[go: up one dir, main page]

CN203674977U - Multiphase dc-dc converter - Google Patents

Multiphase dc-dc converter Download PDF

Info

Publication number
CN203674977U
CN203674977U CN201420031852.2U CN201420031852U CN203674977U CN 203674977 U CN203674977 U CN 203674977U CN 201420031852 U CN201420031852 U CN 201420031852U CN 203674977 U CN203674977 U CN 203674977U
Authority
CN
China
Prior art keywords
phase
converter
converters
input
multiphase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201420031852.2U
Other languages
Chinese (zh)
Inventor
刘军
徐光伟
张迁
汪伟峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec International Ltd
Original Assignee
Astec International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec International Ltd filed Critical Astec International Ltd
Priority to CN201420031852.2U priority Critical patent/CN203674977U/en
Application granted granted Critical
Publication of CN203674977U publication Critical patent/CN203674977U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本实用新型公开了一种多相DC-DC变换器,包括:输入端,用于接收直流输入电压;并联连接的多个单相DC-DC变换器,用于将直流输入电压进行DC-DC变换;输出端,用于输出经所述多个单相DC-DC变换器变换的直流输出电压;以及均衡电路,与并联连接的所述多个单相DC-DC变换器串联连接在多相DC-DC变换器的输入端与输出端之间,用于均衡所述多个单相DC-DC变换器的电流。

The utility model discloses a multi-phase DC-DC converter, which comprises: an input terminal for receiving a DC input voltage; a plurality of single-phase DC-DC converters connected in parallel for converting the DC input voltage into DC-DC transformation; an output terminal for outputting the DC output voltage transformed by the plurality of single-phase DC-DC converters; and an equalization circuit connected in series with the plurality of single-phase DC-DC converters connected in parallel in multi-phase Between the input terminal and the output terminal of the DC-DC converter, it is used to balance the current of the multiple single-phase DC-DC converters.

Description

多相DC-DC变换器Multiphase DC-DC Converter

技术领域technical field

本实用新型总体上涉及变换器领域,更具体而言,涉及一种具有多相架构的DC-DC变换器。The utility model generally relates to the field of converters, and more specifically relates to a DC-DC converter with a multi-phase structure.

背景技术Background technique

本部分中的陈述仅提供与本公开相关的背景信息,并且可以不构成现有技术。The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.

已知有各种类型的直流-直流(DC-DC)变换器。例如,已知有多相DC-DC变换器,其采用两个或更多个并联连接的独立的单相DC-DC变换器。例如在采用两个单相DC-DC变换器的多相DC-DC变换器中,所述两个单相DC-DC变换器的输出电流在相位上偏移开90°。这使得在多相DC-DC变换器的输出端产生电流交叠(overlapping current),从而减小输出电容器中的波纹电流。另外,谐振组件必须很好地匹配以实现两个单相变换器之间的可接受的电流共享。否则,输出电容器中的波纹电流将会更高。因此,需要对现有的多相DC-DC变换器进行改进。Various types of direct current-direct current (DC-DC) converters are known. For example, multiphase DC-DC converters are known which employ two or more independent single-phase DC-DC converters connected in parallel. For example, in a multiphase DC-DC converter employing two single-phase DC-DC converters, the output currents of the two single-phase DC-DC converters are shifted in phase by 90°. This results in a current overlapping current at the output of the multiphase DC-DC converter, thereby reducing the ripple current in the output capacitor. Additionally, the resonant components must be well matched to achieve acceptable current sharing between the two single-phase converters. Otherwise, the ripple current in the output capacitor will be higher. Therefore, it is necessary to improve the existing multi-phase DC-DC converter.

实用新型内容Utility model content

鉴于现有技术的以上情况,本实用新型的一个目的是提供一种均衡电路改进多相DC-DC变换器,其至少能够实现多相DC-DC变换器中的多个单相变换器之间的可接受的电流共享。In view of the above circumstances of the prior art, an object of this utility model is to provide an equalizing circuit to improve the multiphase DC-DC converter, which can at least realize the acceptable current sharing.

根据本实用新型的一个方面,提供了一种多相DC-DC变换器,包括:输入端,用于接收直流输入电压;并联连接的多个单相DC-DC变换器,用于将所述直流输入电压进行DC-DC变换;输出端,用于输出经所述多个单相DC-DC变换器变换的直流输出电压;以及均衡电路,与所述并联连接的多个单相DC-DC变换器串联连接在所述输入端与所述输出端之间,用于均衡所述多个单相DC-DC变换器的电流。According to one aspect of the present utility model, a multi-phase DC-DC converter is provided, including: an input terminal for receiving a DC input voltage; a plurality of single-phase DC-DC converters connected in parallel for converting the The DC input voltage is converted to DC-DC; the output terminal is used to output the DC output voltage transformed by the multiple single-phase DC-DC converters; and the equalization circuit is connected to the multiple single-phase DC-DC in parallel The converters are connected in series between the input terminal and the output terminal, and are used to balance the current of the multiple single-phase DC-DC converters.

根据本实用新型的另一方面,所述多相DC-DC变换器还可以包括驱动电路,用于驱动所述多个单相DC-DC变换器,以使得所述多个单相DC-DC变换器的输出电流的相位彼此之间具有预定相移。According to another aspect of the present invention, the multi-phase DC-DC converter may further include a drive circuit for driving the multiple single-phase DC-DC converters, so that the multiple single-phase DC-DC The phases of the output currents of the converters have a predetermined phase shift with respect to each other.

根据本实用新型的另一方面,其中,所述均衡电路由差模电感组成。According to another aspect of the present utility model, wherein, the equalization circuit is composed of differential mode inductors.

根据本实用新型的另一方面,其中,所述多相DC-DC变换器的输出端可以包括第一输出端和第二输出端,所述差模电感的第一线圈串联连接在所述多个单相DC-DC变换器的第一共用输出端与所述第一输出端之间,所述差模电感的第二线圈串联连接在所述多个单相DC-DC变换器的第二共用输出端与所述第二输出端之间。According to another aspect of the present utility model, wherein, the output terminal of the multi-phase DC-DC converter may include a first output terminal and a second output terminal, and the first coil of the differential mode inductor is connected in series to the multi-phase DC-DC converter. Between the first common output terminal of a single-phase DC-DC converter and the first output terminal, the second coil of the differential mode inductor is connected in series to the second of the plurality of single-phase DC-DC converters between the common output terminal and the second output terminal.

根据本实用新型的另一方面,其中,所述多相DC-DC变换器的输入端可以包括第一输入端和第二输入端,所述差模电感的第一线圈串联连接在所述第一输入端与所述多个单相DC-DC变换器的第一共用输入端之间,所述差模电感的第二线圈串联连接在所述第二输入端与所述多个单相DC-DC变换器的第二共用输入端之间。According to another aspect of the present utility model, wherein, the input terminal of the multiphase DC-DC converter may include a first input terminal and a second input terminal, and the first coil of the differential mode inductor is connected in series with the first input terminal. Between an input end and the first common input end of the plurality of single-phase DC-DC converters, the second coil of the differential mode inductor is connected in series between the second input end and the plurality of single-phase DC - between the second common input terminals of the DC converter.

根据本实用新型的另一方面,均衡电路可以由差模电感组成。其中,所述多相DC-DC变换器的输出端包括第一输出端和第二输出端,所述差模电感的第一线圈串联连接在所述多个单相DC-DC变换器的第一共用输出端与所述第一输出端之间,所述差模电感的第二线圈串联连接在所述多个单相DC-DC变换器的第二共用输出端与所述第二输出端之间。According to another aspect of the present invention, the equalization circuit may be composed of differential mode inductors. Wherein, the output terminal of the multi-phase DC-DC converter includes a first output terminal and a second output terminal, and the first coil of the differential mode inductor is connected in series with the first coil of the plurality of single-phase DC-DC converters. Between a common output terminal and the first output terminal, the second coil of the differential mode inductor is connected in series between the second common output terminal of the plurality of single-phase DC-DC converters and the second output terminal between.

根据本实用新型的另一方面,其中,所述多个单相DC-DC变压器中的每个可以包括:主变压器,用于对所述直流输入电压进行变压;开关单元,包括多个开关元件,设置在所述单相DC-DC变换器的输入端与所述主变压器的初级侧之间,用于通过所述多个开关元件的接通和关断操作来将所述直流输入电压提供到所述主变压器的初级侧;以及整流器,连接在所述主变压器的次级侧与所述单相DC-DC变换器的输出端之间,用于对所述主变压器的次级侧输出的电压进行整流,以输出所述直流输出电压,其中,所述整流器是全桥整流器或半桥整流器。According to another aspect of the present utility model, each of the plurality of single-phase DC-DC transformers may include: a main transformer for transforming the DC input voltage; a switch unit including a plurality of switches an element provided between the input terminal of the single-phase DC-DC converter and the primary side of the main transformer, for switching the DC input voltage by turning on and off operations of the plurality of switching elements provided to the primary side of the main transformer; and a rectifier connected between the secondary side of the main transformer and the output terminal of the single-phase DC-DC converter for supplying the secondary side of the main transformer The output voltage is rectified to output the DC output voltage, wherein the rectifier is a full-bridge rectifier or a half-bridge rectifier.

根据本实用新型的另一方面,其中,所述整流器可以是半桥整流器,并且所述多个单相DC-DC变压器的半桥整流器可以具有共用的电容器桥臂。According to another aspect of the present invention, the rectifier may be a half-bridge rectifier, and the half-bridge rectifiers of the plurality of single-phase DC-DC transformers may have a common capacitor bridge arm.

根据本实用新型的另一方面,其中,所述整流器可以是半桥整流器,并且所述均衡电路可以串联在所述半桥整流器的二极管桥臂与电容器桥臂之间。According to another aspect of the present invention, wherein the rectifier may be a half-bridge rectifier, and the balancing circuit may be connected in series between the diode bridge arm and the capacitor bridge arm of the half-bridge rectifier.

根据本实用新型的另一方面,其中,所述开关单元可以包括桥式连接的两个或四个开关元件。According to another aspect of the present invention, wherein, the switch unit may include two or four switch elements connected in a bridge.

根据本实用新型的另一方面,所述多相DC-DC变换器还可以包括并联连接在所述多个单相DC-DC变换器和所述均衡电路与所述输出端之间的至少一个滤波电容器,用于滤除所述多个单相DC-DC变换器的输出电压中的波纹。According to another aspect of the present invention, the multi-phase DC-DC converter may further include at least one DC-DC converter connected in parallel between the plurality of single-phase DC-DC converters and the equalization circuit and the output terminal The filter capacitor is used for filtering ripples in the output voltages of the multiple single-phase DC-DC converters.

