CN203673444U - active capacitive pen - Google Patents
active capacitive pen Download PDFInfo
- Publication number
- CN203673444U CN203673444U CN201320850816.4U CN201320850816U CN203673444U CN 203673444 U CN203673444 U CN 203673444U CN 201320850816 U CN201320850816 U CN 201320850816U CN 203673444 U CN203673444 U CN 203673444U
- Authority
- CN
- China
- Prior art keywords
- signal
- processing module
- touch screen
- feedback
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012545 processing Methods 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 10
- 230000001360 synchronised effect Effects 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims description 80
- 230000000630 rising effect Effects 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 18
- 230000008859 change Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 241001422033 Thestylus Species 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Position Input By Displaying (AREA)
Abstract
本实用新型公开了一种主动式电容笔,所述主动式电容笔包括导电笔尖、信号处理模块及一电容,所述导电笔尖于使用时接触触摸屏以检测触摸屏发射的触摸屏驱动信号并发射所述信号处理模块输出的反馈驱动信号;所述信号处理模块获取并处理所述导电笔尖接收到的所述触摸屏驱动信号并产生同步的反馈驱动信号至所述导电笔尖;所述电容设置于所述导电笔尖与所述信号处理模块之间,通过本实用新型,可实现精确定位主动式电容笔导电笔尖位置的目的。
The utility model discloses an active capacitive pen, which comprises a conductive pen tip, a signal processing module and a capacitor. When in use, the conductive pen tip contacts a touch screen to detect a touch screen driving signal emitted by the touch screen and emits a feedback driving signal output by the signal processing module; the signal processing module acquires and processes the touch screen driving signal received by the conductive pen tip and generates a synchronous feedback driving signal to the conductive pen tip; the capacitor is arranged between the conductive pen tip and the signal processing module. Through the utility model, the purpose of accurately locating the position of the conductive pen tip of the active capacitive pen can be achieved.
Description
技术领域technical field
本实用新型关于一种在触摸屏上使用的输入装置,特别是涉及一种主动式电容笔。The utility model relates to an input device used on a touch screen, in particular to an active capacitance pen.
背景技术Background technique
随着科技的发展和进步,用户对手机和平板电脑的输入方式要求越来越高,已经不满足于传统的键盘输入,逐渐倾向于便捷的触控输入,目前市面上触控输入设备主要是电阻屏和电容屏。电容屏具备灵敏度高及易实现多点触控的优点,其正逐渐替代电阻屏成为主流触控输入屏,其分为表面电容式和投射电容式两种。投射式电容屏分互电容(mutual capacitive)和自电容(self capacitive)两种,互电容式触摸屏包含两组垂直的电极阵和一触摸屏控制器,其一电极阵作为驱动电极,另一电极阵为检测电极,电极之间形成互电容,电极对地形成自电容,驱动电极在触摸屏控制器的驱动模块的驱动下发射触摸屏驱动信号,检测电极接收上述触摸屏驱动信号,当接地的导电物(手指等)靠近电容屏时,影响驱动电极和检测电极之间的互电容的值,检测电极通过检测该电容变化来实现触控定位;自电容式触摸屏所有电极同时是驱动电极也是检测电极,触摸屏控制器会驱动一条电极,跟着检测该条电极的电容值变化来判断附近有没有接地的导电物;表面电容式触摸屏电极从四角引出,其基本原理也是检测导体靠近时的电容变化来感知触控点位置信息。With the development and progress of science and technology, users have higher and higher requirements for the input methods of mobile phones and tablet computers. They are no longer satisfied with traditional keyboard input, and gradually tend to convenient touch input. Currently, the touch input devices on the market are mainly Resistive and capacitive screens. Capacitive screens have the advantages of high sensitivity and easy multi-touch. They are gradually replacing resistive screens as the mainstream touch input screens. They are divided into surface capacitive and projected capacitive. The projected capacitive screen is divided into two types: mutual capacitance and self capacitance. The mutual capacitance touch screen includes two sets of vertical electrode arrays and a touch screen controller. One electrode array is used as the driving electrode, and the other electrode array is In order to detect the electrodes, a mutual capacitance is formed between the electrodes, and a self-capacitance is formed between the electrodes and the ground. The driving electrodes are driven by the driving module of the touch screen controller to transmit the touch screen driving signals, and the detection electrodes receive the above touch screen driving signals. When the grounded conductive object (finger etc.) When approaching the capacitive screen, it affects the value of the mutual capacitance between the driving electrode and the detection electrode. The detection electrode realizes touch positioning by detecting the capacitance change; The sensor will drive an electrode, and then detect the change of the capacitance value of the electrode to judge whether there is a grounded conductive object nearby; the surface capacitive touch screen electrodes are drawn from the four corners, and the basic principle is to detect the capacitance change when the conductor approaches to sense the touch point location information.
