continuous wave 530-780nm optical parametric oscillator

Publications (1)

Publication Number Publication Date
CN204230626U true CN204230626U (en) 2015-03-25

Family

ID=52928678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420545864.7U Expired - Fee Related CN204230626U (en) 2014-09-23 2014-09-23 Broadband tunable continuous wave 530-780nm optical parametric oscillator

Country Status (1)

Country Link
CN (1) CN204230626U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283103A (en) * 2014-09-23 2015-01-14 中国科学院苏州生物医学工程技术研究所 Broadband Tunable CW 530-780nm Optical Parametric Oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283103A (en) * 2014-09-23 2015-01-14 中国科学院苏州生物医学工程技术研究所 Broadband Tunable CW 530-780nm Optical Parametric Oscillator

Similar Documents

Publication Publication Date Title
CN103618205B (en) A kind of full-solid-state single longitudinal mode yellow light laser
CN104779516B (en) In infrared single-frequency optical parametric oscillator
CN110112642B (en) Optical parametric oscillator
CN102842847B (en) An Intracavity Single Resonant Optical Parametric Oscillator
CN109066280A (en) A kind of power proportions and pulse spacing adjustable dual wavelength light parametric oscillator
CN103996968A (en) Self Raman yellow light laser of composite cavity structure
CN103715593A (en) Single-frequency intermediate infrared light source system of 2-micron fiber laser pump
CN107528197A (en) The compound unsteady cavity modeling pumping of two-chamber from optical parametric oscillation mid-infrared laser device
CN105428988A (en) Femtosecond optical parameter oscillator of femtosecond green light synchronous pump
CN105973573A (en) Measuring method for linear losses inside cavity of all-solid-state laser
CN106785847A (en) A kind of pair of wavelength tunable solid laser of composite resonant cavity configuration
CN107046222A (en) An Intracavity Optical Parametric Oscillator Realizing Similar Dual-Wavelength Output
CN104283103A (en) Broadband Tunable CW 530-780nm Optical Parametric Oscillator
CN101609243B (en) A terahertz wave parametric oscillator based on a corner cube resonator cavity
CN104503183A (en) Self-frequency-conversion terahertz parametric oscillator
CN103199427B (en) Intracavity single-resonance optical parametric oscillator
CN107658687B (en) Synchronous Pumped Self-Starting Femtosecond Ti:Sapphire Laser Oscillator
CN100555053C (en) All-solid-state CW tunable yellow-orange coherent light source
CN204230626U (en) Broadband tunable continuous wave 530-780nm optical parametric oscillator
CN106410582B (en) A Shared Cavity Optical Parametric Oscillator with Continuous Output in Eye-Safe Bands
CN105742944B (en) A kind of dual wavelength, narrow linewidth terahertz-wave parametric oscillator
CN210007100U (en) kinds of optical parametric oscillator
CN207638146U (en) Continuous wave 593nm optical parametric oscillator and optical equipment
CN203690698U (en) Single-frequency intermediate infrared light source system of 2 [mu]m fiber laser pump
RU106990U1 (en) LASER WITH OPTICAL PARAMETRIC GENERATOR

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150325

CF01 Termination of patent right due to non-payment of annual fee