CN203883673U - Improved Z-source boost DC-DC converter - Google Patents
Improved Z-source boost DC-DC converter Download PDFInfo
- Publication number
- CN203883673U CN203883673U CN201320756259.XU CN201320756259U CN203883673U CN 203883673 U CN203883673 U CN 203883673U CN 201320756259 U CN201320756259 U CN 201320756259U CN 203883673 U CN203883673 U CN 203883673U
- Authority
- CN
- China
- Prior art keywords
- capacitor
- source
- inductor
- diode
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 80
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 6
- 238000010248 power generation Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本实用新型公开了一种改进型Z源升压DC-DC变换器,包括电压源、Z源阻抗网络、MOS管、第二二极管、输出滤波电容和负载;所述Z源阻抗网络由第一电感、第二电感、第一电容、第二电容和第一二极管构成,所述电压源Vs、Z源阻抗网络及MOS管构成升压电路,第二二极管、输出滤波电容和负载构成输出电路。本实用新型整个电路结构简单,具有较高的输出电压增益,且Z源阻抗网络电容电压应力低,电路不存在启动冲击问题。
The utility model discloses an improved Z-source step-up DC-DC converter, which comprises a voltage source, a Z-source impedance network, a MOS tube, a second diode, an output filter capacitor and a load; the Z-source impedance network consists of The first inductance, the second inductance, the first capacitor, the second capacitor and the first diode form, the voltage source V s , the Z source impedance network and the MOS transistor form a boost circuit, the second diode, the output filter Capacitors and loads form the output circuit. The entire circuit of the utility model has a simple structure, high output voltage gain, and low voltage stress of the capacitance of the Z source impedance network, and the circuit does not have the problem of start-up impact.
Description
技术领域technical field
本实用新型涉及电力电子领域,具体涉及一种改进型Z源升压DC-DC变换器。The utility model relates to the field of power electronics, in particular to an improved Z-source step-up DC-DC converter.
背景技术Background technique
在燃料电池发电、光伏发电中,由于单个太阳能电池或者单个燃料电池提供的直流电压较低,无法满足现有用电设备的用电需求,也不能满足并网的需求,往往需要将多个电池串联起来达到所需的电压。这种方法一方面大大降低了整个系统的可靠性,另一方面还需解决串联均压问题。为此,需要能够把低电压转换为高电压的高增益DC-DC变换器。近几年提出的Z源升压DC-DC变换器是一种高增益DC-DC变换器,但该电路具有较高的Z源阻抗网络电容电压应力,且电路启动时存在很大的启动冲击电流和电压,限制了该电路在实际中的应用。In fuel cell power generation and photovoltaic power generation, due to the low DC voltage provided by a single solar cell or a single fuel cell, it cannot meet the electricity demand of existing electrical equipment, nor can it meet the needs of grid connection. It is often necessary to combine multiple batteries connected in series to achieve the desired voltage. On the one hand, this method greatly reduces the reliability of the entire system, and on the other hand, it needs to solve the problem of series voltage equalization. For this reason, a high-gain DC-DC converter capable of converting low voltage to high voltage is required. The Z-source step-up DC-DC converter proposed in recent years is a high-gain DC-DC converter, but the circuit has a high Z-source impedance network capacitor voltage stress, and there is a large startup shock when the circuit starts Current and voltage limit the practical application of this circuit.
实用新型内容Utility model content
为了克服现有技术存在的缺点与不足,本实用新型提供了一种改进型Z源升压DC-DC变换器。In order to overcome the shortcomings and deficiencies of the prior art, the utility model provides an improved Z-source step-up DC-DC converter.
本实用新型采用如下技术方案:The utility model adopts the following technical solutions:
一种改进型Z源升压DC-DC变换器,包括电压源Vs,Z源阻抗网络、MOS管S、第二二极管D2、输出滤波电容Co和负载RL;所述电压源Vs、Z源阻抗网络及MOS管S构成升压电路,所述第二二极管D2、输出滤波电容Co和负载RL构成输出电路。An improved Z source step-up DC-DC converter, including a voltage source V s , a Z source impedance network, a MOS transistor S, a second diode D 2 , an output filter capacitor C o and a load R L ; the voltage The source V s , the Z source impedance network and the MOS transistor S form a boost circuit, and the second diode D 2 , the output filter capacitor C o and the load RL form an output circuit.