触控笔按是否使用电源分无源触控笔和有源触控笔。无源触控笔是简单地用导电物(导体或导电橡胶等)模拟人类手指,在笔尖和触摸屏驱动导电条之间形成一个电容,以便影响触摸屏的检测结果,但无源触控笔缺点是笔尖比较大(往往大于2mm)。The stylus is divided into passive stylus and active stylus according to whether it uses power supply. The passive stylus simply uses conductive objects (conductors or conductive rubber, etc.) to simulate human fingers, and forms a capacitance between the pen tip and the touch screen driving conductive strip to affect the detection results of the touch screen, but the disadvantages of the passive stylus are The nib is relatively large (often larger than 2mm).
主动式电容笔内部有信号处理模块,会主动探测触摸屏的驱动信号,其导电笔尖可以很细,就像示波器的探头一样,将信号耦合到主动式电容笔内部的信号处理模块处理后输出。有源触控笔也有两种:电感笔(EMR)和主动式电容笔。电感笔(EMR)需要在触摸屏上加一层电感感应屏幕或传感器(Sensor),需要额外的硬件才能实现书写功能,不仅厚度增加,成本也增加,当然工业设计更难看,而且不能使用在现有市场上的只有传统触摸屏的产品上;主动式电容笔,不需要电感感应屏幕或传感器Sensor,不增加屏厚,可以直接使用在现有市场上的触摸屏。There is a signal processing module inside the active capacitive pen, which will actively detect the driving signal of the touch screen. Its conductive tip can be very thin, just like the probe of an oscilloscope, and the signal is coupled to the signal processing module inside the active capacitive pen for processing and output. There are also two types of active stylus: inductive pen (EMR) and active capacitive pen. The inductive pen (EMR) needs to add a layer of inductive sensing screen or sensor (Sensor) on the touch screen, which requires additional hardware to realize the writing function, which not only increases the thickness, but also increases the cost. Of course, the industrial design is more ugly, and it cannot be used in existing There are only traditional touch screen products on the market; active capacitive pens do not require inductive sensing screens or sensors, and do not increase the thickness of the screen, and can be directly used on touch screens in the existing market.
美国专利US20120154340“ACTIVE STYLUS FOR USE WITHTOUCH-SENSITIVE INTERFACES AND CORRESPONDING METHOD”和US20130002606“STYLUS AND STYLUS CIRCUITRY FOR CAPACITIVETOUCH SCREENS”各揭示了一种主动式电容笔,两专利均采用检测电极和驱动电极分开的设计,具有如下缺点:US20120154340 "ACTIVE STYLUS FOR USE WITHTOUCH-SENSITIVE INTERFACES AND CORRESPONDING METHOD" and US20130002606 "STYLUS AND STYLUS CIRCUITRY FOR CAPACITIVETOUCH SCREENS" respectively disclose an active capacitive pen. Has the following disadvantages:
缺点之一,一般人书写都会适当的倾斜笔身以符合使用者的书写习惯。美国专利US20120154340和US20130002606是用比较大的笔头或笔身发射反馈驱动信号,而且笔头或笔身跟触摸屏会有一定的距离,当使用者倾斜主动式电容笔笔身,反馈驱动信号在触摸屏上的强度分布就不会以笔尖为中心,而会偏向笔身比较靠近触摸屏的那一边。这种偏差是没有办法用后续的算法做矫正。因为触摸屏控制器或主机根本没法知道主动式电容笔笔身倾斜的幅度;One of the disadvantages is that when most people write, they will properly tilt the body of the pen to meet the user's writing habits. U.S. patents US20120154340 and US20130002606 use a relatively large pen tip or pen body to transmit feedback drive signals, and the pen tip or pen body will have a certain distance from the touch screen. When the user tilts the pen body of the active capacitive pen, the feedback drive signal will be displayed on the touch screen. The intensity distribution will not be centered on the tip of the pen, but will be biased towards the side of the pen body that is closer to the touch screen. This deviation cannot be corrected by subsequent algorithms. Because the touch screen controller or the host has no way of knowing the tilting range of the active capacitive pen body;
缺点之二,美国专利US20120154340和US20130002606都是采用检测电极和驱动电极分开的设计,而且检测和发射反馈驱动是同时进行的,如果没有在两极之间做很好的隔离,发射的驱动反馈信号会耦合到检测电极引起震荡。The second shortcoming is that US patents US20120154340 and US20130002606 both adopt the design that the detection electrode and the driving electrode are separated, and the detection and emission feedback drive are carried out at the same time. If there is no good isolation between the two poles, the transmitted drive feedback signal will be Coupling to the detection electrode causes oscillations.
实用新型内容Utility model content
为克服上述现有技术存在的不足,本实用新型之一目的在于提供一种主动式电容笔,其不仅可精确定位主动式电容笔导电笔尖的位置,且可容易分辨导电物是手指或主动式电容笔。In order to overcome the deficiencies in the prior art above, one purpose of the present invention is to provide an active capacitive pen, which can not only accurately locate the position of the conductive tip of the active capacitive pen, but also easily distinguish whether the conductive object is a finger or an active pen. Capacitive pen.