根据本实用新型的另一方面,其中,在每个单相DC-DC变换器中,所述开关单元中每个开关元件的驱动信号可以具有大约50%的占空比,并且所述开关单元中的第一开关元件的驱动信号与第二开关元件的驱动信号之间可以具有180度的相移,所述第一开关元件在导通时使所述主变压器的初级侧线圈通过第一方向的输入电流,并且所述第二开关元件在导通时使所述主变压器的初级侧线圈通过与第一方向相反的第二方向的输入电流。According to another aspect of the present utility model, wherein, in each single-phase DC-DC converter, the driving signal of each switching element in the switching unit may have a duty cycle of about 50%, and the switching unit There may be a phase shift of 180 degrees between the driving signal of the first switching element and the driving signal of the second switching element, and when the first switching element is turned on, the primary side coil of the main transformer passes through the first direction input current, and when the second switch element is turned on, the primary side coil of the main transformer passes an input current in a second direction opposite to the first direction.

根据本实用新型的另一方面,其中,所述预定相移可以为180°/n,n为所述多个单相DC-DC变换器的数目。According to another aspect of the present utility model, wherein, the predetermined phase shift may be 180°/n, where n is the number of the plurality of single-phase DC-DC converters.

在根据本实用新型的以上方面的多相DC-DC变换器中,均衡电路与并联连接的多个单相DC-DC变换器串联连接在多相DC-DC变换器的输入端与输出端之间,能够均衡多相DC-DC变换器中的多个单相DC-DC变换器的电流,减小多个单相DC-DC变换器的输入电流或输出电流之间的差异,从而实现多相DC-DC变换器中的多个单相变换器之间的可接受的电流共享。In the multiphase DC-DC converter according to the above aspect of the present invention, the balancing circuit is connected in series with a plurality of single-phase DC-DC converters connected in parallel between the input terminal and the output terminal of the multiphase DC-DC converter. It can balance the current of multiple single-phase DC-DC converters in the multi-phase DC-DC converter, and reduce the difference between the input current or output current of multiple single-phase DC-DC converters, so as to realize multiple Acceptable current sharing between multiple single-phase converters in a phase DC-DC converter.

附图说明Description of drawings

本实用新型可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本实用新型的优选实施例和解释本实用新型的原理和优点。在附图中:The present invention can be better understood by referring to the following description given in conjunction with the accompanying drawings, wherein the same or similar reference numerals are used throughout the drawings to denote the same or similar components. The accompanying drawings, together with the following detailed description, are included in and form a part of this specification, and are used to further illustrate preferred embodiments of the utility model and explain principles and advantages of the utility model. In the attached picture:

图1示出根据本实用新型的第一实施例的多相DC-DC变换器的示意性框图;Fig. 1 shows a schematic block diagram of a multiphase DC-DC converter according to a first embodiment of the present invention;

图2A和2B示出根据本实用新型的第一实施例的多相DC-DC变换器中的均衡电路的示例电路示图;2A and 2B show an example circuit diagram of an equalization circuit in a multiphase DC-DC converter according to a first embodiment of the present invention;

图3示出根据本实用新型的第一实施例的多相DC-DC变换器的示例电路示图;FIG. 3 shows an example circuit diagram of a multiphase DC-DC converter according to a first embodiment of the present invention;

图4-5示出图3的多相DC-DC变换器的电流和电压的示例波形图;4-5 illustrate example waveform diagrams of currents and voltages of the multiphase DC-DC converter of FIG. 3;

图6示出根据本实用新型的第一实施例的多相DC-DC变换器的另一示例电路示图;Fig. 6 shows another example circuit diagram of the multiphase DC-DC converter according to the first embodiment of the present invention;

图7示出根据本实用新型的第一实施例的多相DC-DC变换器的又一示例电路示图;Fig. 7 shows another example circuit diagram of the multi-phase DC-DC converter according to the first embodiment of the present invention;

图8示出根据本实用新型的第一实施例的多相DC-DC变换器的另一示例电路示图;Fig. 8 shows another example circuit diagram of the multiphase DC-DC converter according to the first embodiment of the present invention;

图9示出根据本实用新型的第一实施例的多相DC-DC变换器的另一示例电路示图;Fig. 9 shows another example circuit diagram of the multi-phase DC-DC converter according to the first embodiment of the present invention;

图10示出根据本实用新型的第二实施例的多相DC-DC变换器的示意性框图;Fig. 10 shows a schematic block diagram of a multiphase DC-DC converter according to a second embodiment of the present invention;

图11A和11B示出根据本实用新型的第二实施例的多相DC-DC变换器中的均衡电路的示例电路示图;11A and 11B show an example circuit diagram of an equalization circuit in a multiphase DC-DC converter according to a second embodiment of the present invention;

图12示出根据本实用新型的第二实施例的多相DC-DC变换器的示例电路示图;Fig. 12 shows an example circuit diagram of a multiphase DC-DC converter according to a second embodiment of the present invention;

图13示出根据本实用新型的第二实施例的多相DC-DC变换器的另一示例电路示图;Fig. 13 shows another example circuit diagram of the multiphase DC-DC converter according to the second embodiment of the present invention;

图14示出根据本实用新型的第二实施例的多相DC-DC变换器中的均衡电路的另一示例电路示图;以及Fig. 14 shows another example circuit diagram of the equalization circuit in the multiphase DC-DC converter according to the second embodiment of the present invention; and

图15示出根据本实用新型的第二实施例的多相DC-DC变换器的另一示例电路示图。Fig. 15 shows another example circuit diagram of the multi-phase DC-DC converter according to the second embodiment of the present invention.

具体实施方式Detailed ways

下面将参照附图来说明本实用新型的实施例。在本实用新型的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本实用新型无关的、本领域普通技术人员已知的部件和处理的表示和描述。Embodiments of the present utility model will be described below with reference to the accompanying drawings. Elements and features described in one drawing or one embodiment of the present invention may be combined with elements and features shown in one or more other drawings or embodiments. It should be noted that, for the sake of clarity, representation and description of components and processes that are not relevant to the present invention and known to those of ordinary skill in the art are omitted from the drawings and descriptions.

在本实用新型的实施例中,利用与并联连接的多个单相DC-DC变换器串联连接在多相DC-DC变换器的输入端与输出端之间的均衡电路来均衡多个单相DC-DC变换器的电流,减小多个单相DC-DC变换器的电流之间的差异,从而实现多相DC-DC变换器中的多个单相变换器之间的可接受的电流共享。作为示例而不是限制,均衡电路可以设置在并联连接的多个单相DC-DC变换器与多相DC-DC变换器的输入端之间,用于均衡多个单相DC-DC变换器的输入电流;或者,也可以设置在并联连接的多个单相DC-DC变换器与多相DC-DC变换器的输出端之间,用于均衡多个单相DC-DC变换器的输出电流。In an embodiment of the present invention, a plurality of single-phase DC-DC converters connected in parallel are used to equalize a plurality of single-phase The current of the DC-DC converter reduces the difference between the currents of multiple single-phase DC-DC converters, thereby achieving an acceptable current between multiple single-phase converters in a multi-phase DC-DC converter shared. As an example and not a limitation, an equalization circuit may be provided between a plurality of single-phase DC-DC converters connected in parallel and input terminals of a multi-phase DC-DC converter, for equalizing the input terminals of the plurality of single-phase DC-DC converters Input current; or, it can also be set between multiple single-phase DC-DC converters connected in parallel and the output terminals of multi-phase DC-DC converters to balance the output current of multiple single-phase DC-DC converters .

在本实用新型的实施例中,为区别起见,多相DC-DC变换器也可以称为多相DC-DC变换系统,多相DC-DC变换器中的多个单相DC-DC变换器也可以简称DC-DC变换器。In the embodiments of the present utility model, for the sake of distinction, the multiphase DC-DC converter can also be called a multiphase DC-DC conversion system, and the multiple single-phase DC-DC converters in the multiphase DC-DC converter It can also be referred to as a DC-DC converter for short.

图1示出根据本实用新型的第一实施例的多相DC-DC变换器的示意性框图。在本实用新型的第一实施例中,均衡电路设置在并联连接的多个单相DC-DC变换器与多相DC-DC变换器的输出端之间,用于均衡多个单相DC-DC变换器的输出电流。如图1所示,多相DC-DC变换器100包括:输入端(131,132),用于接收直流输入电压Vin;并联连接的多个单相DC-DC变换器(111,112,…,11n),用于将直流输入电压Vin进行DC-DC变换,其中n是大于1的正整数;输出端(133,134),用于输出经多个单相DC-DC变换器变换的直流输出电压Vout;以及均衡电路(120),与并联连接的多个单相DC-DC变换器(111,112,…,11n)串联连接,并设置在多个单相DC-DC变换器(111,112,…,11n)与输出端(133,134)之间,用于均衡所述多个单相DC-DC变换器的输出电流。Fig. 1 shows a schematic block diagram of a multiphase DC-DC converter according to a first embodiment of the present invention. In the first embodiment of the present utility model, the equalization circuit is arranged between a plurality of single-phase DC-DC converters connected in parallel and the output ends of the multi-phase DC-DC converters, and is used to equalize a plurality of single-phase DC-DC converters. The output current of the DC converter. As shown in Fig. 1, the multiphase DC-DC converter 100 includes: input terminals (131, 132) for receiving a DC input voltage Vin; a plurality of single-phase DC-DC converters (111, 112, ... , 11n), used to convert the DC input voltage Vin to DC-DC, where n is a positive integer greater than 1; the output terminal (133, 134) is used to output the DC converted by multiple single-phase DC-DC converters an output voltage Vout; and an equalizing circuit (120), connected in series with a plurality of single-phase DC-DC converters (111, 112, ..., 11n) connected in parallel, and provided at the plurality of single-phase DC-DC converters (111 , 112,..., 11n) and the output terminals (133, 134), used to balance the output current of the multiple single-phase DC-DC converters.

输入端(131,132)通常包括第一输入端和第二输入端,分别连接地电位和高于地的高电位,所述高电位与地电位的差是输入电压Vin的值。类似地,输出端(133,134)通常包括第一输出端和第二输出端,分别连接地电位和高于地的高电位,所述高电位与地电位的差是输出电压Vout的值。在以下为说明方便,将输入端131称为第一输入端,将输入端132称为第二输入端;将输出端133称为第一输出端,将输出端134称为第二输出端。但应理解,这里及以下使用的“第一”和“第二”仅是为了区分而不是为了限制。The input terminals ( 131 , 132 ) generally include a first input terminal and a second input terminal, respectively connected to a ground potential and a high potential higher than the ground, and the difference between the high potential and the ground potential is the value of the input voltage Vin. Similarly, the output terminals ( 133 , 134 ) usually include a first output terminal and a second output terminal, respectively connected to a ground potential and a high potential higher than the ground, and the difference between the high potential and the ground potential is the value of the output voltage Vout. For the convenience of description below, the input end 131 is called the first input end, the input end 132 is called the second input end; the output end 133 is called the first output end, and the output end 134 is called the second output end. However, it should be understood that "first" and "second" used here and below are only for distinction and not for limitation.

