CN203811699U - A Zigbee-based temperature observation system for solar panel wire joints - Google Patents
A Zigbee-based temperature observation system for solar panel wire joints Download PDFInfo
- Publication number
- CN203811699U CN203811699U CN201320802966.8U CN201320802966U CN203811699U CN 203811699 U CN203811699 U CN 203811699U CN 201320802966 U CN201320802966 U CN 201320802966U CN 203811699 U CN203811699 U CN 203811699U
- Authority
- CN
- China
- Prior art keywords
- solar
- zigbee
- observation system
- temperature
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012544 monitoring process Methods 0.000 claims abstract description 27
- 230000005540 biological transmission Effects 0.000 claims abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 11
- 210000003850 cellular structure Anatomy 0.000 claims abstract description 3
- 239000004020 conductor Substances 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 7
- 230000006698 induction Effects 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
- Photovoltaic Devices (AREA)
- Selective Calling Equipment (AREA)
Abstract
本实用新型公开了一种基于ZigBee的太阳能板导线接头温度观测系统,属于电力系统运行中的数据监测采集设备,可以实现导线及其接头温度的多点采集和数据整合传输。该观测系统包括太阳能电池组件、温度数据采集装置、数据传输网络、监控主站。本实用新型利用太阳能技术,在保证电源供给的同时大大减少使用高压感应取电装置带来的成本费用,ZigBee技术则实现了零通信费用的工业级高效率、低功耗的无线数据传输。
The utility model discloses a ZigBee-based solar panel conductor joint temperature observation system, which belongs to data monitoring and acquisition equipment in the operation of an electric power system, and can realize multi-point acquisition and data integration transmission of conductors and their joint temperatures. The observation system includes solar cell components, temperature data acquisition device, data transmission network, and monitoring master station. The utility model utilizes solar energy technology to greatly reduce the cost of using a high-voltage induction power-taking device while ensuring power supply, and the ZigBee technology realizes industrial-grade high-efficiency and low-power wireless data transmission with zero communication costs.
Description
技术领域 technical field
本实用新型涉及一种温度观测系统,具体地说,涉及一种用太阳能供电的基于ZigBee技术的针对导线接头温度的观测系统,属于电力系统运行中的数据监测采集设备。 The utility model relates to a temperature observation system, in particular to a ZigBee technology-based observation system aimed at the temperature of wire joints powered by solar energy, which belongs to data monitoring and acquisition equipment in power system operation.
背景技术 Background technique
输电线路跳线接头,特别是用并沟线夹连接的接头,或者变电站引下线处使用螺栓线夹的接头,经过一段时间运行后,个别线夹由于螺栓松动、铝表面氧化等多种原因,接触电阻增大。当通过比较大的负荷电流时,线夹接触面局部区域发红,以致烧熔成洞或者表面烧成凹凸不平,从而又进一步增大了接触电阻,严重者烧断跳线(或引下线)从而造成事故。这类事故在全国各地屡见不鲜。易出现故障的跳线接头处需设置导线接头温度观测系统预防事故的发生。 Transmission line jumper joints, especially those connected with parallel trench clamps, or joints using bolt clamps at the down conductors of substations, after a period of operation, individual clamps may be damaged due to various reasons such as loose bolts and oxidation of the aluminum surface. , the contact resistance increases. When a relatively large load current is passed, the local area of the contact surface of the clamp becomes red, so that it is burnt into a hole or the surface is burnt uneven, which further increases the contact resistance, and in severe cases, the jumper (or down conductor) is burnt. ) resulting in an accident. Such accidents are common all over the country. The jumper joints that are prone to failure need to be equipped with a wire joint temperature observation system to prevent accidents.