本实用新型之另一目的在于提供一种主动式电容笔,该主动式电容笔可以根据设定传递不同强度的反馈驱动信号。Another object of the present invention is to provide an active capacitive pen, which can transmit feedback driving signals of different strengths according to settings.
为达上述及其它目的,在本实用新型之一较佳实施例中,本实用新型提出一种主动式电容笔,所述主动式电容笔包括导电笔尖、信号处理模块及一电容,所述导电笔尖于使用时接触触摸屏以检测触摸屏发射的触摸屏驱动信号并发射所述信号处理模块输出的反馈驱动信号;所述信号处理模块获取并处理所述导电笔尖接收到的所述触摸屏驱动信号并产生同步的反馈驱动信号至所述导电笔尖;所述电容设置于所述导电笔尖与所述信号处理模块之间。In order to achieve the above and other purposes, in one of the preferred embodiments of the utility model, the utility model proposes an active capacitor pen, which includes a conductive pen tip, a signal processing module and a capacitor, and the conductive pen When the pen tip touches the touch screen to detect the touch screen drive signal emitted by the touch screen and transmit the feedback drive signal output by the signal processing module; the signal processing module acquires and processes the touch screen drive signal received by the conductive pen tip and generates synchronization The feedback driving signal of the conductive pen tip is sent to the conductive pen tip; the capacitor is arranged between the conductive pen tip and the signal processing module.
进一步地,该信号处理模块包括:Further, the signal processing module includes:
检测电路,通过所述电容连接所述导电笔尖,以检测所述触摸屏发射的触摸屏驱动信号的上升沿或下降沿;A detection circuit, connected to the conductive pen tip through the capacitor, to detect the rising or falling edge of the touch screen driving signal emitted by the touch screen;
控制电路,接于该检测电路的输出端,以于所述检测电路检测到所述触摸屏驱动信号的上升沿或下降沿时,控制所述信号处理模块由检测状态进入反馈驱动状态,并根据设定调整所述反馈驱动信号的开始和结束时间或反馈驱动信号上升沿与下降沿的延迟或反馈驱动信号的电压。The control circuit is connected to the output terminal of the detection circuit, so that when the detection circuit detects the rising edge or falling edge of the touch screen driving signal, it controls the signal processing module to enter the feedback driving state from the detection state, and according to the setting The starting and ending time of the feedback driving signal or the delay of the rising and falling edges of the feedback driving signal or the voltage of the feedback driving signal may be adjusted by setting.
反馈驱动电路,连接所述控制电路与所述导电笔尖,所述反馈驱动电路采用三态输出,在检测时,其输出为高抗阻使所述导电笔尖处于悬空状态,在反馈驱动时,在所述控制电路控制下将所述反馈驱动信号传送至所述导电笔尖。Feedback driving circuit, connecting the control circuit and the conductive pen tip, the feedback driving circuit adopts a three-state output, and its output is high impedance during detection so that the conductive pen tip is in a suspended state. The control circuit transmits the feedback driving signal to the conductive pen tip.
进一步地,所述反馈驱动信号在下一个触摸屏驱动信号的上升沿或下降沿到来之前结束,所述控制电路控制所述信号处理模块由驱动状态再次进入检测状态。Further, the feedback driving signal ends before the rising edge or falling edge of the next touch screen driving signal arrives, and the control circuit controls the signal processing module to enter the detection state again from the driving state.
进一步地,所述信号处理模块还包括一保护电路,所述保护电路由两个或多个反相并联的二极管组成,其一端接固定偏压,另一端接所述检测电路的输入端。Further, the signal processing module further includes a protection circuit, the protection circuit is composed of two or more anti-parallel diodes, one end of which is connected to a fixed bias voltage, and the other end is connected to the input end of the detection circuit.
进一步地,所述主动式电容笔还包括一辅助检测电极,所述辅助检测电极设置于所述信号处理模块的输入端。Further, the active capacitive pen further includes an auxiliary detection electrode, and the auxiliary detection electrode is arranged at the input end of the signal processing module.
在本实用新型之另一较佳实施例中,本实用新型提供一种主动式电容笔,所述主动式电容笔包括检测电极、驱动电极及信号处理模块;所述检测电极于使用时接触触摸屏以感应触摸屏发射的触摸屏驱动信号并传送至所述信号处理模块;所述信号处理模块获取并处理该检测电极接收的触摸屏驱动信号并产生同步的反馈驱动信号至所述驱动电极;所述反馈驱动信号由所述驱动电极向所述触摸屏发射,所述驱动电极为导电笔尖,所述检测电极利用导电笔头或导电笔身或金属线或线路板印刷线制成。In another preferred embodiment of the utility model, the utility model provides an active capacitive stylus, the active capacitive stylus includes a detection electrode, a drive electrode and a signal processing module; the detection electrode contacts the touch screen during use Sensing the touch screen drive signal emitted by the touch screen and sending it to the signal processing module; the signal processing module acquires and processes the touch screen drive signal received by the detection electrode and generates a synchronous feedback drive signal to the drive electrode; the feedback drive The signal is transmitted to the touch screen from the driving electrode, the driving electrode is a conductive pen tip, and the detection electrode is made of a conductive pen tip or a conductive pen body or a metal wire or a circuit board printed line.