所述Z源阻抗网络由第一电感L1、第二电感L2、第一电容C1、第二电容C2和第一二极管D2构成;The Z source impedance network is composed of a first inductor L 1 , a second inductor L 2 , a first capacitor C 1 , a second capacitor C 2 and a first diode D 2 ;
所述电压源Vs的正极分别与第一电感L1的一端和第一电容C1的负极连接,所述第一二极管D1的阳极分别与第一电感L1的另一端和第二电容C2的负极连接;所述第一二极管D1的阴极分别与第一电容C1的正极和第二电感L2的一端连接,所述第二电感L2的另一端分别与第二电容C2的正极、MOS管S的漏极和第二二极管D2的阳极连接,所述第二二极管D2的阴极分别与输出滤波电容Co的正极和负载RL的一端连接,所述负载RL的另一端分别与输出滤波电容Co的负极、MOS管S的源极和电压源Vs的负极连接。The anode of the voltage source V s is respectively connected to one end of the first inductor L1 and the negative electrode of the first capacitor C1 , and the anode of the first diode D1 is respectively connected to the other end of the first inductor L1 and the first capacitor C1 . The cathode of the second capacitor C2 is connected; the cathode of the first diode D1 is respectively connected to the positive electrode of the first capacitor C1 and one end of the second inductance L2 , and the other end of the second inductance L2 is respectively connected to The anode of the second capacitor C2 , the drain of the MOS transistor S, and the anode of the second diode D2 are connected, and the cathode of the second diode D2 is respectively connected to the anode of the output filter capacitor C o and the load R L One end of the load RL is connected to the negative pole of the output filter capacitor C o , the source of the MOS transistor S and the negative pole of the voltage source V s respectively.
所述第一电容C1、第二电容C2和输出滤波电容Co均为电解电容。The first capacitor C 1 , the second capacitor C 2 and the output filter capacitor C o are all electrolytic capacitors.
MOS管导通时,电压源与第一电容串联对第二电感充电储能;同时电压源与第二电容串联对第一电感充电储能;输出滤波电容对负载供电;MOS管关断时,电压源与第一电感和第二电感一起对输出滤波电容和负载供电,完成升压功能。When the MOS tube is turned on, the voltage source is connected in series with the first capacitor to charge and store energy for the second inductor; at the same time, the voltage source is connected in series with the second capacitor to charge and store energy for the first inductor; the output filter capacitor supplies power to the load; when the MOS tube is turned off, The voltage source, together with the first inductor and the second inductor, supplies power to the output filter capacitor and the load to complete the voltage boosting function.
本实用新型的有益效果:The beneficial effects of the utility model:
本实用新型电压增益较高,Z源阻抗网络的电容电压应力低,对启动冲击电流和电压具有很好的抑制作用;The utility model has high voltage gain, low capacitive voltage stress of the Z source impedance network, and has a good inhibitory effect on the starting impulse current and voltage;
本实用新型电路适用于输入电压变化宽的场合,如燃料电池发电和光伏发电等新能源发电技术领域。The circuit of the utility model is suitable for occasions where the input voltage varies widely, such as fuel cell power generation, photovoltaic power generation and other new energy power generation technical fields.
附图说明Description of drawings
图1是本实用新型一种改进型Z源升压DC-DC变换器电路图;Fig. 1 is a kind of improved Z source step-up DC-DC converter circuit diagram of the utility model;
图2(a)~图2(b)分别是图1中所示电路在其MOS管S导通和关断时的等效电路图,图中实线表示变换器中有电流流过的部分,虚线表示变换器中无电流流过的部分;Figure 2(a) to Figure 2(b) are the equivalent circuit diagrams of the circuit shown in Figure 1 when the MOS transistor S is turned on and off, respectively. The solid line in the figure indicates the part where current flows in the converter. The dotted line indicates the part of the converter where no current flows;
图3(a)~图3(e)是本实用新型电路工作时的波形图,其中图3(a)是MOS管的驱动波形图,图3(b)是输入电压源的波形图,图3(c)是Z源阻抗网络中第一电感和第二电感的电流波形图,图3(d)是输出电压的波形图,图3(e)是Z源阻抗网络中第一电容和第二电容的电压波形图。Fig. 3 (a) ~ Fig. 3 (e) are the wave diagrams when the circuit of the utility model is working, wherein Fig. 3 (a) is the driving waveform diagram of the MOS tube, and Fig. 3 (b) is the waveform diagram of the input voltage source, Fig. 3(c) is the current waveform diagram of the first inductor and the second inductor in the Z source impedance network, Figure 3(d) is the waveform diagram of the output voltage, and Figure 3(e) is the first capacitor and the second capacitor in the Z source impedance network The voltage waveform diagram of the second capacitor.