在本实施例中,DC-DC变换器(111,112,…,11n)可以采用各种适当结构的单相DC-DC变换器来实现,如正向变换器、桥式变换器、推挽式变换器等,而没有限制。In this embodiment, the DC-DC converters (111, 112, ..., 11n) can be realized by using various single-phase DC-DC converters with appropriate structures, such as forward converters, bridge converters, push-pull type converter, etc., without limitation.

在本实施例中,可以采用适当结构的均衡电路来实施均衡电路120。例如,可以采用差模电感或由电感器和电容器组成的LC电路来实施均衡电路120。In this embodiment, the equalization circuit 120 can be implemented by using an equalization circuit with an appropriate structure. For example, the equalization circuit 120 may be implemented using a differential mode inductor or an LC circuit composed of an inductor and a capacitor.

在多相DC-DC变换器100中还包括驱动电路(未示出),用于驱动所述多个单相DC-DC变换器(111,112,…,11n),以使得所述多个单相DC-DC变换器的输出电流的相位彼此之间具有预定相移。优选地,预定相移可以是180°/n,n为所述多个单相DC-DC变换器的数目。这样的预定相移能够较好地消除多相DC-DC变换器的输出电流中的波纹,因此可以减少或省去多相DC-DC变换器中的输出电容。这里可以采用任何适当结构的驱动电路。为了不模糊本实用新型,在这里及以下不具体描述驱动电路的结构。The multi-phase DC-DC converter 100 also includes a drive circuit (not shown) for driving the multiple single-phase DC-DC converters (111, 112, ..., 11n), so that the multiple The phases of the output currents of the single-phase DC-DC converter have a predetermined phase shift from each other. Preferably, the predetermined phase shift may be 180°/n, where n is the number of the plurality of single-phase DC-DC converters. Such a predetermined phase shift can better eliminate the ripple in the output current of the multiphase DC-DC converter, so the output capacitance in the multiphase DC-DC converter can be reduced or omitted. Any suitable configuration of drive circuits may be used here. In order not to obscure the present invention, the structure of the driving circuit will not be described in detail here and below.

图2A示出根据本实用新型的第一实施例的多相DC-DC变换器中的均衡电路的示例电路示图。在该示例中,多相DC-DC变换器200采用差模电感220来实施均衡电路。如图2所示,差模电感220的第一线圈串联连接在多个单相DC-DC变换器(211,212,…,21n)的第一共用输出端243与多相DC-DC变换器的第一输出端233之间,差模电感220的第二线圈串联连接在多个单相DC-DC变换器(211,212,…,21n)的第二共用输出端244与多相DC-DC变换器的第二输出端234之间。第一共用输出端243和第二共用输出端244分别连接差模电感220的一个线圈的同名端和另一个线圈的非同名端。这样,使得流入差模电感的两个线圈中的电流的方向相反,每个线圈中的初始电流产生的磁通量在另一个线圈中感应出与该另一个线圈中的初始电流方向相反的感应电流。由此,减小了两个线圈中流过的电流的差异,从而减小了多个单相DC-DC变换器(211,212,…,21n)的输出电流的差异。FIG. 2A shows an example circuit diagram of an equalization circuit in a multiphase DC-DC converter according to a first embodiment of the present invention. In this example, the multiphase DC-DC converter 200 implements a balancing circuit using a differential mode inductor 220 . As shown in Figure 2, the first coil of the differential mode inductor 220 is connected in series with the first common output end 243 of multiple single-phase DC-DC converters (211, 212, ..., 21n) and the multi-phase DC-DC converter Between the first output terminals 233 of the differential mode inductor 220, the second coil of the differential mode inductor 220 is connected in series to the second common output terminal 244 of a plurality of single-phase DC-DC converters (211, 212, ..., 21n) and the multi-phase DC- between the second output terminals 234 of the DC converter. The first common output terminal 243 and the second common output terminal 244 are respectively connected to the same-named end of one coil of the differential mode inductor 220 and the non-identical end of the other coil. In this way, the direction of the current flowing into the two coils of the differential mode inductor is opposite, and the magnetic flux generated by the initial current in each coil induces in the other coil an induction current opposite to the direction of the initial current in the other coil. Thereby, the difference of the currents flowing in the two coils is reduced, thereby reducing the difference of the output currents of the multiple single-phase DC-DC converters ( 211 , 212 , . . . , 21n).

在该示例中,差模电感的两个线圈的同名端(由图中的黑点表示)在一侧。在其他示例中,差模电感的两个线圈的同名端也可以在相对的两侧,而第一共用输出端243和第二共用输出端244仍然可以分别连接差模电感220的一个线圈的同名端和另一个线圈的非同名端,如图2B所示。In this example, the dotted ends of the two coils of the differential mode inductor (represented by the black dots in the diagram) are on one side. In other examples, the terminals with the same name of the two coils of the differential mode inductor can also be on opposite sides, and the first common output terminal 243 and the second common output terminal 244 can still be respectively connected to the terminals of the same name of a coil of the differential mode inductor 220. terminal and the non-identical terminal of another coil, as shown in Figure 2B.

在本公开中,差模电感是功能上的定义,对差模电压电流信号起抑制作用,其结构上可以用同名端在一侧或同名端在不同侧的共模或差模电感。In the present disclosure, the differential mode inductor is defined functionally, which inhibits the differential mode voltage and current signals, and its structure can use common mode or differential mode inductors with the same terminal on one side or different terminals on different sides.

图3示出根据本实用新型的第一实施例的多相DC-DC变换器的示例电路示图。如图3所示,多相DC-DC变换器300包括两个并联连接的单相DC-DC变换器311和312。DC-DC变换器311由图中的虚线框示出,DC-DC变换器312由图中的双点划线框示出。均衡电路由差模电感T3实现。Fig. 3 shows an example circuit diagram of a multi-phase DC-DC converter according to a first embodiment of the present invention. As shown in FIG. 3 , the multiphase DC-DC converter 300 includes two single-phase DC-DC converters 311 and 312 connected in parallel. The DC-DC converter 311 is shown by a dotted line box in the figure, and the DC-DC converter 312 is shown by a two-dot dash line box in the figure. The equalization circuit is realized by the differential mode inductor T3.

DC-DC变换器311包括:主变压器T1,用于对在DC-DC变换器311的输入端(331,332)上的由直流电源提供的直流输入电压Vin进行变压;开关单元,包括多个开关元件(Q1,Q2),设置在DC-DC变换器311的输入端与主变压器T1的初级侧之间,用于通过所述多个开关元件的接通和关断操作来将直流输入电压提供到主变压器的初级侧;以及整流器,连接在主变压器的次级侧与所述DC-DC变换器311的输出端之间,用于对主变压器的次级侧输出的电压进行整流,以输出直流输出电压。The DC-DC converter 311 includes: a main transformer T1 for transforming the DC input voltage Vin provided by the DC power supply at the input terminals (331, 332) of the DC-DC converter 311; a switch unit including multiple switching elements (Q1, Q2), provided between the input terminal of the DC-DC converter 311 and the primary side of the main transformer T1, for switching the DC input through the on and off operations of the plurality of switching elements a voltage supplied to the primary side of the main transformer; and a rectifier, connected between the secondary side of the main transformer and the output terminal of the DC-DC converter 311, for rectifying the voltage output from the secondary side of the main transformer, to output a DC output voltage.

DC-DC变换器311中的开关Q1和Q2以半桥式连接,以组成开关单元。Q1和Q2由金属氧化物半导体场效应管(Metal-Oxide-SemiconductorField-Effect Transistor,MOSFET)(简称MOS管)实现,并且在其他示例中也可以由其他开关元件来实现。当开关Q1或Q2之一被接通时,主变压器T1的初级线圈被激励,并相应地激励T1的次级线圈。在T1的次级线圈被激励时,产生经变压的电力,经变压的电力随后由DC-DC变换器312中的整流器整流并传递到连接在多相DC-DC变换器300的输出端(333,334)的负载I2。The switches Q1 and Q2 in the DC-DC converter 311 are connected in a half bridge to form a switching unit. Q1 and Q2 are realized by Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) (MOS transistor for short), and may also be realized by other switching elements in other examples. When one of the switches Q1 or Q2 is turned on, the primary winding of the main transformer T1 is energized and accordingly the secondary winding of T1 is energized. When the secondary coil of T1 is energized, transformed power is generated, which is then rectified by the rectifier in the DC-DC converter 312 and passed to the output terminal connected to the multi-phase DC-DC converter 300 (333, 334) load I2.

DC-DC变换器311中的电容器C1、C2分别与电感器L1和T1组成谐振电路的重要部分。The capacitors C1 and C2 in the DC-DC converter 311 and the inductors L1 and T1 respectively form an important part of the resonant circuit.

在该示例中,DC-DC变换器311的整流器是半桥整流器,由开关D1、D3和电容器C5、C6组成。其中开关D1、D3组成半桥整流器的二极管桥臂,电容器C5、C6组成半桥整流器的电容器桥臂。开关D1、D3由二极管实现,并且在其他示例中也可以由其他开关元件例如MOSFET来实现。整流器中的开关元件可以是二极管、MOS管等各种类型的半导体开关器件。当“整流器”是MOS管时,可以利用驱动电路来为MOS管提供驱动信号,以使N MOS管的电流只从源极流到漏极。In this example, the rectifier of the DC-DC converter 311 is a half-bridge rectifier consisting of switches D1, D3 and capacitors C5, C6. The switches D1 and D3 form the diode bridge arms of the half-bridge rectifier, and the capacitors C5 and C6 form the capacitor bridge arms of the half-bridge rectifier. The switches D1 , D3 are implemented by diodes, and in other examples may also be implemented by other switching elements such as MOSFETs. The switching elements in the rectifier can be various types of semiconductor switching devices such as diodes and MOS tubes. When the "rectifier" is a MOS tube, the drive circuit can be used to provide a drive signal for the MOS tube, so that the current of the N MOS tube only flows from the source to the drain.