与现有技术相比,本实用新型一种主动式电容笔,通过将检测电路及反馈驱动电路于时序上分开,有效避免信号处理模块形成闭环回路而产生自激振荡,其不仅可以精确定位主动式电容笔导电笔尖的位置,而且更容易分辨导电物是手指或主动式电容笔,同时,本实用新型之主动式电容笔还可以根据设定传递不同强度的反馈驱动信号。Compared with the prior art, the utility model is an active capacitive pen. By separating the detection circuit and the feedback drive circuit in sequence, it can effectively prevent the signal processing module from forming a closed-loop loop to generate self-excited oscillation. It can not only accurately locate the active pen The position of the conductive pen tip of the type capacitive pen, and it is easier to distinguish whether the conductive object is a finger or an active capacitive pen. At the same time, the active capacitive pen of the utility model can also transmit feedback driving signals of different strengths according to settings.
附图说明Description of drawings
图1为常见的触摸屏系统的结构示意图;FIG. 1 is a schematic structural diagram of a common touch screen system;
图2为本实用新型所应用之主动式电容笔的总体结构图;Fig. 2 is the overall structural diagram of the active capacitance pen applied by the utility model;
图3为本实用新型一种主动式电容笔之第一较佳实施例的结构示意图;Fig. 3 is the structure diagram of the first preferred embodiment of an active capacitive pen of the present invention;
图4为本实用新型第一较佳实施例中信号处理模块的基本架构图;Fig. 4 is the basic architecture diagram of the signal processing module in the first preferred embodiment of the utility model;
图5a至图5c为本实用新型较佳实施例中触摸屏驱动信号与反馈驱动信号的时序图;5a to 5c are timing diagrams of touch screen driving signals and feedback driving signals in a preferred embodiment of the present invention;
图6为本实用新型一种主动式电容笔之第二较佳实施例的内部示意图;FIG. 6 is an internal schematic diagram of a second preferred embodiment of an active capacitive pen of the present invention;
具体实施方式Detailed ways
以下通过特定的具体实例并结合附图说明本实用新型的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本实用新型的其它优点与功效。本实用新型亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本实用新型的精神下进行各种修饰与变更。The implementation of the utility model will be described below through specific examples and in conjunction with the accompanying drawings. Those skilled in the art can easily understand other advantages and effects of the utility model from the content disclosed in this specification. The utility model can also be implemented or applied through other different specific examples, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the utility model.
在说明本实用新型之前,先简单说明下触摸屏的工作原理。图1为常见的触摸屏系统的结构示意图。触摸屏系统包括触摸屏、触摸屏控制器及主机。触摸屏包括有多条X轴方向导电条和多条Y轴方向导电条,一般情况X轴跟Y轴是垂直的。X轴的导电条跟Y轴导电条相交的地方形成互电容(mutual capacitor)阵列。当等效接地的导电物,比如人类手指,接近或触碰触摸屏时,就会改变导电物附近的互电容的电容值,透过检测这些互电容陈列每一个互电容的电容值变化,就可以通过算法计算出等效接地的导电物在触摸屏上的位置。Before explaining the utility model, first briefly explain the working principle of the touch screen. FIG. 1 is a schematic structural diagram of a common touch screen system. The touch screen system includes a touch screen, a touch screen controller and a host. The touch screen includes multiple conductive strips in the X-axis direction and multiple conductive strips in the Y-axis direction. Generally, the X-axis is perpendicular to the Y-axis. The intersection of the X-axis conductive strip and the Y-axis conductive strip forms a mutual capacitor (mutual capacitor) array. When an equivalently grounded conductive object, such as a human finger, approaches or touches the touch screen, it will change the capacitance value of the mutual capacitance near the conductive object. By detecting the change in the capacitance value of each mutual capacitance of these mutual capacitance arrays, you can The position of the equivalently grounded conductive object on the touch screen is calculated by an algorithm.