具体实施方式Detailed ways
下面结合实施例及附图,对本实用新型作进一步地详细说明,但本实用新型的实施方式不限于此。The utility model will be described in further detail below in conjunction with the embodiments and accompanying drawings, but the implementation of the utility model is not limited thereto.
实施例Example
如图1所示,一种改进型Z源升压DC-DC变换器,包括电压源Vs,Z源阻抗网络、MOS管S、第二二极管D2、输出滤波电容Co和负载RL;所述电压源Vs、Z源阻抗网络及MOS管S构成升压电路,所述第二二极管D2、输出滤波电容Co和负载RL构成输出电路。As shown in Figure 1, an improved Z-source step-up DC-DC converter includes a voltage source V s , a Z-source impedance network, a MOS transistor S, a second diode D 2 , an output filter capacitor C o and a load R L ; the voltage source V s , Z source impedance network and MOS transistor S constitute a boost circuit, and the second diode D 2 , output filter capacitor C o and load R L constitute an output circuit.
所述Z源阻抗网络由第一电感L1、第二电感L2、第一电容C1、第二电容C2和第一二极管D1构成;The Z source impedance network is composed of a first inductor L 1 , a second inductor L 2 , a first capacitor C 1 , a second capacitor C 2 and a first diode D 1 ;
电路的具体连接方式为:The specific connection method of the circuit is:
所述电压源Vs的正极分别与第一电感L1的一端和第一电容C1的负极连接,所述第一二极管D1的阳极分别与第一电感L1的另一端和第二电容C2的负极连接;所述第一二极管D1的阴极分别与第一电容C1的正极和第二电感L2的一端连接,所述第二电感L2的另一端分别与第二电容C2的正极、MOS管S的漏极和第二二极管D2的阳极连接,所述第二二极管D2的阴极分别与输出滤波电容Co的正极和负载RL的一端连接,所述负载RL的另一端分别与输出滤波电容Co的负极、MOS管S的源极和电压源Vs的负极连接。The anode of the voltage source V s is respectively connected to one end of the first inductor L1 and the negative electrode of the first capacitor C1 , and the anode of the first diode D1 is respectively connected to the other end of the first inductor L1 and the first capacitor C1 . The cathode of the second capacitor C2 is connected; the cathode of the first diode D1 is respectively connected to the positive electrode of the first capacitor C1 and one end of the second inductance L2 , and the other end of the second inductance L2 is respectively connected to The anode of the second capacitor C2 , the drain of the MOS transistor S, and the anode of the second diode D2 are connected, and the cathode of the second diode D2 is respectively connected to the anode of the output filter capacitor C o and the load R L One end of the load RL is connected to the negative pole of the output filter capacitor C o , the source of the MOS transistor S and the negative pole of the voltage source V s respectively.
所述第一电容C1、第二电容C2和输出滤波电容Co均为电解电容。The first capacitor C 1 , the second capacitor C 2 and the output filter capacitor C o are all electrolytic capacitors.
MOS管S导通时,电压源Vs与第一电容C1串联对第二电感L2充电储能,同时电压源Vs与第二电容C2串联对第一电感L1充电储能;输出滤波电容Co对负载RL供电;MOS管S关断时,电压源Vs与第一电感L1和第二电感L2一起对输出滤波电容Co和负载RL供电,完成升压功能。整个电路结构简单,具有较高的输出电压增益,且Z源阻抗网络中的电容电压应力低,电路不存在启动冲击问题。When the MOS transistor S is turned on, the voltage source V s is connected in series with the first capacitor C 1 to charge and store energy for the second inductor L 2 , and at the same time, the voltage source V s is connected in series with the second capacitor C 2 to charge and store energy for the first inductor L 1 ; The output filter capacitor C o supplies power to the load R L ; when the MOS transistor S is turned off, the voltage source V s together with the first inductor L 1 and the second inductor L 2 supplies power to the output filter capacitor C o and the load R L to complete the boost Function. The whole circuit has simple structure, high output voltage gain, and low capacitive voltage stress in the Z source impedance network, and the circuit does not have the problem of start-up shock.
