[go: up one dir, main page]

CN204138819U - Kyropoulos sapphire single crystal growth furnace insulation side screen - Google Patents

Kyropoulos sapphire single crystal growth furnace insulation side screen Download PDF

Info

Publication number
CN204138819U
CN204138819U CN201420525502.1U CN201420525502U CN204138819U CN 204138819 U CN204138819 U CN 204138819U CN 201420525502 U CN201420525502 U CN 201420525502U CN 204138819 U CN204138819 U CN 204138819U
Authority
CN
China
Prior art keywords
side screen
tungsten
layer
single crystal
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420525502.1U
Other languages
Chinese (zh)
Inventor
陈贵锋
阎立群
徐建民
孟凡义
张浩恩
张辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan Guoxin Jingyuan Electronics Co Ltd
Hebei University of Technology
Original Assignee
TONGFANG GUOXIN ELECTRONICS CO Ltd
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TONGFANG GUOXIN ELECTRONICS CO Ltd, Hebei University of Technology filed Critical TONGFANG GUOXIN ELECTRONICS CO Ltd
Priority to CN201420525502.1U priority Critical patent/CN204138819U/en
Application granted granted Critical
Publication of CN204138819U publication Critical patent/CN204138819U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本实用新型涉及泡生法蓝宝石单晶生长炉,尤其涉及一种泡生法蓝宝石单晶生长炉保温侧屏。该保温侧屏设置于加热器和不锈钢钢外壳之间,保温侧屏包括内层钨屏和外层氧化锆纤维保温砖层。这种保温侧屏的设计,使得系统具有更轻的质量,更好的保温效果,晶体中的轴向和径向温度梯度减小,同时减小了晶体中的热应力和位错密度,达到减小功耗,提高晶体质量的作用。

The utility model relates to a Kyropoulos sapphire single crystal growth furnace, in particular to a thermal insulation side screen of a kyropoulos sapphire single crystal growth furnace. The thermal insulation side screen is arranged between the heater and the stainless steel shell, and the thermal insulation side screen includes an inner layer of tungsten screen and an outer layer of zirconia fiber thermal insulation brick layer. The design of this heat preservation side screen makes the system have lighter weight and better heat preservation effect, the axial and radial temperature gradient in the crystal is reduced, and the thermal stress and dislocation density in the crystal are reduced at the same time, reaching Reduce power consumption and improve crystal quality.

Description

泡生法蓝宝石单晶生长炉保温侧屏Kyropoulos sapphire single crystal growth furnace insulation side screen

技术领域 technical field

本实用新型涉及泡生法蓝宝石单晶生长炉,尤其涉及一种泡生法蓝宝石单晶生长炉保温侧屏。 The utility model relates to a Kyropoulos sapphire single crystal growth furnace, in particular to a thermal insulation side screen of a kyropoulos sapphire single crystal growth furnace.

背景技术:Background technique:

Kyropoulos method是由Kyropouls于1926年实用新型的,它的生长原理和技术特点是:将晶体原料放入耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于稍高于熔点的状态;使籽晶杆上的籽晶接触熔融液面,待其表面稍熔后,降低表面温度至熔点,提拉并转动籽晶杆,使熔体顶部处于过冷状态而结晶于籽晶上,在不断提拉的过程中,生长出圆柱状晶体。 The Kyropoulos method was invented by Kyropouls in 1926. Its growth principle and technical characteristics are as follows: put the crystal raw material into a high-temperature-resistant crucible to heat and melt it, and adjust the temperature field in the furnace so that the upper part of the melt is at a temperature slightly higher than the melting point. State: Make the seed crystal on the seed crystal rod contact the molten liquid surface, after the surface melts slightly, lower the surface temperature to the melting point, pull and rotate the seed crystal rod, so that the top of the melt is in a supercooled state and crystallizes on the seed crystal , in the process of continuous pulling, grow cylindrical crystals.