DC-DC变换器312具有与DC-DC变换器311相同的结构,包括由开关Q3和Q4组成的开关单元,由变压器T2实现的主变压器,由开关D2、D4和电容器C7、C8组成的半桥整流器,并且还包括由。电容器C3、C4分别与L2和T2组成的谐振电路。DC-DC变换器312的工作原理也与DC-DC变换器311相同,除了二者的驱动信号不同,这里不再详细描述。The DC-DC converter 312 has the same structure as the DC-DC converter 311, including a switching unit composed of switches Q3 and Q4, a main transformer realized by a transformer T2, and a half circuit composed of switches D2, D4 and capacitors C7, C8. bridge rectifier, and is also included by the . A resonant circuit composed of capacitors C3, C4 and L2 and T2 respectively. The working principle of the DC-DC converter 312 is also the same as that of the DC-DC converter 311 , except that the driving signals of the two are different, which will not be described in detail here.

差模电感T3串联连接在DC-DC变换器311和312与多相DC-DC变换器300的输出端之间,更具体而言,串联连接在DC-DC变换器311和312的半桥整流器的二极管桥臂与电容器桥臂之间。应当理解,在其他示例中,差模电感T3也可以串联连接在DC-DC变换器311和312的共用输出端与多相DC-DC变换器300的输出端之间。The differential mode inductor T3 is connected in series between the DC-DC converters 311 and 312 and the output terminals of the multiphase DC-DC converter 300, more specifically, the half-bridge rectifiers of the DC-DC converters 311 and 312 are connected in series Between the diode bridge arm and the capacitor bridge arm. It should be understood that in other examples, the differential mode inductor T3 may also be connected in series between the common output terminals of the DC-DC converters 311 and 312 and the output terminal of the multi-phase DC-DC converter 300 .

多相DC-DC变换器300中的电容器C20并联连接在多相DC-DC变换器300的输入端与DC-DC变换器311和312之间,用作多相DC-DC变换器300的输入电容器,用于储能以在软启动过程中充当电源,以及过滤直流输入电压中的噪声。The capacitor C20 in the multiphase DC-DC converter 300 is connected in parallel between the input terminal of the multiphase DC-DC converter 300 and the DC-DC converters 311 and 312, and is used as the input of the multiphase DC-DC converter 300 Capacitors for energy storage to act as a power source during soft-start and to filter noise in the DC input voltage.

优选地,多相DC-DC变换器300还可以包括滤波电容器C9和/或C10(或称为输出电容器),其并联连接在DC-DC变换器311和312的共用输出端与多相DC-DC变换器300的输出端之间,可以分别用于滤除DC-DC变换器的输出电流中的交流分量和高频分量,从而滤除多相DC-DC变换器300的输出电压中的波纹。尽管在图3中示出两个滤波电容器C9和C10,但是在实际应用中,可以根据需要使用任意数目的滤波电容器。Preferably, the multiphase DC-DC converter 300 may also include filter capacitors C9 and/or C10 (or called output capacitors), which are connected in parallel between the common output terminals of the DC-DC converters 311 and 312 and the multiphase DC- between the output terminals of the DC converter 300 can be used to filter out the AC component and the high frequency component in the output current of the DC-DC converter, thereby filtering out the ripple in the output voltage of the multiphase DC-DC converter 300 . Although two filter capacitors C9 and C10 are shown in FIG. 3 , in practical applications, any number of filter capacitors may be used as desired.

另外,优选地,在每个单相DC-DC变换器中,开关单元中每个开关元件的驱动信号(例如由驱动电路提供)具有大约50%(优选地小于50%)的占空比,并且开关单元中的第一开关元件的驱动信号与第二开关元件的驱动信号之间具有180度的相移。这里,第一开关元件指的是当导通时使主变压器的初级侧线圈通过第一方向的输入电流的开关元件,并且第二开关元件指的是当导通时使主变压器的初级侧线圈通过与第一方向相反的第二方向的输入电流的开关元件。例如,在单相DC-DC变换器311中,开关元件Q1(第一开关元件)导通时使主变压器T1的初级侧线圈通过第一方向(例如向下)的输入电流,开关元件Q2(第二开关元件)导通时使T1的初级侧线圈通过第二方向(例如向下)的输入电流。开关元件Q1和Q2的驱动信号均具有大约50%的占空比,并且Q1和Q2的驱动信号之间具有180度的相移。由此,可以较好地实现零电压开关(ZeroVoltage Switching,ZVS)模式(也称软开关模式)。In addition, preferably, in each single-phase DC-DC converter, the driving signal (for example provided by the driving circuit) of each switching element in the switching unit has a duty cycle of about 50% (preferably less than 50%), And there is a phase shift of 180 degrees between the driving signal of the first switching element and the driving signal of the second switching element in the switching unit. Here, the first switching element refers to a switching element that passes an input current in the first direction to the primary side coil of the main transformer when turned on, and the second switching element refers to a switching element that passes the primary side coil of the main transformer when turned on. A switching element that passes an input current in a second direction opposite to the first direction. For example, in the single-phase DC-DC converter 311, when the switching element Q1 (the first switching element) is turned on, the primary side coil of the main transformer T1 passes an input current in the first direction (for example, downward), and the switching element Q2 ( When the second switching element) is turned on, the primary side coil of T1 passes an input current in a second direction (for example, downward). Both the driving signals of switching elements Q1 and Q2 have a duty cycle of about 50%, and there is a phase shift of 180 degrees between the driving signals of Q1 and Q2. Thus, the Zero Voltage Switching (ZeroVoltage Switching, ZVS) mode (also called soft switching mode) can be better realized.

另外,尽管在图3及以下示例电路中,主变压器的初级侧和次级侧使用了相同的接地符号,但是应当理解,在实际应用中,主变压器的初级侧所接的地和次级侧所接的地是隔离的。另外主变压器的初级侧的电路使用共同的地,并且主变压器的次级侧的电路使用共同的地。In addition, although in Figure 3 and the following example circuits, the primary and secondary sides of the main transformer use the same ground symbol, it should be understood that in practical applications, the ground connected to the primary side of the main transformer and the secondary side The connected ground is isolated. In addition, circuits on the primary side of the main transformer use a common ground, and circuits on the secondary side of the main transformer use a common ground.

在多相DC-DC变换器中,谐振电路中的谐振电感器L1、L2可以是作为实体存在的物理电感器,也可以是寄生电感。在高电压输出应用中,多相DC-DC变换器的主变压器的变压比将降低到甚至小于1,因此不能容易地建立泄漏电感作为谐振电感。在图3的示例电路中,DC-DC变换器中的整流器是半桥整流器,可以使得主变压器的次级侧输出电压降压达约1/2,因此可以使主变压器的变压比(即匝数比)增大至约2:1,从而能够在主变压器的次级侧建立足够的泄漏电感(或称为寄生电感)作为谐振电感。因此可以利用主变压器的寄生电感作为谐振电感L1和L2,而不必使用物理电感器,从而增大功率密度以提高效率并节省元件开销。In a multi-phase DC-DC converter, the resonant inductors L1 and L2 in the resonant circuit may be physical inductors that exist as entities, or may be parasitic inductances. In high voltage output applications, the transformation ratio of the main transformer of the multiphase DC-DC converter will be reduced to even less than 1, so the leakage inductance cannot be easily established as the resonant inductance. In the example circuit of Figure 3, the rectifier in the DC-DC converter is a half-bridge rectifier, which can step down the output voltage of the secondary side of the main transformer by about 1/2, so that the transformation ratio of the main transformer (ie turns ratio) to about 2:1, enabling sufficient leakage inductance (or called parasitic inductance) to be established as a resonant inductance on the secondary side of the main transformer. Therefore, the parasitic inductance of the main transformer can be used as the resonant inductors L1 and L2 without using physical inductors, thereby increasing power density to improve efficiency and save component costs.

另外,半桥式结构的使用还能够减少电路中半导体器件的使用。In addition, the use of the half-bridge structure can also reduce the use of semiconductor devices in the circuit.

图4示出由驱动电路分别提供给多相DC-DC变换器300中的单相DC-DC变换器(例如DC-DC变换器311)的开关单元中的第一开关元件和第二开关元件(例如Q1、Q2)的驱动信号的示例电压波形图。两个驱动信号401和402的操作频率固定,相位偏移为180°,频率基本上等于谐振电容(C1和C2)和谐振电感(L1)所确定的谐振频率。当然,主变压器寄生电容C5和C6将影响谐振频率。这些开关驱动信号的占空比约为50%(优选地不大于50%),调节死区时间和主变压器的激磁电感以确保开关(Q1,Q2,Q3,Q4)在死区时间进入ZVS模式。FIG. 4 shows the first switching element and the second switching element in the switching unit of the single-phase DC-DC converter (for example, DC-DC converter 311 ) respectively provided by the driving circuit to the multi-phase DC-DC converter 300. (e.g. Q1, Q2) example voltage waveform diagram of the drive signal. The operating frequency of the two driving signals 401 and 402 is fixed, the phase offset is 180°, and the frequency is substantially equal to the resonant frequency determined by the resonant capacitors (C1 and C2) and the resonant inductance (L1). Of course, the main transformer parasitic capacitances C5 and C6 will affect the resonant frequency. The duty cycle of these switch drive signals is about 50% (preferably no more than 50%), adjust the dead time and the magnetizing inductance of the main transformer to ensure that the switches (Q1, Q2, Q3, Q4) enter ZVS mode during the dead time .

图5示出多相DC-DC变换器300的电流和电压的示例波形图。波形501表示提供给DC-DC变换器311的开关单元中的一个开关元件(例如MOS管Q2)的开关驱动信号Vgs;波形502表示DC-DC变换器311的该开关元件(例如Q2)的漏源电压Vds;波形503表示DC-DC变换器311的主变压器的输入电流。可以看出DC-DC变换器311的主变压器的输入电流近似正弦波。DC-DC变换器312也具有相似的电流和电压波形,只是与DC-DC变换器311的波形相比相位偏移90°。使两个DC-DC变换器的电流和电压的波形具有90°的相移,能够较好地消除输出电流中的波纹,因此可以减少DC-DC变换器311和312的共用输出电容C9和C10值或个数,以节省元件。FIG. 5 shows example waveform diagrams of currents and voltages of the multiphase DC-DC converter 300 . Waveform 501 represents the switch driving signal Vgs provided to a switching element (such as MOS transistor Q2) in the switching unit of DC-DC converter 311; waveform 502 represents the drain of the switching element (such as Q2) of DC-DC converter 311 Source voltage Vds; waveform 503 represents the input current of the main transformer of the DC-DC converter 311 . It can be seen that the input current of the main transformer of the DC-DC converter 311 is approximately a sine wave. The DC-DC converter 312 also has similar current and voltage waveforms, but is phase shifted by 90° compared to the waveforms of the DC-DC converter 311 . The current and voltage waveforms of the two DC-DC converters have a 90° phase shift, which can better eliminate the ripple in the output current, so the shared output capacitors C9 and C10 of the DC-DC converters 311 and 312 can be reduced value or number to save components.