本实用新型同时适用于互电容式和自电容式触摸屏,以互电容式触摸屏为例,互电容式触摸屏控制器会发出触摸屏驱动信号会逐一驱动驱动电极,驱动电极可以是X轴或Y轴导电条,触摸屏驱动信号可以是一组脉冲(pulse train)或一组正弦波或一组三角波形,等等(图1中只显示一组脉冲波形),一组脉冲包含多个脉冲。没有被驱动的另一个轴的导电条都是检测电极。当一条驱动电极被触摸屏控制器驱动时,驱动信号会透过驱动电极跟检测电极之间的互电容耦合到检测电极。如果有导电物接触或靠近驱动电极和检测电极的话,就会改变驱动电极和检测电极之间的互电容的电容值。触摸屏控制器透过检测互电容陈列的每一个互电容的电容值再跟没有导电物接触或靠近时的电容值比较,就能得出电容值变化影像。电容值变化影像可以传给主机用算法计算出导电物的位置。The utility model is applicable to both mutual-capacitance and self-capacitance touch screens. Taking the mutual-capacitance touch screen as an example, the mutual-capacitance touch screen controller will send a touch screen driving signal to drive the driving electrodes one by one. The driving electrodes can be X-axis or Y-axis conductive. The touch screen driving signal can be a group of pulse trains or a group of sine waves or a group of triangular waveforms, etc. (only one group of pulse waveforms is shown in Figure 1), and a group of pulses contains multiple pulses. The conductive strips of the other axis that are not being driven are sense electrodes. When one driving electrode is driven by the touch screen controller, the driving signal will be coupled to the detecting electrode through the mutual capacitance between the driving electrode and the detecting electrode. If a conductive object touches or is close to the driving electrode and the detecting electrode, the capacitance value of the mutual capacitance between the driving electrode and the detecting electrode will be changed. The touch screen controller detects the capacitance value of each mutual capacitance in the mutual capacitance array and compares it with the capacitance value when no conductive object is in contact with or close to, so as to obtain the capacitance change image. The capacitance change image can be sent to the host computer to calculate the position of the conductive object by algorithm.
图2为本实用新型所应用之主动式电容笔的总体结构图,如图2所示,本实用新型所应用之主动式电容笔包括笔尖、笔头及笔身。图3为本实用新型一种主动式电容笔之第一较佳实施例的结构示意图,图4为本实用新型第一较佳实施例中信号处理模块的基本架构图。如图3及图4所示,本实用新型一种主动式电容笔,除电源(本实用新型较佳实施例中为电池)外,至少还包括:导电笔尖10、笔身、埋藏在笔身内的信号处理模块30以及一电容C。Fig. 2 is the overall structure diagram of the active capacitive pen used in the present invention. As shown in Fig. 2, the active capacitive pen used in the present invention includes a nib, a nib and a pen body. FIG. 3 is a schematic structural diagram of a first preferred embodiment of an active capacitive pen of the present invention, and FIG. 4 is a basic structure diagram of a signal processing module in the first preferred embodiment of the present invention. As shown in Figure 3 and Figure 4, an active capacitive pen of the present invention, in addition to the power supply (battery in the preferred embodiment of the present invention), at least includes: a