泡生法和提拉法生长晶体的原理相似,但泡生法生长出的蓝宝石晶体质量更高,从工艺上看,提拉法生长过程包括引晶、放肩、等径和收肩等阶段,并且上述阶段均需不断的提拉来完成;泡生法的晶体生长和退火过程都是在坩埚中进行的,晶体并不提拉出坩埚,蓝宝石晶体就像是从熔体中生长的;泡生法生长工艺中引晶、放肩过程中籽晶提升并旋转,而在等径生长阶段籽晶停止旋转只是根据实际情况进行微量提升;实际上泡生法晶体生长和退火过程都是在坩埚中进行的,晶体并不提拉出坩埚,因此温场容易控制,晶体品质较高。 The principle of crystal growth by Kyropoulos method and pulling method is similar, but the quality of sapphire crystals grown by Kyropoulos method is higher. From the technical point of view, the growth process of pulling method includes the stages of seeding, shouldering, equal diameter and shouldering. , and the above stages need to be continuously pulled to complete; the crystal growth and annealing process of the Kyropoulos method are carried out in the crucible, the crystal is not pulled out of the crucible, and the sapphire crystal is like growing from the melt; In the Kyropoulos growth process, the seed crystal is lifted and rotated during the process of seeding and shouldering, while the seed crystal stops rotating in the equal diameter growth stage, which is only slightly lifted according to the actual situation; in fact, the crystal growth and annealing process of the Kyropoulos method are all in the In the crucible, the crystal is not pulled out of the crucible, so the temperature field is easy to control and the crystal quality is high.

蓝宝石主要应用之一是作为衬底材料,制备衬底材料蓝宝石的主要方法是泡生法。 One of the main applications of sapphire is as a substrate material, and the main method for preparing substrate material sapphire is the Kyropoulos method.

蓝宝石晶体的熔点约为2050℃,泡生法是目前最主流的生长方法之一,而影响泡生法生长蓝宝石单晶质量的一个关键因素就是炉体内热场的分布。所以在2050℃这样的高温条件下,保温侧屏材料的选择及结构的设计尤为重要。 The melting point of sapphire crystal is about 2050°C. The Kyropoulos method is one of the most mainstream growth methods at present, and a key factor affecting the quality of sapphire single crystal grown by the Kyropoulos method is the distribution of the thermal field in the furnace. Therefore, under the high temperature conditions of 2050°C, the selection of insulation side screen materials and the design of the structure are particularly important.

目前常用的泡生法生长大尺寸蓝宝石单晶的保温侧屏主要还是钼金属多层屏、钨金属多层屏以及钨钼金属两种多层屏的组合构成。这类保温侧屏主要靠层与层间的真空效应达到保温效果,但是钨钼材料本身作为金属材料,其保温效果差,热场分布不均匀,并且高温下钼屏会挥发出很多杂质,这些因素将导致晶体生长能耗大、晶体缺陷过多,而且成本过高。 At present, the thermal insulation side screens commonly used for growing large-size sapphire single crystals by the Kyropoulos method are mainly composed of molybdenum metal multi-layer screens, tungsten metal multi-layer screens, and tungsten-molybdenum metal multi-layer screens. This kind of thermal insulation side screen mainly relies on the vacuum effect between the layers to achieve the thermal insulation effect, but the tungsten-molybdenum material itself is a metal material, its thermal insulation effect is poor, the thermal field distribution is uneven, and the molybdenum screen will volatilize a lot of impurities at high temperature, these Factors will result in high energy consumption for crystal growth, excessive crystal defects, and high cost.

实用新型内容 Utility model content

本实用新型要解决的技术问题是,提供一种能够提高晶体成品率、降低单颗晶体平均功率消耗的泡生法蓝宝石单晶生长炉保温侧屏。 The technical problem to be solved by the utility model is to provide a thermal insulation side screen of a Kyropoulos sapphire single crystal growth furnace which can increase the crystal yield and reduce the average power consumption of a single crystal.

本实用新型解决所述问题采用的技术方案是: The technical solution adopted by the utility model to solve the problem is:

一种泡生法蓝宝石单晶生长炉保温侧屏,设置于加热器和钢外壳之间,保温侧屏内层为钨屏,外层为氧化锆纤维保温砖层。 A thermal insulation side screen of a sapphire single crystal growth furnace by the Kyropoulos method is arranged between a heater and a steel shell. The inner layer of the thermal insulation side screen is a tungsten screen, and the outer layer is a zirconia fiber thermal insulation brick layer.