图6示出根据本实用新型的第一实施例的多相DC-DC变换器的另一示例电路示图。如图6所示,多相DC-DC变换器600包括两个并联连接的单相DC-DC变换器611和612。DC-DC变换器611由图中的虚线框示出,DC-DC变换器612由图中的双点划线框示出。均衡电路由差模电感T3实现。差模电感T3串联连接在DC-DC变换器611和612的共用输出端与多相DC-DC变换器300的输出端,具体而言是串联连接在DC-DC变换器611和612的半桥整流器的二极管桥臂与电容器桥臂之间。与图3的示例电路相比,图6中的DC-DC变换器611和612的开关单元分别由全桥式连接的四个开关元件(Q1,Q2,Q31,Q32)和(Q3,Q4,Q33,Q34)组成。另外,图6中的谐振电路分别由(C25,L1,T1)和(C26、L2,T2)组成,其中电容器25和电感器L1串联连接在DC-DC变换器611的开关单元的一个输出端(Q31与Q32之间的输出端)与主变压器T1的初级侧之间,电容器26和电感器L2串联连接在DC-DC变换器612的开关单元的一个输出端(Q33与Q34之间的输出端)与主变压器T2的初级侧之间。多相DC-DC变换器600通过使用全桥式的开关单元,能够提供较大的输入功率。Fig. 6 shows another example circuit diagram of the multi-phase DC-DC converter according to the first embodiment of the present invention. As shown in FIG. 6 , the multiphase DC-DC converter 600 includes two single-phase DC-DC converters 611 and 612 connected in parallel. The DC-DC converter 611 is shown by a dotted line box in the figure, and the DC-DC converter 612 is shown by a two-dot dash line box in the figure. The equalization circuit is realized by the differential mode inductor T3. The differential mode inductor T3 is connected in series between the common output terminals of the DC-DC converters 611 and 612 and the output terminal of the multiphase DC-DC converter 300, specifically, it is connected in series to the half-bridges of the DC-DC converters 611 and 612 Between the diode leg of the rectifier and the capacitor leg. Compared with the example circuit in Fig. 3, the switching units of DC-DC converters 611 and 612 in Fig. 6 are composed of four switching elements (Q1, Q2, Q31, Q32) and (Q3, Q4, Q33, Q34) composition. In addition, the resonant circuit in Figure 6 is composed of (C25, L1, T1) and (C26, L2, T2) respectively, wherein the capacitor 25 and the inductor L1 are connected in series at one output end of the switch unit of the DC-DC converter 611 (the output terminal between Q31 and Q32) and the primary side of the main transformer T1, the capacitor 26 and the inductor L2 are connected in series to one output terminal of the switching unit of the DC-DC converter 612 (the output terminal between Q33 and Q34 terminal) and the primary side of the main transformer T2. The multi-phase DC-DC converter 600 can provide relatively large input power by using a full-bridge switching unit.

与在图3中的电路类似,在图6的电路中,优选地,开关单元中每个开关元件的驱动信号(例如由驱动电路提供)可以具有大约50%(优选地小于50%)的占空比,并且开关单元中的第一开关元件的驱动信号与第二开关元件的驱动信号之间可以具有180度的相移,以便较好地实现ZVS模式。在图6中,例如,在单相DC-DC变换器631中,开关元件Q1和Q32使主变压器T1的初级侧线圈通过第一方向(例如向下)的输入电流,并且开关元件Q2和Q31使主变压器T1的初级侧线圈通过与第一方向相反的第二方向(例如向上)的输入电流。因此,开关元件(Q1,Q32)(第一开关元件)的驱动信号与开关元件(Q2,Q32)(第二开关元件)的驱动信号之间可以具有180度的相移,而每个开关元件(Q1,Q2,Q31,Q32)的驱动信号的占空比均为大约50%。Similar to the circuit in FIG. 3, in the circuit in FIG. 6, preferably, the driving signal (for example, provided by the driving circuit) of each switching element in the switching unit may have a duty cycle of about 50% (preferably less than 50%). Duty ratio, and there may be a 180-degree phase shift between the driving signal of the first switching element and the driving signal of the second switching element in the switching unit, so as to better realize the ZVS mode. In FIG. 6, for example, in the single-phase DC-DC converter 631, the switching elements Q1 and Q32 pass the input current in the first direction (for example, downward) to the primary side coil of the main transformer T1, and the switching elements Q2 and Q31 Make the primary side coil of the main transformer T1 pass an input current in a second direction (for example, upward) opposite to the first direction. Therefore, there may be a phase shift of 180 degrees between the driving signal of the switching element (Q1, Q32) (first switching element) and the driving signal of the switching element (Q2, Q32) (second switching element), and each switching element The duty ratios of the driving signals (Q1, Q2, Q31, Q32) are all about 50%.

图7示出根据本实用新型的第一实施例的多相DC-DC变换器的又一示例电路示图。如图7所示,多相DC-DC变换器700包括两个并联连接的单相DC-DC变换器711和712。DC-DC变换器711由图中的虚线框示出,DC-DC变换器712由图中的双点划线框示出。均衡电路由差模电感T3实现。差模电感T3串联连接在DC-DC变换器711和712的共用输出端与多相DC-DC变换器700的输出端之间。与图3的示例电路相比,图6中的DC-DC变换器711和712均采用全桥整流器。具体而言,DC-DC变换器711的整流器由全桥式连接的四个开关(如所示的二极管,也可以是其他开关元件)D1、D3、D5、D6组成,DC-DC变换器712的整流器由全桥式连接的四个开关(如所示的二极管,也可以是其他开关元件)D2、D4、D7、D8组成。另外,作为示例而不是限制,在图7中由串联连接的蓄电池向多相DC-DC变换器700提供直流输入电压。在使用全桥整流器的情况下,谐振电感器L1和L2是物理电感器。通过使用全桥整流器,使得主变压器的输出端能够提供更大的功率,从而使多相DC-DC变换器700能够提供更高的输出功率。Fig. 7 shows yet another exemplary circuit diagram of the multi-phase DC-DC converter according to the first embodiment of the present invention. As shown in FIG. 7 , the multiphase DC-DC converter 700 includes two single-phase DC-DC converters 711 and 712 connected in parallel. The DC-DC converter 711 is shown by a dotted line box in the figure, and the DC-DC converter 712 is shown by a two-dot dash line box in the figure. The equalization circuit is realized by the differential mode inductor T3. The differential mode inductor T3 is connected in series between the common output terminals of the DC-DC converters 711 and 712 and the output terminal of the multiphase DC-DC converter 700 . Compared with the example circuit in FIG. 3 , the DC-DC converters 711 and 712 in FIG. 6 both use full-bridge rectifiers. Specifically, the rectifier of the DC-DC converter 711 is composed of four switches (diodes as shown, or other switching elements) D1, D3, D5, D6 connected in a full bridge, and the DC-DC converter 712 The rectifier consists of four switches (diodes as shown but could be other switching elements) D2, D4, D7, D8 connected in a full bridge. In addition, as an example and not a limitation, the multi-phase DC-DC converter 700 is provided with a DC input voltage by series-connected batteries in FIG. 7 . In the case of using a full bridge rectifier, resonant inductors L1 and L2 are physical inductors. By using a full-bridge rectifier, the output terminal of the main transformer can provide more power, so that the multi-phase DC-DC converter 700 can provide higher output power.

图8示出根据本实用新型的第一实施例的多相DC-DC变换器的另一示例电路示图。如图8所示,多相DC-DC变换器800包括两个并联连接的单相DC-DC变换器811和812。DC-DC变换器811由图中的虚线框和点划线框示出,DC-DC变换器812由图中的双点划线框和点划线框示出。均衡电路由差模电感T3实现。与图3的示例电路相比,多相DC-DC变换器800中的DC-DC变换器811和812具有共用的电容器桥臂。该共用的电容器桥臂由电容器C54、C55组成,在图8中由点划线框示出。差模电感T3串联连接在DC-DC变换器811和812的共用输出端与多相DC-DC变换器300的输出端,具体而言是串联连接在DC-DC变换器811和812的半桥整流器的二极管桥臂与共用电容器桥臂之间。通过使多个单相DC-DC变换器(811,812)具有共用的电容器桥臂,可以节省元件开销。Fig. 8 shows another example circuit diagram of the multi-phase DC-DC converter according to the first embodiment of the present invention. As shown in FIG. 8 , the multiphase DC-DC converter 800 includes two single-phase DC-DC converters 811 and 812 connected in parallel. The DC-DC converter 811 is shown by the dotted line box and the dotted line box in the figure, and the DC-DC converter 812 is shown by the double dotted line box and the dotted line box in the figure. The equalization circuit is realized by the differential mode inductor T3. Compared with the example circuit of FIG. 3 , the DC-DC converters 811 and 812 in the multiphase DC-DC converter 800 have a common capacitor bridge arm. The shared capacitor bridge arm is composed of capacitors C54, C55, which are shown by dotted line boxes in FIG. 8 . The differential mode inductor T3 is connected in series between the common output terminals of the DC-DC converters 811 and 812 and the output terminal of the multiphase DC-DC converter 300, specifically, it is connected in series to the half-bridges of the DC-DC converters 811 and 812 Between the diode leg of the rectifier and the common capacitor leg. By having multiple single-phase DC-DC converters (811, 812) with a common capacitor bridge arm, component cost can be saved.

图9示出根据本实用新型的第一实施例的多相DC-DC变换器的另一示例电路示图。与图3的示例电路相比,图9所示的多相DC-DC变换器900包括三个并联连接的DC-DC变换器911、912和913。DC-DC变换器911由图中的虚线框示出,DC-DC变换器912由图中的双点划线框示出,DC-DC变换器913由图中的点划线框示出。均衡电路由差模电感T3实现。差模电感T3串联连接在DC-DC变换器911、912和913的共用输出端与多相DC-DC变换器900的输出端之间,具体而言是串联连接在DC-DC变换器911、912和913的半桥整流器的二极管桥臂与电容器桥臂之间。DC-DC变换器911、912和913的电路结构相同,并且与图3中所示的DC-DC变换器311的电路结构相同,这里不重复描述。应当理解,DC-DC变换器911、912和913也可以具有与DC-DC变换器311不同的电路结构,并且/或者DC-DC变换器911、912和913的电路结构也可以彼此不同,这里不详细描述。FIG. 9 shows another example circuit diagram of the multiphase DC-DC converter according to the first embodiment of the present invention. Compared with the example circuit of FIG. 3 , the multiphase DC-DC converter 900 shown in FIG. 9 includes three DC-DC converters 911 , 912 and 913 connected in parallel. The DC-DC converter 911 is shown by a dotted line box in the figure, the DC-DC converter 912 is shown by a double-dashed line box in the figure, and the DC-DC converter 913 is shown by a dot-dash line box in the figure. The equalization circuit is realized by the differential mode inductor T3. The differential mode inductor T3 is connected in series between the common output terminals of the DC-DC converters 911, 912 and 913 and the output terminal of the multiphase DC-DC converter 900, specifically between the DC-DC converters 911, Between the diode bridge arm and the capacitor bridge arm of the half-bridge rectifier of 912 and 913. The circuit structures of the DC-DC converters 911 , 912 and 913 are the same, and are the same as the circuit structure of the DC-DC converter 311 shown in FIG. 3 , so the description will not be repeated here. It should be understood that the DC-DC converters 911, 912 and 913 may also have different circuit structures from the DC-DC converter 311, and/or the circuit structures of the DC-DC converters 911, 912 and 913 may also be different from each other, here Not described in detail.