本实用新型的具体工作过程:Concrete work process of the present utility model:
阶段1,如图2(a)所示:MOS管S导通,此时第一二极管D1和第二二极管D2处于关断状态。电路形成了三个回路,分别是:电压源Vs与第二电容C2一起对第一电感L1进行充电储能,形成回路;电压源Vs与第一电容C1一起对第二电感L2进行充电储能,形成回路;输出滤波电容Co对负载RL供电,形成回路。Stage 1, as shown in FIG. 2( a ): the MOS transistor S is turned on, and at this time, the first diode D 1 and the second diode D 2 are in an off state. The circuit forms three loops, namely: the voltage source V s and the second capacitor C 2 together charge and store the energy of the first inductor L 1 to form a loop; the voltage source V s and the first capacitor C 1 together charge the second inductor L 2 charges and stores energy to form a loop; the output filter capacitor C o supplies power to the load R L to form a loop.
阶段2,如图2(b)所示:MOS管S关断,此时第一二极管D1和第二二极管D2均导通。电路形成了三个回路,分别是:电压源Vs与第一电感L1和第二电感L2一起对输出滤波电容Co和负载RL供电,形成升压回路;第一电感L1对第一电容C1充电,形成回路;第二电感L2对第二电容C2充电,形成回路。Phase 2, as shown in Fig. 2(b): the MOS transistor S is turned off, and at this time, both the first diode D 1 and the second diode D 2 are turned on. The circuit forms three loops, which are: the voltage source V s together with the first inductor L 1 and the second inductor L 2 supplies power to the output filter capacitor C o and the load R L to form a boost loop; the first inductor L 1 pairs The first capacitor C1 is charged to form a loop; the second inductor L2 is charged to the second capacitor C2 to form a loop.
综上情况,假定MOS管S的占空比为D,开关周期为Ts。由于Z源阻抗网络的对称性,即第一电感L1与第二电感L2的电感量相等,第一电容C1与第二电容C2的电容值相等。因此,有vL1=vL2=vL,VC1=VC2=VC。vL1、vL2、VC1和VC2分别是第一电感L1、第二电感L2、第一电容C1和第二电容C2的电压,从而设定vL和VC分别为Z源阻抗网络的电感电压和电容电压。In summary, it is assumed that the duty ratio of the MOS transistor S is D, and the switching period is T s . Due to the symmetry of the Z source impedance network, that is, the inductance of the first inductor L 1 and the second inductor L 2 are equal, the capacitance values of the first capacitor C 1 and the second capacitor C 2 are equal. Therefore, v L1 =v L2 =v L , V C1 =V C2 =V C . v L1 , v L2 , V C1 and V C2 are the voltages of the first inductor L 1 , the second inductor L 2 , the first capacitor C 1 and the second capacitor C 2 respectively, so that v L and V C are respectively set to Z The inductor and capacitor voltages of the source impedance network.
在一个开关周期内,令输出电压为Vo,当变换器进入稳态工作后,得出以下的电压关系推导过程。In one switching cycle, let the output voltage be V o , when the converter enters steady-state operation, the following derivation process of the voltage relationship is obtained.
MOS管S导通期间,电压源Vs与第一电感L1和第二电容C2串联,由于电压源Vs的极性与第二电容C2的电压极性保持一致,因此有公式:During the conduction period of the MOS transistor S, the voltage source V s is connected in series with the first inductor L 1 and the second capacitor C 2. Since the polarity of the voltage source V s is consistent with the voltage polarity of the second capacitor C 2 , there is a formula:
vL1=vL=Vs+VC2=Vs+VC (1)v L1 =v L =V s +V C2 =V s +V C (1)
同时,电压源Vs与第二电感L2和第一电容C1串联,同样由于电压源Vs的极性与第一电容C1的电压极性保持一致,因此有公式:At the same time, the voltage source V s is connected in series with the second inductance L 2 and the first capacitor C 1 , and since the polarity of the voltage source V s is consistent with the voltage polarity of the first capacitor C 1 , there is a formula:
vL2=vL=Vs+VC1=Vs+VC (2)v L2 =v L =V s +V C1 =V s +V C (2)
MOS管S在一个开关周期Ts内的导通时间为DTs。The conduction time of the MOS transistor S in a switching period T s is DT s .