其中,导电笔尖10与笔身采用机械式接触性连接,其作用一是作为点击触摸屏目的区域的工具,二是作为耦合装置检测触摸屏发射的触摸屏驱动信号和发送信号处理模块30输出的反馈驱动信号,即,导电笔尖既作为检测电极又作为驱动电极;信号处理模块30用于处理导电笔尖10接收的触摸屏驱动信号并生成同步的反馈驱动信号,于检测阶段接收触摸屏的触摸屏驱动信号,并于驱动阶段发送经过处理的反馈驱动信号;电容C设置于导电笔尖10与信号处理模块30之间,于检测时,电容C用于耦合导电笔尖10获取的触摸屏驱动信号到信号处理模块30的输入端,在反馈驱动触摸屏时,电容C用来隔离反馈驱动信号。Among them, the
信号处理模块30包含检测电路301、控制电路302及反馈驱动电路303。检测电路301用于检测触摸屏发射的触摸屏驱动信号的上升沿或下降沿;控制电路302,当检测电路301检测到触摸屏驱动信号上升沿或下降沿时,控制电路302控制信号处理模块由检测状态进入反馈驱动状态,根据设定调整反馈驱动信号的开始和结束时间或反馈驱动信号上升沿与下降沿的延迟或反馈驱动信号的电压,使反馈驱动信号在下一个触摸屏驱动信号的上升沿或下降沿到来之前结束,令信号处理模块30由驱动状态再次进入检测状态;反馈驱动电路303采用三态输出,在检测时,其输出为高抗阻使导电笔尖10处于悬空状态,在驱动时,在控制电路302控制下将反馈驱动信号传送至导电笔尖10实现对触摸屏的反馈驱动。The
工作时,触摸屏控制器会逐行扫描触摸屏的驱动电极,每扫描一行触摸屏的驱动电极,控制器会向触摸屏的驱动电极发出一组脉冲。主动式电容笔之导电笔尖10会与触摸屏上的每条检测电极之间形成耦合电容。触摸屏的驱动电极距离导电笔尖越近,导电笔尖和触摸屏的检测极之间的耦合电容值就越大。当触摸屏控制器扫描距离导电笔尖10比较近的驱动电极时,导电笔尖10就能耦合到足够强度的触摸屏驱动信号,该信号会经过电容C耦合到主动式电容笔信号处理模块30的输入端,信号处理模块30就会根据设定调整反馈驱动信号的强度。主动式电容笔的反馈驱动信号透过导电笔尖10跟触摸屏上的检测电极之间的耦合电容把反馈驱动信号耦合到触摸屏的检测电极。为了耦合足够强度的信号到触摸屏的检测电极,反馈驱动信号有时需要高压,比如15v,相应地电容C也需要耐压达到15v。图3中的电容C可以是内置芯片里面或者外置在芯片外面。由于电容不会隔离交流信号,当导电笔尖的电压向上升的时候,电容的另一端,即信号处理模块30的输入端的电压也会跟随上升,为了防止高压把信号处理模块的输入端的电路烧毁,在本实用新型之较佳实施例中,在信号处理模块30的输入端增加保护电路305,该保护电路305可以由两个或多个反相并联的二极管组成,其一端接固定偏压Vref,Vref一般设置为模拟电路电源电压的一半左右(如电源电压为5V,则Vref大约2.5v±1.5v),另一端接该检测电路301的输入端,以使在高压反馈驱动信号到来时,在该检测电路301的输入端电压就会被限制在Vref±Vd,Vd为二极管阀值。另外,为了加强主动式电容笔检测触摸屏驱动信号,可以在信号处理模块的输入端选择性添加辅助检测电极50。辅助检测电极50可以是导电笔头,或者是导电笔身,或者是线路板印刷线,或者是导电金属线。When working, the touch screen controller will scan the drive electrodes of the touch screen row by row, and the controller will send a group of pulses to the drive electrodes of the touch screen every time the drive electrodes of the touch screen are scanned. A coupling capacitance is formed between the
以下具体说明信号处理模块的工作原理:当信号处理模块30处于检测状态时,检测电路301会检测信号处理模块30的输入端的电压,当检测电路301检测到触摸屏驱动信号的上升沿或下降沿时输出信号给控制电路302,当信号处理模块30处于检测状态时,反馈驱动电路303的输出是高抗阻,导电笔尖10处于悬空状态,以便导电笔尖10耦合来自触摸屏的驱动信号,主动式电容笔的控制电路302收到检测电路301的输出,控制电路302会控制信号处理模块30进入反馈驱动状态;在反馈驱动状态时,检测电路301的输出会被控制电路302忽略,反馈驱动电路303会结束高抗阻输出,控制电路302会根据设定输出调整反馈驱动信号的强度,在本实用新型较佳实施例中,控制电路302采用以下方法调整反馈驱动信号的强度:改变驱动信号开始和结束的时间,改变反馈驱动信号的上升沿或下降沿的延迟,改变反馈驱动信号的电压,改变上升沿和下降沿之间的延迟,或下降沿和上升沿之间的延迟,主动式电容笔反馈驱动会在下一个触摸屏驱动信号到来之前结束,信号处理模块30会回到开始的检测状态。The working principle of the signal processing module is described in detail below: when the
一个完整的主动式电容笔应该可以让触摸屏准确定位导电笔尖的在触摸屏上的位置,分辨导电物是电容笔或手指。A complete active capacitive pen should allow the touch screen to accurately locate the position of the conductive pen tip on the touch screen, and distinguish whether the conductive object is a capacitive pen or a finger.
图5a至图5c为本实用新型较佳实施例中触摸屏驱动信号与主动式电容笔反馈驱动信号的时序图。以下将配合图5a至图5c对主动式电容笔信号处理模块的检测及反馈驱动过程作一详细说明。5a to 5c are timing diagrams of touch screen driving signals and active capacitive pen feedback driving signals in a preferred embodiment of the present invention. The detection and feedback driving process of the active capacitive pen signal processing module will be described in detail below with reference to FIGS. 5 a to 5 c.