除以上示例电路的结构之外,每个单相DC-DC变换器的开关单元和整流器可以均为全桥式结构,这里不详细描述。In addition to the structure of the above example circuit, the switching unit and the rectifier of each single-phase DC-DC converter may be of full bridge structure, which will not be described in detail here.

以上示出了均衡电路位于多相DC-DC变换器的输出侧的示例电路。以下将结合附图描述均衡电路位于多相DC-DC变换器的输入侧的情况。The above shows an example circuit where the equalization circuit is located on the output side of the multiphase DC-DC converter. The situation that the equalization circuit is located at the input side of the multi-phase DC-DC converter will be described below with reference to the accompanying drawings.

图10示出根据本实用新型的第二实施例的多相DC-DC变换器的示意性框图。在本实用新型的第二实施例中,均衡电路设置在并联连接的多个单相DC-DC变换器与多相DC-DC变换器的输入端之间,用于均衡多个单相DC-DC变换器的输入电流。如图10所示,多相DC-DC变换器1000包括:输入端(1031,1032),用于接收直流输入电压Vin;并联连接的多个单相DC-DC变换器(1011,1012,…,101n),用于将直流输入电压Vin进行DC-DC变换,其中n是大于1的正整数;输出端(1033,1034),用于输出经多个单相DC-DC变换器变换的直流输出电压Vout;以及均衡电路(1020),与并联连接的多个单相DC-DC变换器(1011,1012,…,101n)串联连接,并设置在多个单相DC-DC变换器(1011,1012,…,101n)与输入端(1031,1032)之间,用于均衡所述多个单相DC-DC变换器的输入电流。Fig. 10 shows a schematic block diagram of a multiphase DC-DC converter according to a second embodiment of the present invention. In the second embodiment of the present utility model, the equalization circuit is arranged between a plurality of single-phase DC-DC converters connected in parallel and the input ends of the multi-phase DC-DC converters, and is used to equalize a plurality of single-phase DC-DC converters. The input current of the DC converter. As shown in Figure 10, the multiphase DC-DC converter 1000 includes: input terminals (1031, 1032) for receiving a DC input voltage Vin; multiple single-phase DC-DC converters (1011, 1012,  … , 101n), used to convert the DC input voltage Vin to DC-DC, where n is a positive integer greater than 1; the output terminal (1033, 1034) is used to output the DC converted by multiple single-phase DC-DC converters output voltage Vout; and an equalizing circuit (1020), connected in series with a plurality of single-phase DC-DC converters (1011, 1012, ..., 101n) connected in parallel, and provided at the plurality of single-phase DC-DC converters (1011 , 1012, ..., 101n) and the input terminals (1031, 1032), used to balance the input current of the multiple single-phase DC-DC converters.

在本实施例中,DC-DC变换器(111,112,…,11n)可以采用各种适当结构的单相DC-DC变换器来实现,如正向变换器、桥式变换器、推挽式变换器等,而没有限制。In this embodiment, the DC-DC converters (111, 112, ..., 11n) can be realized by using various single-phase DC-DC converters with appropriate structures, such as forward converters, bridge converters, push-pull type converter, etc., without limitation.

在本实施例中,可以采用适当结构的均衡电路来实施均衡电路1020。例如,可以采用差模电感或LC电路来实施均衡电路1020。In this embodiment, the equalization circuit 1020 can be implemented by using an equalization circuit with an appropriate structure. For example, the equalization circuit 1020 may be implemented using a differential mode inductor or an LC circuit.

在多相DC-DC变换器1000中还包括驱动电路(未示出),用于驱动所述多个单相DC-DC变换器(1011,1012,…,101n),以使得所述多个单相DC-DC变换器的输出电流的相位彼此之间具有预定相移。这里可以采用任何适当结构的驱动电路。由于驱动电路并非解决本实用新型的技术问题所必需的部件,为了不模糊本实用新型,在这里及以下不具体描述驱动电路。The multi-phase DC-DC converter 1000 also includes a driving circuit (not shown) for driving the multiple single-phase DC-DC converters (1011, 1012, ..., 101n), so that the multiple The phases of the output currents of the single-phase DC-DC converter have a predetermined phase shift from each other. Any suitable configuration of drive circuits may be used here. Since the driving circuit is not a necessary component to solve the technical problems of the present invention, in order not to obscure the present invention, the driving circuit will not be described in detail here and below.

图11A示出根据本实用新型的第二实施例的多相DC-DC变换器中的均衡电路的示例电路示图。在该示例中,多相DC-DC变换器1100采用差模电感1120来实施均衡电路。如图11所示,差模电感1120的第一线圈串联连接在多个单相DC-DC变换器(1111,1112,…,111n)的第一共用输入端1141与多相DC-DC变换器的第一输入端1131之间,差模电感1120的第二线圈串联连接在多个单相DC-DC变换器(1111,1112,…,111n)的第二共用输入端1142与多相DC-DC变换器的第二输入端1132之间。第一输入端1131和第二输入端1132分别连接差模电感1120的一个线圈的同名端和另一个线圈的非同名端。这样,使得流入差模电感的两个线圈的电流的方向相反,每个线圈中的初始电流产生的磁通量在另一个线圈中感应出与该另一个线圈中的初始电流方向相反的感应电流。由此,减小了两个线圈中流过的电流的差异,从而减小了多个单相DC-DC变换器(1111,1112,…,111n)的输入电流的差异。FIG. 11A shows an example circuit diagram of an equalization circuit in a multiphase DC-DC converter according to a second embodiment of the present invention. In this example, the multiphase DC-DC converter 1100 employs a differential mode inductor 1120 to implement a balancing circuit. As shown in Figure 11, the first coil of the differential mode inductor 1120 is connected in series with the first common input end 1141 of multiple single-phase DC-DC converters (1111, 1112, ..., 111n) and the multi-phase DC-DC converter Between the first input terminal 1131 of the differential mode inductor 1120, the second coil of the differential mode inductor 1120 is connected in series with the second common input terminal 1142 of a plurality of single-phase DC-DC converters (1111, 1112, ..., 111n) and the multi-phase DC- between the second input terminals 1132 of the DC converter. The first input terminal 1131 and the second input terminal 1132 are respectively connected to the same-named terminal of one coil of the differential mode inductor 1120 and the non-identical terminal of the other coil. In this way, the direction of the current flowing into the two coils of the differential mode inductor is opposite, and the magnetic flux generated by the initial current in each coil induces in the other coil an induction current opposite to the direction of the initial current in the other coil. Thereby, the difference of the currents flowing in the two coils is reduced, thereby reducing the difference of the input currents of the multiple single-phase DC-DC converters (1111, 1112, . . . , 111n).

在该示例中,差模电感的两个线圈的同名端(由图中的黑点表示)在一侧。在其他示例中,差模电感的两个线圈的同名端也可以在相对的两侧,而第一输入端1131和第二输入端1132仍然可以分别连接差模电感1120的一个线圈的同名端和另一个线圈的非同名端,如图11B所示。In this example, the dotted ends of the two coils of the differential mode inductor (represented by the black dots in the diagram) are on one side. In other examples, the ends with the same name of the two coils of the differential mode inductor can also be on opposite sides, and the first input end 1131 and the second input end 1132 can still be respectively connected to the end with the same name of one coil of the differential mode inductor 1120 and The non-identical end of the other coil, as shown in Figure 11B.

图12示出根据本实用新型的第二实施例的多相DC-DC变换器的示例电路示图。如图12所示,多相DC-DC变换器1200包括两个并联连接的单相DC-DC变换器1211和1212。DC-DC变换器1211由图中的虚线框示出,DC-DC变换器1212由图中的双点划线框示出。均衡电路由差模电感T4实现。DC-DC变换器1211和1212的结构分别与图7所示的DC-DC变换器711和712的结构相同,这里不再重复。FIG. 12 shows an example circuit diagram of a multiphase DC-DC converter according to a second embodiment of the present invention. As shown in FIG. 12 , the multiphase DC-DC converter 1200 includes two single-phase DC-DC converters 1211 and 1212 connected in parallel. The DC-DC converter 1211 is shown by a dotted line box in the figure, and the DC-DC converter 1212 is shown by a two-dot dash line box in the figure. The equalization circuit is realized by the differential mode inductor T4. The structures of the DC-DC converters 1211 and 1212 are respectively the same as those of the DC-DC converters 711 and 712 shown in FIG. 7 , and will not be repeated here.

差模电感T4串联连接在DC-DC变换器1211和1212与多相DC-DC变换器1200的输入端之间,更具体而言,串联连接在DC-DC变换器1211和1212的共用输入端(1241,1242)与多相DC-DC变换器1200的输入端(1231,1232)之间。The differential mode inductor T4 is connected in series between the DC-DC converters 1211 and 1212 and the input terminals of the multiphase DC-DC converter 1200, more specifically, connected in series at the common input terminals of the DC-DC converters 1211 and 1212 ( 1241 , 1242 ) and the input terminals ( 1231 , 1232 ) of the multiphase DC-DC converter 1200 .

多相DC-DC变换器1200中的其他部件及连接关系与图7所示的相同,这里不再重复。Other components and connections in the multiphase DC-DC converter 1200 are the same as those shown in FIG. 7 and will not be repeated here.

图12所示的多相DC-DC变换器1200通过使用全桥整流器,使得主变压器的输出端能够提供更大的功率,从而能够提供更高的输出功率。The multiphase DC-DC converter 1200 shown in FIG. 12 uses a full-bridge rectifier to enable the output end of the main transformer to provide greater power, thereby providing higher output power.