MOS管S关断期间,第一二极管D1导通,第一电感L1与第一电容C1并联,因此有公式:When the MOS transistor S is turned off, the first diode D1 is turned on, and the first inductor L1 is connected in parallel with the first capacitor C1 , so the formula is:
vL1=vL=-VC1=-VC (3)v L1 =v L =-V C1 =-V C (3)
同时,第二电感L2与第二电容C2并联,因此有公式:At the same time, the second inductor L2 is connected in parallel with the second capacitor C2 , so there is a formula:
vL2=vL=-VC2=-VC (4)v L2 =v L =-V C2 =-V C (4)
电压源Vs与第一电感L1、第二电感L2和输出电路部分串联,因此有公式:The voltage source V s is connected in series with the first inductance L 1 , the second inductance L 2 and the output circuit part, so the formula is:
Vo=Vs-vL1-vL2=Vs-2vL=Vs+2VC (5)V o =V s -v L1 -v L2 =V s -2v L =V s +2V C (5)
MOS管S在一个开关周期Ts内的关断时间为(1-D)Ts。The turn-off time of the MOS transistor S in a switching cycle T s is (1-D)T s .
由以上分析,根据Z源阻抗网络的对称性和电感伏秒数守恒原理,联立式(1)~(4),可得:From the above analysis, according to the symmetry of the Z source impedance network and the conservation principle of inductive volt-seconds, the simultaneous equations (1) to (4) can be obtained:
(Vs+VC)DTs+(-VC)(1-D)Ts=0 (6)(V s +V C )DT s +(-V C )(1-D)T s =0 (6)
因此,可得到Z源阻抗网络的电容电压VC与电压源Vs的关系表达式为:Therefore, the relationship expression between the capacitance voltage V C of the Z source impedance network and the voltage source V s can be obtained as:
又由公式(5),可得该电路的增益因子表达式为:And from the formula (5), the gain factor expression of the circuit can be obtained as:
由式(7)和式(8)可得本电路Z源阻抗网络的电容电压VC与输出电压Vo的关系式为:From formula (7) and formula (8), the relationship between the capacitance voltage V C of the Z source impedance network of this circuit and the output voltage V o can be obtained as:
VC=DVo (9)V C =DV o (9)
由于本实用新型电路工作时的占空比D不超过0.5,因此由式(9)可以看出,本实用新型电路Z源阻抗网络中的电容电压VC的最大值不超过0.5倍的输出电压Vo值,因而本实用新型电路Z源阻抗网络中的电容电压应力较低。如图3(a)为MOS管S的驱动Vg波形图;图3(b)为电压源Vs的波形图;图3(c)为Z源阻抗网络中第一电感L1和第二电感L2的电流iL波形图;图3(d)为输出电压Vo的波形图;图3(e)为Z源阻抗网络中第一电容C1和第二电容C2的电压VC波形图。Since the duty cycle D of the utility model circuit is not more than 0.5, it can be seen from formula (9) that the maximum value of the capacitance voltage V C in the utility model circuit Z source impedance network is not more than 0.5 times the output voltage V o value, so the capacitive voltage stress in the utility model circuit Z source impedance network is relatively low. Figure 3(a) is the waveform diagram of the driving V g of the MOS transistor S; Figure 3(b) is the waveform diagram of the voltage source Vs ; Figure 3(c) is the first inductance L 1 and the second inductance in the Z source impedance network The waveform diagram of the current i L of the inductor L 2 ; Figure 3(d) is the waveform diagram of the output voltage V o ; Figure 3(e) is the voltage V C of the first capacitor C 1 and the second capacitor C 2 in the Z source impedance network Waveform diagram.
另外,由于本实用新型电路本身拓扑结构的特点,当其启动时,Z源阻抗网络中的第一电感L1和第二电感L2对启动冲击电流有抑制作用,有利于变换器的软启动,减少了对器件的冲击损害。In addition, due to the characteristics of the topological structure of the utility model circuit itself, when it is started, the first inductance L1 and the second inductance L2 in the Z source impedance network have an inhibitory effect on the start-up inrush current, which is beneficial to the soft start of the converter , reducing the impact damage to the device.
综上所述,本实用新型电路不仅具有较高的电压增益,且Z源阻抗网络中电容电压应力低,不存在启动冲击回路。To sum up, the circuit of the utility model not only has higher voltage gain, but also has low capacitor voltage stress in the Z source impedance network, and there is no start-up shock circuit.