如图5a,主动式电容笔在使用时靠近或触碰触摸屏,触摸屏控制器逐条扫描触摸屏驱动电极,每驱动一条触摸屏驱动电极,触摸屏控制器会发出一组触摸屏驱动信号(如图5a,第一波形),在本实施例中驱动信号是一组脉冲,不过,驱动信号也可以是一组三角波或一组正弦波。当触摸屏被驱动电极距离主动式电容笔导电笔尖比较远,导电笔尖耦合到的触摸屏驱动信号强度比较弱,主动式电容笔检测不到触摸屏驱动信号。当触摸屏控制器驱动导电笔尖附近的触摸屏驱动电极时,导电笔尖就能耦合到相对比较强的触摸屏驱动信号,再经过电容C(图3)把信号耦合到主动式电容笔信号处理模块30的输入端,也就是检测电路301的输入端,当检测电路301检测到触摸屏驱动信号就会把检测结果输出到主动式电容笔信号处理模块的控制电路302,控制电路302就会控制反馈驱动电路303向触摸屏发出反馈驱动信号(如图5a,第三、四波形)。As shown in Figure 5a, when the active capacitive pen approaches or touches the touch screen during use, the touch screen controller scans the touch screen drive electrodes one by one, and each time a touch screen drive electrode is driven, the touch screen controller sends a set of touch screen drive signals (as shown in Figure 5a, the first waveform), in this embodiment the driving signal is a group of pulses, however, the driving signal can also be a group of triangular waves or a group of sine waves. When the driven electrode of the touch screen is far away from the conductive pen tip of the active capacitive pen, the strength of the touch screen driving signal coupled to the conductive pen tip is relatively weak, and the active capacitive pen cannot detect the touch screen driving signal. When the touch screen controller drives the touch screen drive electrodes near the conductive pen tip, the conductive pen tip can be coupled to a relatively strong touch screen drive signal, and then the signal is coupled to the input of the active capacitive pen
图5a中的第二波形是触摸屏一组驱动信号其中的一个触摸屏驱动信号。这一个触摸屏驱动信号包括一个高电平和一个低电平。当触摸屏驱动信号在t0由低电平上升到高电平时,触摸屏驱动电极通过触摸屏驱动电极和触摸屏检测电极之间的耦合电容对所有触摸屏检测电极做了一次正向充电,也就是触摸屏检测电极的电压被拉高。当驱动信号在t3由高电平下降到低电平时,触摸屏驱动电极对所有触摸屏检测电极做了一次反向充电,也就是触摸屏检测电极的电压被拉低。触摸屏检测电极在每次正向或反向冲电之后就会开始放电。触摸屏控制器就会检测检测电极的放电情况判断驱动电极与检测电极之间的耦合电容有没有变化,以进一步判断附近有没有导电物。The second waveform in FIG. 5 a is a touch screen driving signal among a group of touch screen driving signals. This touch screen driving signal includes a high level and a low level. When the touch screen drive signal rises from low level to high level at t 0 , the touch screen drive electrode makes a positive charge to all touch screen detection electrodes through the coupling capacitance between the touch screen drive electrode and the touch screen detection electrode, that is, the touch screen detection electrode voltage is pulled high. When the driving signal drops from a high level to a low level at t3 , the touch screen driving electrode performs a reverse charge on all the touch screen detection electrodes, that is, the voltage of the touch screen detection electrodes is pulled down. The touch screen detection electrodes start to discharge after each forward or reverse charge. The touch screen controller will detect the discharge of the detection electrodes to determine whether there is any change in the coupling capacitance between the drive electrodes and the detection electrodes, so as to further determine whether there is a conductive object nearby.
图5a的第三、四波形为第二波形的触摸屏驱动信号对应的主动电容笔的反馈驱动信号。如第三、四波形显示,主动式电容笔的信号处理模块开始时是处于检测状态,此时,反馈驱动电路303的输出是高抗阻,导电笔尖处于悬空状态,方便导电笔尖感应触摸屏控制器对触摸屏驱动电极发出的驱动信号。当主动式电容笔的检测电路301检测到触摸屏驱动信号的上升沿之后(t0),检测电路301输出信号通知控制电路302检测到触摸屏驱动信号的上升沿。控制电路302随之控制主动式电容笔进入反馈驱动状态。控制电路302根据设定,在一定延迟(t1)之后结束反馈驱动电路303的高抗阻输出,以一定的下降延迟(t1到t2)向触摸屏发出正相(如图5a,第三波形)或反相(如图5a,第四波形)的反馈驱动信号。反馈驱动的开始时间(图5a,t1),结束时间(图5a,t2),上升沿或下降沿的延迟(图5a,t1到t2),和反馈驱动信号的电压也可以根据设定调整。整个主动式电容笔对触摸屏的反馈驱动过程会在触摸屏驱动信号的下一个下降沿(图5a,t3)之前结束。主动式电容笔会再次进入检测状态。从t0到t3,主动式电容笔的信号处理模块30完成一个检测与反馈驱动周期。The third and fourth waveforms in FIG. 5a are the feedback driving signals of the active capacitive pen corresponding to the touch screen driving signal of the second waveform. As shown by the third and fourth waveforms, the signal processing module of the active capacitive pen is in the detection state at the beginning. At this time, the output of the feedback drive circuit 303 is high impedance, and the conductive pen tip is in a suspended state, which is convenient for the conductive pen tip to sense the touch screen controller. The driving signal sent to the driving electrodes of the touch screen. After the
主动式电容笔的反馈驱动信号的强弱可以通过调整反馈驱动开始和结束的时间,反馈驱动信号上升沿和下降沿的延迟,反馈驱动信号的电压来实现,或同一个检测与反馈驱动周期里面上升沿和下降沿之间的延迟,或同一个检测与反馈驱动周期里面下降沿和上升沿之间的延迟。The strength of the feedback drive signal of the active capacitive pen can be realized by adjusting the start and end time of the feedback drive, the delay of the rising edge and falling edge of the feedback drive signal, the voltage of the feedback drive signal, or the same detection and feedback drive cycle. The delay between rising and falling edges, or the delay between falling and rising edges within the same detection and feedback drive cycle.