图13示出根据本实用新型的第二实施例的多相DC-DC变换器的另一示例电路示图。与图12的示例电路相比,图13所示的多相DC-DC变换器900包括三个并联连接的DC-DC变换器1311、1312和1313。DC-DC变换器1311由图中的虚线框示出,DC-DC变换器1312由图中的双点划线框示出,DC-DC变换器1313由图中的点划线框示出。均衡电路由差模电感T4实现。差模电感T4串联连接在DC-DC变换器1311、1312和1313的共用输入端(1341,1342)与多相DC-DC变换器1300的输入端(1331,1332)之间。DC-DC变换器1311、1312和1313的电路结构相同,并且与图3中所示的DC-DC变换器311的电路结构相同,这里不重复描述。应当理解,DC-DC变换器1311、1312和1313也可以具有与DC-DC变换器311不同的电路结构,并且/或者DC-DC变换器1311、1312和1313的电路结构也可以彼此不同,这里不详细描述。Fig. 13 shows another example circuit diagram of the multi-phase DC-DC converter according to the second embodiment of the present invention. Compared with the example circuit of FIG. 12 , the multiphase DC-DC converter 900 shown in FIG. 13 includes three DC-DC converters 1311 , 1312 and 1313 connected in parallel. The DC-DC converter 1311 is shown by a dotted line box in the figure, the DC-DC converter 1312 is shown by a double-dashed line box in the figure, and the DC-DC converter 1313 is shown by a dot-dash line box in the figure. The equalization circuit is realized by the differential mode inductor T4. The differential mode inductor T4 is connected in series between the common input terminals ( 1341 , 1342 ) of the DC-DC converters 1311 , 1312 and 1313 and the input terminals ( 1331 , 1332 ) of the multiphase DC-DC converter 1300 . The circuit structures of the DC-DC converters 1311, 1312 and 1313 are the same, and are the same as the circuit structure of the DC-DC converter 311 shown in FIG. 3, so the description will not be repeated here. It should be understood that the DC-DC converters 1311, 1312 and 1313 may also have different circuit structures from the DC-DC converter 311, and/or the circuit structures of the DC-DC converters 1311, 1312 and 1313 may also be different from each other, here Not described in detail.

在图12的示例中,单相DC-DC变换器的开关单元具有半桥式结构,整流器具有全桥式结构。在图13的示例中,单相DC-DC变换器的开关单元和整流器均具有半桥式结构。在本实用新型的第二实施例的其他示例中,每个单相DC-DC变换器的开关单元和整流器也可以分别是全桥式结构和半桥式结构,或者均为全桥式结构;或者,可以采用其他结构,这里不详细描述。In the example of FIG. 12 , the switching unit of the single-phase DC-DC converter has a half-bridge structure, and the rectifier has a full-bridge structure. In the example of FIG. 13 , both the switching unit and the rectifier of the single-phase DC-DC converter have a half-bridge structure. In other examples of the second embodiment of the present invention, the switching unit and the rectifier of each single-phase DC-DC converter may also be a full-bridge structure and a half-bridge structure respectively, or both may be a full-bridge structure; Alternatively, other structures may be used, which will not be described in detail here.

图14示出根据本实用新型的第二实施例的多相DC-DC变换器中的均衡电路的另一示例电路示图。在该示例中,多相DC-DC变换器1400采用LC电路来实施均衡电路1420。如图14所示,均衡电路1420包括串联连接的电感器和电容器。该电感器的与该电容器连接的一端连接到多个单相DC-DC变换器(1411,1412,…,141n)的第一共用输入端1441,该电感器的另一端连接到多相DC-DC变换器1400的第一输入端1431。该电容器的未与该电感器连接的一端连接到多相DC-DC变换器1400的第二输入端并且连接到多个单相DC-DC变换器(1411,1412,…,141n)的第二共用输入端1442。由电感器和电容器组成的均衡电路1420能够改变单相DC-DC变换器在工作频率下的阻抗特性,起到与差模电感基本相同的作用,从而减小多个单相DC-DC变换器(1411,1412,…,141n)的输入电流的差异,实现多相DC-DC之间的电流均衡。FIG. 14 shows another example circuit diagram of the equalization circuit in the multiphase DC-DC converter according to the second embodiment of the present invention. In this example, multiphase DC-DC converter 1400 employs an LC circuit to implement equalization circuit 1420 . As shown in FIG. 14, equalization circuit 1420 includes an inductor and a capacitor connected in series. One end of the inductor connected to the capacitor is connected to a first common input 1441 of a plurality of single-phase DC-DC converters (1411, 1412, ..., 141n), and the other end of the inductor is connected to a multi-phase DC- The first input terminal 1431 of the DC converter 1400 . The end of the capacitor not connected to the inductor is connected to the second input of the multiphase DC-DC converter 1400 and to the second input of the plurality of single-phase DC-DC converters (1411, 1412, . Common input 1442. The equalization circuit 1420 composed of inductors and capacitors can change the impedance characteristics of the single-phase DC-DC converter at the operating frequency, and play the same role as the differential mode inductor, thereby reducing the number of single-phase DC-DC converters. ( 1411 , 1412 , . . . , 141n ) differ in input current to realize current balance between multi-phase DC-DC.

图15示出图14所示的多相DC-DC变换器的示例电路示图。如图15所示,多相DC-DC变换器1500包括两个并联连接的单相DC-DC变换器1511和1512。DC-DC变换器1511由图中的虚线框示出,DC-DC变换器1512由图中的双点划线框示出。DC-DC变换器1511和1512的结构分别与图3所示的DC-DC变换器311和312的结构相同,这里不再重复。均衡电路由电感器L10和电容器C67实现。串联连接的电感器L10和电容器C67连接在多相DC-DC变换器1500的输入侧。电感器L10与电容器C67连接的一端连接到DC-DC变换器1511和1512的第一共用输入端1541,电感器L10的另一端连接到多相DC-DC变换器1500的第一输入端1531。电容器C67的未与电感器L10连接的一端连接到多相DC-DC变换器1500的第二输入端并且连接到DC-DC变换器1511和1512的第二共用输入端1542。FIG. 15 shows an example circuit diagram of the multiphase DC-DC converter shown in FIG. 14 . As shown in FIG. 15 , the multiphase DC-DC converter 1500 includes two single-phase DC-DC converters 1511 and 1512 connected in parallel. The DC-DC converter 1511 is shown by a dotted line box in the figure, and the DC-DC converter 1512 is shown by a two-dot dash line box in the figure. The structures of the DC-DC converters 1511 and 1512 are respectively the same as those of the DC-DC converters 311 and 312 shown in FIG. 3 , and will not be repeated here. The equalization circuit is realized by inductor L10 and capacitor C67. An inductor L10 and a capacitor C67 connected in series are connected on the input side of the multiphase DC-DC converter 1500 . One end of the inductor L10 connected to the capacitor C67 is connected to the first common input end 1541 of the DC-DC converters 1511 and 1512 , and the other end of the inductor L10 is connected to the first input end 1531 of the multiphase DC-DC converter 1500 . The end of capacitor C67 not connected to inductor L10 is connected to the second input terminal of multiphase DC-DC converter 1500 and to the second common input terminal 1542 of DC-DC converters 1511 and 1512 .

为了进一步优化电路,多相DC-DC变换器150还可以包括与电感器L10并联连接、并且彼此间串联连接的电阻器R13和电容器C42,起到滤波作用;以及串联连接在多相DC-DC变换器150的第一输入端1531和第二输入端1532之间的电阻器R14和电容器C43,与电容器C67并联连接,起到滤波作用。In order to further optimize the circuit, the multiphase DC-DC converter 150 may also include a resistor R13 and a capacitor C42 connected in parallel with the inductor L10 and connected in series with each other to play a filtering role; and connected in series in the multiphase DC-DC The resistor R14 and the capacitor C43 between the first input terminal 1531 and the second input terminal 1532 of the converter 150 are connected in parallel with the capacitor C67 to function as a filter.

多相DC-DC变换器1500中的其他部件及连接关系与图3所示的相同,这里不再重复。Other components and connections in the multiphase DC-DC converter 1500 are the same as those shown in FIG. 3 , and will not be repeated here.

在图15的示例中,各个单相DC-DC变换器的开关单元和整流器均具有半桥式结构。应当理解,在使用电感器和电容器组成的均衡电路的其他示例中,每个单相DC-DC变换器的开关单元和整流器也可以分别是全桥式结构和半桥式结构,或者半桥式结构和全桥式结构,或者均为全桥式结构。或者,可以采用其他结构的单相DC-DC变换器,这里不详细描述。In the example of FIG. 15 , the switching unit and the rectifier of each single-phase DC-DC converter have a half-bridge structure. It should be understood that, in other examples using a balanced circuit composed of inductors and capacitors, the switching unit and the rectifier of each single-phase DC-DC converter may also be a full-bridge structure and a half-bridge structure, or a half-bridge structure structure and full bridge structure, or both are full bridge structure. Alternatively, a single-phase DC-DC converter with other structures may be used, which will not be described in detail here.

以上以桥式DC-DC变换器为例描述了根据本实用新型实施例的多相DC-DC变换器的示例电路。在本实用新型的其他实施例中,可以采用其他适当结构的单相DC-DC变换器来实现多相DC-DC变换器中的多个单相DC-DC变换器,如正向变换器、推挽式变换器等,其与均衡电路的连接方式与这里描述的连接方式相同,不再一一描述。The example circuit of the multi-phase DC-DC converter according to the embodiment of the present utility model is described above by taking the bridge DC-DC converter as an example. In other embodiments of the present utility model, multiple single-phase DC-DC converters in the multi-phase DC-DC converter can be realized by adopting other single-phase DC-DC converters with appropriate structures, such as forward converters, The connection method of the push-pull converter and the equalization circuit is the same as that described here, and will not be described one by one.

另外,在图15的示例电路中,由电感器和电容器组成的均衡电路连接在多相DC-DC变换器的输入端与多个单相DC-DC变换器的共用输入端之间。在例如根据本实用新型的第一实施例的其他示例中,由电感器和电容器组成的均衡电路也可以连接在多个单相DC-DC变换器的共用输出端与多相DC-DC变换器的输出端之间,这里不详细描述。In addition, in the example circuit of FIG. 15, a balancing circuit consisting of inductors and capacitors is connected between the input terminal of the multi-phase DC-DC converter and the common input terminal of a plurality of single-phase DC-DC converters. In other examples such as the first embodiment of the utility model, the equalization circuit composed of inductors and capacitors can also be connected between the common output terminals of multiple single-phase DC-DC converters and the multi-phase DC-DC converters Between the output terminals, it will not be described in detail here.