目前常用的监测技术是智能输电导线自测温技术,该技术将通信光纤并入传统的钢芯铝绞线导线,进行动态温度测量,可精确掌握导线温度变化曲线,且其供电系统采用从高压线路上感应取电和锂电池来共同给系统供电,整个系统功耗很大,实施费用较高,不利于推广。 At present, the commonly used monitoring technology is the self-temperature measurement technology of intelligent transmission wires. This technology incorporates communication optical fibers into traditional steel-cored aluminum stranded wires for dynamic temperature measurement, and can accurately grasp the temperature change curve of the wires. On-the-road inductive power collection and lithium batteries are used to power the system together. The entire system consumes a lot of power, and the implementation cost is high, which is not conducive to promotion.
发明内容 Contents of the invention
鉴于上述缺陷,本实用新型提供了一种利用太阳能供电的、能够利用ZigBee无线网络通信进行传输导线接头温度数据的观测系统。该系统可以实现导线及其接头温度的多点采集和数据整合传输。 In view of the above defects, the utility model provides an observation system powered by solar energy and capable of transmitting temperature data of wire joints by using ZigBee wireless network communication. The system can realize multi-point acquisition and data integration and transmission of the temperature of wires and their joints.
为了实现上述目的本实用新型采用如下技术方案:一种基于ZigBee的太阳能板导线接头温度观测系统包括太阳能电池组件、若干温度数据采集装置、数据传输网络和监控主站,其中所述温度数据采集装置包含协调器和若干子节点;所述太阳能电池组件给温度数据采集装置中的协调器和各子节点供电;所述子节点安装在输电线路跳线接头上,采集导线温度、接头温度以及导线电流,然后将采集到的数据通过ZigBee网路传输给协调器;协调器通过数据传输网络将其接收到的数据传输到监控主站。 In order to achieve the above object, the utility model adopts the following technical scheme: a ZigBee-based solar panel wire joint temperature observation system includes solar cell components, some temperature data acquisition devices, data transmission network and monitoring master station, wherein the temperature data acquisition device Contains a coordinator and several sub-nodes; the solar cell module supplies power to the coordinator and each sub-node in the temperature data acquisition device; the sub-nodes are installed on the jumper joints of the transmission line to collect wire temperature, joint temperature and wire current , and then transmit the collected data to the coordinator through the ZigBee network; the coordinator transmits the data it receives to the monitoring master station through the data transmission network.
进一步,所述数据传输网络为GSM或GPRS网络。 Further, the data transmission network is a GSM or GPRS network.
具体地,所述太阳能电池组件包括蓄电池、太阳能充电板和与太阳能充电板连接的太阳能充电控制器,太阳能充电控制器对太阳能充电板的输出进行控制。太阳能充电控制器将太阳能充电板的输出的能量存储于蓄电池中。 Specifically, the solar cell assembly includes a storage battery, a solar charging board and a solar charging controller connected to the solar charging board, and the solar charging controller controls the output of the solar charging board. The solar charge controller stores the output energy of the solar charging panel in the storage battery.
更具体地,所述监控主站包括监控主机、人机接口模块、无线通讯接口模块及若干外部设备,所述监控主机与人机接口模块连接,人机接口模块与各外部设备连接,各外部设备与无线通讯接口模块连接通信。 More specifically, the monitoring master station includes a monitoring host, a man-machine interface module, a wireless communication interface module, and a number of external devices. The monitoring host is connected to the man-machine interface module, and the man-machine interface module is connected to each external device. The device communicates with the wireless communication interface module. the
本实用新型的有益效果在于:本实用新型采用太阳能电池组进行供电,使用充电控制器有效获取清洁的太阳能,大大减少使用高压感应取电装置带来的成本费用。基于ZigBee的无线技术,简化了数据采集终端设备,不需要额外的供电线路和数据传输线路,具有高效、低耗、灵活、成本低的优点。 The beneficial effect of the utility model lies in that the utility model adopts a solar cell group for power supply, uses a charging controller to effectively obtain clean solar energy, and greatly reduces the cost caused by using a high-voltage induction power-taking device. ZigBee-based wireless technology simplifies data acquisition terminal equipment, does not require additional power supply lines and data transmission lines, and has the advantages of high efficiency, low consumption, flexibility, and low cost.