采用上述技术方案的本实用新型,与现有技术相比,所达到的有益效果是: Compared with the prior art, the utility model adopting the above-mentioned technical solution has the following beneficial effects:

系统具有更好的保温效果,减小了单个晶体的功率消耗,晶体中的轴向和径向温度梯度减小,同时减小了晶体中的热应力和位错密度。 The system has a better thermal insulation effect, reduces the power consumption of a single crystal, reduces the axial and radial temperature gradients in the crystal, and reduces the thermal stress and dislocation density in the crystal.

作为优选,本实用新型更进一步的技术方案是: As preferably, the further technical scheme of the utility model is:

所述钨屏是由双层平行的钨片卷成的双层钨筒。 The tungsten screen is a double-layer tungsten cylinder rolled from double-layer parallel tungsten sheets.

所述钨片的厚度为0.5-2.5mm,两层钨片之间的距离为1-5mm。 The thickness of the tungsten sheet is 0.5-2.5mm, and the distance between two layers of tungsten sheets is 1-5mm.

所述氧化锆纤维保温砖层是由双层氧化锆纤维砖砌成的筒体。 The zirconia fiber insulation brick layer is a cylinder made of double-layer zirconia fiber bricks.

所述单层氧化锆纤维砖的厚度为20-40mm。 The thickness of the single-layer zirconia fiber brick is 20-40mm.

附图说明 Description of drawings

图1 是本实用新型实施例的结构示意图; Fig. 1 is the structural representation of the utility model embodiment;

图2是图1中钨屏侧视图; Fig. 2 is a side view of the tungsten screen in Fig. 1;

图3 是图2中钨屏俯视图; Figure 3 is a top view of the tungsten screen in Figure 2;

图4是图1中氧化锆纤维保温砖层侧视图; Fig. 4 is a side view of the zirconia fiber insulation brick layer in Fig. 1;

图5 是图1中氧化锆纤维保温砖层俯视图; Fig. 5 is a top view of the zirconia fiber insulation brick layer in Fig. 1;

图中:坩埚1,加热器2,钨屏3,氧化锆纤维保温砖层4,钢外壳5,外层钨筒31,内层钨筒32,D2钽钉33,外层氧化锆纤维砖41,内层氧化锆纤维砖42。 In the figure: crucible 1, heater 2, tungsten screen 3, zirconia fiber insulation brick layer 4, steel shell 5, outer tungsten cylinder 31, inner tungsten cylinder 32, D2 tantalum nail 33, outer zirconia fiber brick 41 , inner layer zirconia fiber brick 42.

具体实施方式 Detailed ways

以下通过附图所示实施例详述本实用新型,所举之例仅用于更加清楚地说明本实用新型的技术方案,而并非限制本实用新型的保护范围。 The utility model is described in detail below through the embodiments shown in the accompanying drawings, and the examples given are only used to illustrate the technical solution of the utility model more clearly, but not to limit the protection scope of the utility model.

参见图1,泡生法蓝宝石单晶生长炉保温侧屏,设置于加热器2和钢外壳5之间,保温侧屏内层为钨屏3,外层为氧化锆纤维保温砖层4。 Referring to Fig. 1 , the thermal insulation side screen of the Kyropoulos sapphire single crystal growth furnace is arranged between the heater 2 and the steel shell 5 , the inner layer of the thermal insulation side screen is tungsten screen 3 , and the outer layer is zirconia fiber thermal insulation brick layer 4 .