根据本实用新型的实施例的多相DC-DC变换器,通过将均衡电路与并联连接的多个单相DC-DC变换器串联连接在多相DC-DC变换器的输入端与输出端之间,可以均衡多个单相DC-DC变换器的电流,减小多个单相DC-DC变换器的输入电流或输出电流之间的差异。在根据本实用新型的实施例的一些示例中,多相DC-DC变换器中的多个单相DC-DC变换器可以使用具有半桥结构的整流器,使得可以利用从主变压器的次级侧反射的寄生电感作为谐振电感,而不必使用物理电感器,从而增大功率密度以提高效率并节省元件开销。在根据本实用新型的实施例的一些示例中,多相DC-DC变换器中的多个单相DC-DC变换器中的整流器可以使用共用的电容器桥臂,从而节省元件开销。According to the multi-phase DC-DC converter of the embodiment of the present invention, by connecting the balance circuit and a plurality of single-phase DC-DC converters connected in parallel in series between the input end and the output end of the multi-phase DC-DC converter During this period, the currents of multiple single-phase DC-DC converters can be balanced, and the difference between the input currents or output currents of multiple single-phase DC-DC converters can be reduced. In some examples according to embodiments of the present invention, multiple single-phase DC-DC converters in a multi-phase DC-DC converter may use a rectifier with a half-bridge structure, so that the secondary side of the slave main transformer may be utilized The reflected parasitic inductance acts as a resonant inductor, eliminating the need for a physical inductor, increasing power density for higher efficiency and saving component overhead. In some examples according to embodiments of the present invention, rectifiers in multiple single-phase DC-DC converters in a multi-phase DC-DC converter can use a common capacitor bridge arm, thereby saving component costs.

根据本实用新型的实施例的多相DC-DC变换器例如可以应用于电信产品或汽车(如电动汽车)的车载充电器。The multi-phase DC-DC converter according to the embodiment of the present utility model can be applied, for example, to an on-board charger of telecommunication products or automobiles (such as electric vehicles).

在上面对本实用新型具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。In the above description of specific embodiments of the present invention, features described and/or illustrated for one embodiment can be used in one or more other embodiments in the same or similar manner, and Features may be combined or substituted for features in other embodiments.

应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, element, step or component, but does not exclude the presence or addition of one or more other features, elements, steps or components.

以上虽然结合附图详细描述了本实用新型的实施例,但是应当明白,上面所描述的实施方式只是用于说明本实用新型,而并不构成对本实用新型的限制。对于本领域的技术人员来说,可以对上述实施方式做出各种修改和变更而没有背离本实用新型的实质和范围。因此,本实用新型的范围仅由所附的权利要求及其等效含义来限定。Although the embodiments of the present utility model have been described in detail in conjunction with the accompanying drawings, it should be understood that the above described embodiments are only used to illustrate the present utility model, and do not constitute a limitation to the present utility model. Those skilled in the art can make various modifications and changes to the above-mentioned embodiments without departing from the essence and scope of the present invention. Therefore, the scope of the present invention is limited only by the appended claims and their equivalents.

Claims (13)

1. a multiphase DC-DC converter, comprising:
Input, for receiving DC input voitage;
The multiple single-phase DC-DC converter being connected in parallel, for carrying out DC-DC conversion by described DC input voitage;
Output, for exporting the VD through described multiple single-phase DC-DC converter conversion; And
Equalizing circuit, and the described multiple single-phase DC-DC converter being connected in parallel is connected in series between described input and described output, for the electric current of the described multiple single-phase DC-DC converters of equilibrium.
2. multiphase DC-DC converter according to claim 1, also comprises drive circuit, for driving described multiple single-phase DC-DC converter, has each other predetermined phase shift with the phase place of the output current that makes described multiple single-phase DC-DC converters.
3. multiphase DC-DC converter according to claim 1, wherein, described equalizing circuit is made up of differential mode inductance.
4. multiphase DC-DC converter according to claim 3, wherein, described output comprises the first output and the second output, the first coil of described differential mode inductance is connected in series between first common output and described the first output of described multiple single-phase DC-DC converters, and the second coil of described differential mode inductance is connected in series between second common output and described the second output of described multiple single-phase DC-DC converters.
5. multiphase DC-DC converter according to claim 3, wherein, described input comprises first input end and the second input, the first coil of described differential mode inductance is connected in series between described first input end and the first shared input of described multiple single-phase DC-DC converters, and the second coil of described differential mode inductance is connected in series between described the second input and the second shared input of described multiple single-phase DC-DC converters.
6. multiphase DC-DC converter according to claim 1, wherein, described equalizing circuit is made up of the inductor being connected in series and capacitor, and
Wherein, described input comprises first input end and the second input, one end that described inductor is connected with described capacitor is connected to the first shared input of described multiple single-phase DC-DC converters, the other end of described inductor is connected to described first input end, and one end not being connected with described inductor of described capacitor is connected to described the second input and is connected to the second shared input of described multiple single-phase DC-DC converters.
7. multiphase DC-DC converter according to claim 1, wherein, each the comprising in described multiple single-phase DC-DC transformers:
Main transformer, for carrying out transformation to described DC input voitage;
Switch element, comprise multiple switch elements, be arranged between the input of described single-phase DC-DC converter and the primary side of described main transformer, for operating by turning on and off of described multiple switch elements the primary side that described DC input voitage is provided to described main transformer; And
Rectifier, is connected between the primary side of described main transformer and the output of described single-phase DC-DC converter, carries out rectification for the voltage of the primary side output to described main transformer, to export described VD,
Wherein, described rectifier is full-bridge rectifier or half bridge rectifier.
8. multiphase DC-DC converter according to claim 7, wherein, described rectifier is half bridge rectifier, and the half bridge rectifier of described multiple single-phase DC-DC transformers has shared capacitor brachium pontis.
9. multiphase DC-DC converter according to claim 7, wherein, described rectifier is half bridge rectifier, and described equalizing circuit is connected between the diode brachium pontis and capacitor brachium pontis of described half bridge rectifier.
10. multiphase DC-DC converter according to claim 7, wherein, described switch element comprises the two or four switch element that bridge-type connects.
11. multiphase DC-DC converters according to claim 1, also comprise at least one filtering capacitor being connected in parallel between described multiple single-phase DC-DC converters and described equalizing circuit and described output, for the ripple of the output voltage of multiple single-phase DC-DC converters described in filtering.
12. multiphase DC-DC converters according to claim 7, wherein, in each single-phase DC-DC converter, in described switch element, the driving signal of each switch element has about 50% duty ratio, and between the driving signal of the first switch element in described switch element and the driving signal of second switch element, there is the phase shift of 180 degree, described the first switch element makes the primary side coil of described main transformer by the input current of first direction in the time of conducting, and described second switch element makes the primary side coil of described main transformer by the input current of the second direction contrary with first direction in the time of conducting.
13. multiphase DC-DC converters according to claim 2, wherein, described predetermined phase shift is 180 °/n, n is the number of described multiple single-phase DC-DC converters.
CN201420031852.2U 2014-01-17 2014-01-17 Multiphase dc-dc converter Expired - Lifetime CN203674977U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420031852.2U CN203674977U (en) 2014-01-17 2014-01-17 Multiphase dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420031852.2U CN203674977U (en) 2014-01-17 2014-01-17 Multiphase dc-dc converter

Publications (1)

Publication Number Publication Date
CN203674977U true CN203674977U (en) 2014-06-25

Family

ID=50971226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420031852.2U Expired - Lifetime CN203674977U (en) 2014-01-17 2014-01-17 Multiphase dc-dc converter

Country Status (1)

Country Link
CN (1) CN203674977U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795987A (en) * 2014-01-17 2015-07-22 雅达电子国际有限公司 Multiphase DC-DC Converter
CN105529929A (en) * 2016-01-26 2016-04-27 成都芯源系统有限公司 Multiphase converter and automatic phase adjustment circuit and method for multiphase converter
CN105915091A (en) * 2015-02-20 2016-08-31 通用电气能源能量变换技术有限公司 Systems and method to optimize active current sharing of parallel power converters
CN108141131A (en) * 2015-10-28 2018-06-08 株式会社自动网络技术研究所 Multiphase converter
GB2626592A (en) * 2023-01-27 2024-07-31 Baker Hughes Energy Technology UK Ltd An apparatus for providing a direct current (DC) output voltage for a subsea electrical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795987A (en) * 2014-01-17 2015-07-22 雅达电子国际有限公司 Multiphase DC-DC Converter
CN105915091A (en) * 2015-02-20 2016-08-31 通用电气能源能量变换技术有限公司 Systems and method to optimize active current sharing of parallel power converters
CN105915091B (en) * 2015-02-20 2020-04-07 通用电气能源能量变换技术有限公司 System and method for optimizing active current sharing of parallel power converters
CN108141131A (en) * 2015-10-28 2018-06-08 株式会社自动网络技术研究所 Multiphase converter
CN108141131B (en) * 2015-10-28 2020-01-21 株式会社自动网络技术研究所 Multi-phase converter
CN105529929A (en) * 2016-01-26 2016-04-27 成都芯源系统有限公司 Multiphase converter and automatic phase adjustment circuit and method for multiphase converter
CN105529929B (en) * 2016-01-26 2018-04-06 成都芯源系统有限公司 Multiphase converter and automatic phase adjustment circuit and method for multiphase converter
GB2626592A (en) * 2023-01-27 2024-07-31 Baker Hughes Energy Technology UK Ltd An apparatus for providing a direct current (DC) output voltage for a subsea electrical device

Similar Documents

Publication Publication Date Title
TWI312610B (en) Bridgeless pfc boost converter
TWI698078B (en) Transformer-based hybrid power converters
JP4995277B2 (en) Bidirectional DC / DC converter
JP6048583B2 (en) Power conversion circuit, power transmission system, and power conversion system
US8891261B2 (en) Three-phase three-level soft-switched PFC rectifiers
US11011936B2 (en) Single-stage transmitter for wireless power transfer
US20180102712A1 (en) Bi-directional dc-dc converter
US8966294B2 (en) Clamp circuits for power converters
WO2016206269A1 (en) Power conversion device and configuration method thereof
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
TWI737129B (en) Dc/dc converting system
US11223279B2 (en) Resonant switched transformer converter
CN102611310A (en) Magnetic integrated self-driving current-double rectification half-bridge three-level direct-current converter
JP2008187821A (en) Insulated ac-dc converter and dc power supply unit for led using it
CN203674977U (en) Multiphase dc-dc converter
JPH09509039A (en) Full-wave buck-boost power converter with step-down power converter characteristics
US20200266713A1 (en) DC-DC converter
JP2015177634A (en) Current resonance type dc/dc converter
JP2017085808A (en) Switching power supply device
CN104795987A (en) Multiphase DC-DC Converter
TWI225727B (en) 092113910
CN109120156A (en) A kind of isolation BUCK-BOOST circuit and its control method
CN114244125A (en) DC converter and electronic device
CN112350604A (en) Resonant converter circuit and resonant converter
CN206620056U (en) A kind of LLC DC converters of self-driving type synchronous rectification

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20140625