附图说明 Description of drawings
图1为本实用新型的系统结构图; Fig. 1 is a system structure diagram of the present utility model;
图中:1-太阳能电池组件、2-若干温度数据采集装置、3-监控主站、1.1-蓄电池、1.2-太阳能充电控制器、1.3-太阳能电池板、2.1-协调器、2.2-若干子节点、3.1-无线通讯接口模块、3.2-外部设备、3.3-人机接口模块、3.4-监控主机。 In the figure: 1-solar battery module, 2-several temperature data acquisition devices, 3-monitoring master station, 1.1-battery, 1.2-solar charge controller, 1.3-solar panel, 2.1-coordinator, 2.2-several sub-nodes , 3.1-wireless communication interface module, 3.2-external equipment, 3.3-man-machine interface module, 3.4-monitoring host.
具体实施方式 Detailed ways
如图1所示,本实用新型包括太阳能电池组件1、若干温度数据采集装置2、数据传输网络和监控主站3,其中所述温度数据采集装置2包含多个测量集群,每个集群由1个协调器2.1和若干子节点2.2构成;所述太阳能电池组件1给温度数据采集装置2中的协调器2.1和各子节点2.2供电;所述子节点2.2安装在输电线路跳线接头上,采集导线温度、接头温度以及导线电流,然后将采集到的数据通过ZigBee网路传输给协调器2.1;协调器2.1通过数据传输网络将其接收到的数据传输到监控主站3。 As shown in Figure 1, the utility model comprises a solar cell assembly 1, several temperature data acquisition devices 2, a data transmission network and a monitoring master station 3, wherein the temperature data acquisition device 2 includes a plurality of measurement clusters, and each cluster consists of 1 A coordinator 2.1 and several sub-nodes 2.2 are formed; the solar cell assembly 1 supplies power to the coordinator 2.1 and each sub-node 2.2 in the temperature data acquisition device 2; Conductor temperature, joint temperature and conductor current, and then transmit the collected data to the coordinator 2.1 through the ZigBee network; the coordinator 2.1 transmits the data it receives to the monitoring master station 3 through the data transmission network.
所述太阳能电池组件包括蓄电池1.1,太阳能充电控制器1.2和太阳能电池板1.3,且所述的太阳能电池板1.3通过太阳能充电控制器1.2实现对其最大输出功率跟踪控制,并将输出能量存储在蓄电池1.1中,同时为数据采集装置供电。 The solar battery assembly includes a battery 1.1, a solar charge controller 1.2 and a solar panel 1.3, and the solar battery panel 1.3 realizes its maximum output power tracking control through the solar charge controller 1.2, and stores the output energy in the battery In 1.1, power is supplied to the data acquisition device at the same time.
所述温度数据采集装置2,负责监测一架杆塔上所有接头数据,采集导线温度、接头温度及导线电流,并按一定时间间隔通过ZigBee网络上传给协调器。 The temperature data acquisition device 2 is responsible for monitoring all joint data on a pole tower, collecting wire temperature, joint temperature and wire current, and uploading them to the coordinator through the ZigBee network at a certain time interval.
所述数据网络传输系统指全球移动通信系统(GSM)的短消息服务(SMS)或通用分组无线电业务(GPRS)网络,主要实现协调器和监控主站间的数据通信。 The data network transmission system refers to the Global System for Mobile Communications (GSM) Short Message Service (SMS) or General Packet Radio Service (GPRS) network, which mainly realizes the data communication between the coordinator and the monitoring master station.