参见图2、图3,钨屏3是由外层钨筒31、内层钨筒32组成的双层钨筒,该双层钨筒由双层平行的钨片卷成,每层钨片均由单块钨片连接起来,单块钨片连接处交叉为40mm,组成长方形,高度为900mm,钨片的厚度为1.5mm;钨筒使用D2钽钉33铆接固定,两层钨筒中间用16个钨丝卡扣固定,两个卡扣之间的间隔为22.5°,两层钨筒(钨片)之间的间隔为5mm。 Referring to Fig. 2 and Fig. 3, the tungsten screen 3 is a double-layer tungsten cylinder composed of an outer tungsten cylinder 31 and an inner tungsten cylinder 32. The double-layer tungsten cylinder is rolled by double-layer parallel tungsten sheets, and each layer of tungsten It is connected by a single tungsten sheet, the intersection of the single tungsten sheet is 40mm, forming a rectangle, the height is 900mm, and the thickness of the tungsten sheet is 1.5mm; Two tungsten wire clips are fixed, the interval between the two clips is 22.5°, and the interval between the two layers of tungsten cylinders (tungsten sheets) is 5mm.

参见图4、图5,氧化锆纤维保温砖层4是由外层氧化锆纤维砖41、内层氧化锆纤维砖42砌成的双层氧化锆纤维砖筒体,单层氧化锆纤维转的厚度为30mm,双层氧化锆纤维砖筒体高度为860mm。 Referring to Fig. 4 and Fig. 5, the zirconia fiber insulation brick layer 4 is a double-layer zirconia fiber brick cylinder made of an outer layer of zirconia fiber bricks 41 and an inner layer of zirconia fiber bricks 42. The thickness is 30mm, and the height of the double-layer zirconia fiber brick cylinder is 860mm.

本实施例所述的保温侧屏结构尤其适用于泡生法生长高温氧化物晶体。 The thermal insulation side screen structure described in this embodiment is especially suitable for growing high-temperature oxide crystals by the Kyropoulos method.

Claims (5)

1.一种泡生法蓝宝石单晶生长炉保温侧屏,设置于加热器和不锈钢钢外壳之间,其特征是,保温侧屏内层为钨屏,外层为氧化锆纤维保温砖层。 1. A kyropoulos sapphire single crystal growth furnace insulation side screen, which is arranged between the heater and the stainless steel shell, is characterized in that the insulation side screen inner layer is a tungsten screen, and the outer layer is a zirconia fiber insulation brick layer. 2.根据权利要求1 所述的泡生法蓝宝石单晶生长炉保温侧屏,其特征是,所述钨屏是由双层平行的钨片卷成的双层钨筒。 2. The thermal insulation side screen of the kyropoulos sapphire single crystal growth furnace according to claim 1, wherein the tungsten screen is a double-layer tungsten cylinder rolled up by double-layer parallel tungsten sheets. 3.根据权利要求2 所述的泡生法蓝宝石单晶生长炉保温侧屏,其特征是,所述钨片的厚度为0.5-2.5mm,两层钨片之间的距离为1-5mm。 3. The heat preservation side screen of the kyropoulos sapphire single crystal growth furnace according to claim 2, wherein the thickness of the tungsten sheet is 0.5-2.5mm, and the distance between the two layers of tungsten sheets is 1-5mm. 4.根据权利要求1 所述的泡生法蓝宝石单晶生长炉保温侧屏,其特征是,所述氧化锆纤维保温砖层是由双层氧化锆纤维砖砌成的筒体。 4. The insulation side screen of the kyropoulos sapphire single crystal growth furnace according to claim 1, wherein the zirconia fiber insulation brick layer is a cylinder made of double-layer zirconia fiber bricks. 5.根据权利要求4 所述的泡生法蓝宝石单晶生长炉保温侧屏,其特征是,所述氧化锆纤维砖的厚度为20-40mm。 5. the insulation side screen of the kyropoulos sapphire single crystal growth furnace according to claim 4, is characterized in that, the thickness of described zirconia fiber brick is 20-40mm.
CN201420525502.1U 2014-09-15 2014-09-15 Kyropoulos sapphire single crystal growth furnace insulation side screen Expired - Fee Related CN204138819U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420525502.1U CN204138819U (en) 2014-09-15 2014-09-15 Kyropoulos sapphire single crystal growth furnace insulation side screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420525502.1U CN204138819U (en) 2014-09-15 2014-09-15 Kyropoulos sapphire single crystal growth furnace insulation side screen

Publications (1)

Publication Number Publication Date
CN204138819U true CN204138819U (en) 2015-02-04

Family

ID=52415519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420525502.1U Expired - Fee Related CN204138819U (en) 2014-09-15 2014-09-15 Kyropoulos sapphire single crystal growth furnace insulation side screen