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受所述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。The above-mentioned embodiment is the preferred implementation mode of the present utility model, but the implementation mode of the present utility model is not limited by the described embodiment, and any other changes, modifications, modifications made without departing from the spirit and principle of the present utility model Substitution, combination, and simplification should all be equivalent replacement methods, and are all included in the protection scope of the present utility model.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320756259.XU CN203883673U (en) | 2013-11-26 | 2013-11-26 | Improved Z-source boost DC-DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320756259.XU CN203883673U (en) | 2013-11-26 | 2013-11-26 | Improved Z-source boost DC-DC converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203883673U true CN203883673U (en) | 2014-10-15 |
Family
ID=51684137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320756259.XU Expired - Fee Related CN203883673U (en) | 2013-11-26 | 2013-11-26 | Improved Z-source boost DC-DC converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203883673U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633839A (en) * | 2013-11-26 | 2014-03-12 | 华南理工大学 | Improved Z-source boosting DC (direct current)-DC converter |
CN106100403A (en) * | 2016-08-26 | 2016-11-09 | 广东工业大学 | A kind of multi output Z source half-bridge converter |
CN107070212A (en) * | 2017-06-19 | 2017-08-18 | 广东工业大学 | A kind of back-pressure type active impedance network booster system |
CN109842313A (en) * | 2019-03-07 | 2019-06-04 | 广东工业大学 | A kind of quasi- z source inventer of switching boost type |
CN111245219A (en) * | 2020-01-15 | 2020-06-05 | 广东工业大学 | Novel embedded impedance network DC-DC converter with high power density and switching power supply |
-
2013
- 2013-11-26 CN CN201320756259.XU patent/CN203883673U/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633839A (en) * | 2013-11-26 | 2014-03-12 | 华南理工大学 | Improved Z-source boosting DC (direct current)-DC converter |
CN106100403A (en) * | 2016-08-26 | 2016-11-09 | 广东工业大学 | A kind of multi output Z source half-bridge converter |
CN107070212A (en) * | 2017-06-19 | 2017-08-18 | 广东工业大学 | A kind of back-pressure type active impedance network booster system |
CN109842313A (en) * | 2019-03-07 | 2019-06-04 | 广东工业大学 | A kind of quasi- z source inventer of switching boost type |
CN111245219A (en) * | 2020-01-15 | 2020-06-05 | 广东工业大学 | Novel embedded impedance network DC-DC converter with high power density and switching power supply |
CN111245219B (en) * | 2020-01-15 | 2022-03-25 | 广东工业大学 | Novel embedded impedance network DC-DC converter with high power density and switching power supply |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104009633B (en) | A kind of electric current continuous high-gain DC-DC converter circuit | |
CN105958823A (en) | A Current Continuous High-Gain Switching Step-Up Quasi-Z Source Converter Circuit | |
CN103490628B (en) | A kind of single-phase high-gain boost converter | |
CN103633839A (en) | Improved Z-source boosting DC (direct current)-DC converter | |
CN103825457A (en) | Quasi-Z-source DC-DC boost converter circuit | |
CN105450020A (en) | Common-ground high-gain Z source boost converter | |
CN104779790A (en) | Switched inductance quasi-Z source DC-DC converter circuit | |
CN205847093U (en) | A Current Continuous High-Gain Switching Step-Up Quasi-Z Source Converter Circuit | |
CN105939112B (en) | A kind of quasi- boost switching DC-DC converter of high-gain | |
CN204442176U (en) | A kind of switched inductors type accurate Z source DC-DC converter circuit | |
CN105939126B (en) | A kind of quasi- Z-source inverter of switched inductors type mixing | |
CN209217949U (en) | A High Gain Boost Converter with Output Capacitors in Series | |
CN103633840B (en) | A kind of Single switch high gain boost DC/DC changer | |
CN203883673U (en) | Improved Z-source boost DC-DC converter | |
CN105939108A (en) | A Switched Inductance Quasi-Switch Step-Up DC-DC Converter | |
CN107565814A (en) | A kind of quasi- Z source switch boosting inverters of high-gain suitable for fuel cell power generation | |
CN107104596A (en) | A kind of quasi- boost switching DC/DC converters of the high-gain of low voltage stress | |
CN106787692A (en) | A kind of quasi- Z source converters of type switching capacity altogether | |
CN205847124U (en) | A Switched Inductance Hybrid Quasi-Z Source Inverter | |
CN104283419A (en) | A Quadratic High-Gain Boost Converter with Switched Capacitor and Coupled Inductor | |
CN109004835A (en) | The quasi- source the Z DC-DC converter of isolated form high-gain suitable for photovoltaic power generation | |
CN203722474U (en) | Quasi-Z-source DC-DC boost converter circuit | |
CN105958855B (en) | A kind of quasi- Z-source inverter of high-gain | |
CN107104590A (en) | A kind of quasi- boost switching DC/DC converters based on switched inductors | |
CN106452152A (en) | Switch boost type high-gain quasi-Z-source inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141015 Termination date: 20211126 |
|
CF01 | Termination of patent right due to non-payment of annual fee |