所述的监控主站3包括监控主机3.4、人机接口模块3.3、无线通讯接口模块3.1及若干外部设备3.2;所述的监控主机3.4实现数据的显示、分析及对其他模块的控制;所述的人机接口模块3.3为用户提供操作接口;所述的无线通讯接口模块3.1为外部设备提供与数据传输网络通讯的接口。外部设备包括用于接收、寄存传输数据的外设寄存器;将数字信号解码成模拟的视频、音频、告警信号输出,便于与显示图像、发出声音、触发报警的解码器;将模拟的视频、音频、告警信号编码成数字信号,便于网络传输的编码器,另一方面将音频及告警的数字信号转换成模拟信号输出;外接音响设备;视频显示设备等。下面对本实用新型系统的工作原理进行详细说明。 Described monitoring main station 3 comprises monitoring main frame 3.4, man-machine interface module 3.3, wireless communication interface module 3.1 and some external equipment 3.2; Described monitoring main frame 3.4 realizes the display of data, analysis and the control to other modules; The man-machine interface module 3.3 provides an operation interface for the user; the wireless communication interface module 3.1 provides an interface for external devices to communicate with the data transmission network. External equipment includes peripheral registers for receiving and storing transmitted data; decoding digital signals into analog video, audio, and alarm signal output, which is convenient for displaying images, making sounds, and triggering alarms; 1. The alarm signal is encoded into a digital signal, which is convenient for network transmission. On the other hand, the audio and alarm digital signal is converted into an analog signal output; external audio equipment; video display equipment, etc. The working principle of the utility model system will be described in detail below.
太阳能电池组件1通过太阳能充电控制器1.2操作太阳能充电板1.3进行最大功率输出控制,尽可能获得充足的太阳能对温度数据采集装置供电,并将多余的电量存入蓄电池1.1中备用。温度数据采集装置2中各子节点2.2的传感器对导线的温度、节点温度以及导线电流进行检测,并按一定时间间隔通过ZigBee网络上传给协调器2.1,协调器2.1接收到数据后通过全球移动通信系统(GSM)短消息服务(SMS)或通用分组无线电业务(GPRS)传送到监控主站3,监控主站3通过监控主站中的系统对接收到的温度、电流数据进行综合分析,从而判断出导线接头当前运行状况并预测其发展趋势。与此同时,主站可通过GSM发送命令修改测量群的运行参数,实现对接头在线监测运行方式的控制。 The solar battery module 1 operates the solar charging board 1.3 through the solar charging controller 1.2 to control the maximum power output, obtains as much solar energy as possible to supply power to the temperature data acquisition device, and stores excess electricity in the storage battery 1.1 for backup. The sensors of each sub-node 2.2 in the temperature data acquisition device 2 detect the temperature of the conductor, the node temperature and the conductor current, and upload them to the coordinator 2.1 through the ZigBee network at a certain time interval, and the coordinator 2.1 passes the global mobile communication after receiving the data. System (GSM) Short Message Service (SMS) or General Packet Radio Service (GPRS) is sent to the monitoring master station 3, and the monitoring master station 3 comprehensively analyzes the received temperature and current data through the system in the monitoring master station, thereby judging Current operating conditions of outgoing conductor joints and forecast their development trends. At the same time, the master station can send commands through GSM to modify the operating parameters of the measurement group, so as to realize the control of the joint online monitoring operation mode.