Country Status (1)

Country Link
CN (1) CN204138819U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178813A (en) * 2014-09-15 2014-12-03 同方国芯电子股份有限公司 Kyropoulos-process sapphire single-crystal growth furnace thermal-insulation side screen
CN106119962A (en) * 2016-02-03 2016-11-16 江苏浩瀚蓝宝石科技有限公司 The Performance comparision analysis of kyropoulos sapphire crystal furnace difference heat protection screen material
CN107460548A (en) * 2016-06-02 2017-12-12 济南瑰宝新材料有限公司 A kind of composite metal coated insulation construction of Zirconium oxide fibre product
CN109280964A (en) * 2018-10-16 2019-01-29 山东天岳先进材料科技有限公司 A kind of thermal field structure growing single-crystal silicon carbide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178813A (en) * 2014-09-15 2014-12-03 同方国芯电子股份有限公司 Kyropoulos-process sapphire single-crystal growth furnace thermal-insulation side screen
CN106119962A (en) * 2016-02-03 2016-11-16 江苏浩瀚蓝宝石科技有限公司 The Performance comparision analysis of kyropoulos sapphire crystal furnace difference heat protection screen material
CN107460548A (en) * 2016-06-02 2017-12-12 济南瑰宝新材料有限公司 A kind of composite metal coated insulation construction of Zirconium oxide fibre product
CN109280964A (en) * 2018-10-16 2019-01-29 山东天岳先进材料科技有限公司 A kind of thermal field structure growing single-crystal silicon carbide

Similar Documents

Publication Publication Date Title
WO2021008159A1 (en) Coil-movable temperature field structure suitable for czochralski method, and single crystal growth method
CN105483825B (en) A kind of bromine lead caesium method for preparing single crystal
CN103147121B (en) The device of lift kyropoulos growing crystal
CN204138819U (en) Kyropoulos sapphire single crystal growth furnace insulation side screen
CN103541008A (en) Growth method and growth device of large-size gallium oxide single crystal
CN102108544A (en) Thermal field structure used in polycrystalline silicon ingot furnace for controlling crystal growth interface
CN108018601A (en) Crystal growing apparatus, growing method and its application
CN107130295B (en) A device and method for eliminating cracks in silicon mandrel
CN201793813U (en) Low-energy consumption single-crystal thermal field
CN203923453U (en) Kyropoulos sapphire single-crystal furnace insulation construction
CN104178813A (en) Kyropoulos-process sapphire single-crystal growth furnace thermal-insulation side screen
CN106149057A (en) The controlled aluminum nitride crystal growth device in temperature field and technique
CN204714946U (en) The aluminum nitride crystal growth device that temperature field is controlled and technique
CN103469304B (en) Branched shaping sapphire crystallization device and long crystal method thereof
WO2016037506A1 (en) Four-section type combined crucible made from carbon material
CN105088332A (en) Improved structure of single crystal furnace for growing large-size sapphire
CN102140689B (en) Method for growing sapphire crystal
CN208949444U (en) A kind of growth apparatus of c to sapphire crystal
CN114293256B (en) Thermal field and growth process for growing dislocation-free germanium single crystal by Czochralski method
CN202492614U (en) Compound side protective plate for crucible
CN216107318U (en) Crucible device for crystal growth
CN201545932U (en) Preparation of special quartz crucible for mercury indium telluride single crystal
CN207958542U (en) Temperature field for crystal growth by pulling method
CN206721392U (en) Heat protection screen in split type kyropoulos sapphire furnace
CN204385325U (en) A kind of visual crucible cover for sapphire growth furnace

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20170203

Address after: 064100 Yutian Hebei Xin Xing Industrial Park

Patentee after: TANGSHAN GUOXIN JINGYUAN ELECTRONICS CO., LTD.

Patentee after: Hebei University of Technology

Address before: 064100 Yutian County, Hebei Province, no end of West Street, No. 3129, No.

Patentee before: Tongfang Guoxin Electronics Co., Ltd.

Patentee before: Hebei University of Technology

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204

Termination date: 20170915