此处说明描述了本实用新型的某些特征及一种实现方法,但其他基于本实用新型技术方案的结构变化、替代和修改也应包括在本实用新型权利要求的保护范围内,具体保护范围由所附的权利要求范围为准。 Here, some features and a method of implementation of the utility model are described, but other structural changes, substitutions and modifications based on the technical solution of the utility model should also be included in the protection scope of the utility model claims, and the specific protection scope The scope of the appended claims shall prevail.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320802966.8U CN203811699U (en) | 2013-12-10 | 2013-12-10 | A Zigbee-based temperature observation system for solar panel wire joints |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320802966.8U CN203811699U (en) | 2013-12-10 | 2013-12-10 | A Zigbee-based temperature observation system for solar panel wire joints |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203811699U true CN203811699U (en) | 2014-09-03 |
Family
ID=51450432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320802966.8U Expired - Lifetime CN203811699U (en) | 2013-12-10 | 2013-12-10 | A Zigbee-based temperature observation system for solar panel wire joints |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203811699U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107257104A (en) * | 2017-06-22 | 2017-10-17 | 国网河南省电力公司驻马店供电公司 | Transmission line of electricity conductor joint heating electrical treatment device |
CN107888147A (en) * | 2016-09-30 | 2018-04-06 | 阿特斯阳光电力集团有限公司 | Photovoltaic system |
CN109489858A (en) * | 2018-07-02 | 2019-03-19 | 金华八达集团有限公司科技信息分公司 | A kind of temperature of electric transmission line detection system and method |
CN112419692A (en) * | 2020-10-29 | 2021-02-26 | 安普瑞斯(南京)航运动力有限公司 | Wireless transmission system specially used for detecting high temperature of battery high-voltage line |
-
2013
- 2013-12-10 CN CN201320802966.8U patent/CN203811699U/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107888147A (en) * | 2016-09-30 | 2018-04-06 | 阿特斯阳光电力集团有限公司 | Photovoltaic system |
CN107257104A (en) * | 2017-06-22 | 2017-10-17 | 国网河南省电力公司驻马店供电公司 | Transmission line of electricity conductor joint heating electrical treatment device |
CN109489858A (en) * | 2018-07-02 | 2019-03-19 | 金华八达集团有限公司科技信息分公司 | A kind of temperature of electric transmission line detection system and method |
CN112419692A (en) * | 2020-10-29 | 2021-02-26 | 安普瑞斯(南京)航运动力有限公司 | Wireless transmission system specially used for detecting high temperature of battery high-voltage line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203532160U (en) | Wind power generation remote monitoring system based on internet of things | |
CN103986416B (en) | A kind of portable light photovoltaic assembly monitoring side | |
CN201887976U (en) | Remote monitoring system for wind-light supplementary street lamp | |
CN203455714U (en) | ZigBee wireless monitoring system of power line towers | |
CN207908954U (en) | wireless monitoring management system | |
CN203811699U (en) | A Zigbee-based temperature observation system for solar panel wire joints | |
CN203672336U (en) | Power transmission pole tower inclination angle monitoring system based on ZigBee network | |
CN203673085U (en) | Power transmission line micrometeorological monitoring system base on ZigBee network | |
CN205385543U (en) | Dormancy formula wireless transmission solar energy power supply camera | |
CN204290860U (en) | A kind of photovoltaic generation energy-storage system of networking | |
CN202183836U (en) | Self-powered 3G communication video monitoring device | |
CN203811310U (en) | Transmission line wire tension monitoring device based on Zigbee and GPRS | |
CN202383223U (en) | Energy-saving remote detecting system for electrical load | |
CN205864033U (en) | A kind of wind light generation electric motor intelligent charging device | |
CN102035878A (en) | Rapid turnout deployment monitoring system | |
CN203102558U (en) | Icing monitoring system for electric power | |
CN209387796U (en) | UHF detection system based on inspection robot | |
CN107276533A (en) | The voltage and current detection means of roof photovoltaic panel | |
CN203812997U (en) | Battery remote maintenance system | |
CN203385486U (en) | Online temperature monitoring device for grounding wires of sheath of high-voltage single-core cable | |
CN202255661U (en) | Temperature monitoring device for electric transmission line lead | |
CN202405867U (en) | Intelligent power supply system for solar-powered energy-saving substation | |
CN205919847U (en) | Electric wire netting monitored control system based on singlechip | |
CN204515481U (en) | The electric power controller of outdoor high-voltage cable termination partial discharge monitoring system | |
CN205716891U (en) | A kind of long-range distribution intelligent of solar energy power generating streetlamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20140903 |