在图5b中,如图5b的第三,四波形显示,主动式电容笔的信号处理模块开始时是处于检测状态,此时,反馈驱动电路303的输出是高抗阻,导电笔尖处于悬空状态,方便导电笔尖感应触摸屏控制器对触摸屏驱动电极发出的驱动信号。当主动式电容笔的检测电路301检测到触摸屏驱动信号的上升沿之后(t0),检测电路301输出信号通知控制电路302检测到触摸屏驱动信号的上升沿。控制电路302随之控制主动式电容笔进入反馈驱动状态。控制电路302根据设定,在一定延迟(t1)之后结束反馈驱动电路303的高抗阻输出,以一定的上升或下降延迟向触摸屏发出N个与检测到的上升沿或下降沿同相的上升沿或下降沿,和N+1个与检测到的上升沿或下降沿反相的上升沿或下降沿(如图5b,第四波形)。反馈驱动信号的强度可以透过设定调整t2,t3和t4。整个反馈驱动的过程会在触摸屏驱动信号的下一个下降沿(图5b,t5)之前结束。主动式电容笔会再次进入检测状态。从t0到t5,主动式电容笔的信号处理模块303完成一个检测与反馈驱动周期。In Figure 5b, as shown by the third and fourth waveforms in Figure 5b, the signal processing module of the active capacitive pen is in the detection state at the beginning, at this time, the output of the feedback drive circuit 303 is high impedance, and the conductive pen tip is in a suspended state , it is convenient for the conductive pen tip to sense the drive signal sent by the touch screen controller to the touch screen drive electrode. After the
图5c显示另外一种触摸屏驱动信号。图5c第一波形显示一组触摸屏驱动波形,第二波形显示的是一个触摸屏驱动信号的波形。这一个触摸屏驱动信号的波形也有高电平和低电平,不过触摸屏控制器不像图5a和图5b那样在一个触摸屏驱动波形期间,高电平和低电平时,各通过耦合电容对检测电极做一次充电,而是在一个驱动波形期间通过开关只对检测电极做一次正向或反向充电。在使用主动式电容笔时,主动式电容笔靠近或触碰触摸屏,当触摸屏控制器驱动导电笔尖附近的驱动电极时,导电笔尖就能耦合到触摸屏驱动信号。主动式电容笔的控制电路302根据设定,在一定延迟(图5c,t1)之后结束反馈驱动电路303的高抗阻输出,以一定的下降延迟(图5c,t1到t2)向触摸屏发出反相(如图5c,第三波形)或以一定的上升延迟(图5c,t1到t2)向触摸屏发出正相(如图5c,第四波形)的反馈驱动信号。反馈驱动的开始时间(图5c,t1),结束时间(图5c,t4),和反馈驱动信号的电压可以根据设定调整。整个反馈驱动的过程会在触摸屏下一个驱动信号的上升沿(图5c,t5)到来之前结束。主动式电容笔会再次进入检测状态。从t0到t5,主动式电容笔的信号处理模块完成一个检测与反馈驱动周期。Figure 5c shows another touch screen drive signal. The first waveform in Fig. 5c shows a set of touch screen driving waveforms, and the second waveform shows a waveform of a touch screen driving signal. The waveform of this touch screen driving signal also has high level and low level, but the touch screen controller is not like Figure 5a and Figure 5b. During the period of a touch screen driving waveform, when the high level and low level, each through the coupling capacitance to the detection electrode once Instead of charging, the detection electrode is charged forward or reverse only once through the switch during a drive waveform. When using the active capacitive pen, the active capacitive pen approaches or touches the touch screen, and when the touch screen controller drives the driving electrodes near the conductive pen tip, the conductive pen tip can be coupled to the touch screen driving signal. According to the setting, the
图6为本实用新型一种主动式电容笔之第二较佳实施例的内部示意图。如图6所示,在本实用新型之第二较佳实施例中,本实用新型之主动式电容笔包括:检测电极601、驱动电极602及信号处理模块603;检测电极601用于感应触摸屏发射的触摸屏驱动信号并传送至信号处理模块603;信号处理模块603用于处理检测电极601接收的触摸屏驱动信号并产生同步的反馈驱动信号;反馈驱动信号由驱动电极602向触摸屏发射,在触摸屏定位算法配合下实现精确定位,在本实施例中,驱动电极为导电笔尖,检测电极601可以是导电笔头,或导电笔身,或电线,或线路板印刷线,由于信号处理模块603与第一较佳实施例中的信号处理模块结构功能相同,在此不予赘述。FIG. 6 is an internal schematic diagram of a second preferred embodiment of an active capacitive pen of the present invention. As shown in Figure 6, in the second preferred embodiment of the present invention, the active capacitive pen of the present invention includes:
综上所述,本实用新型一种主动式电容笔通过将检测电路及反馈驱动电路于时序上分开,有效避免信号处理模块形成闭环回路而产生自激振荡,其不仅可以精确定位主动式电容笔导电笔尖的位置,而且更容易分辨导电物是手指或主动式电容笔,同时,本实用新型之主动式电容笔还可以根据设定传递不同强度的反馈驱动信号。In summary, an active capacitive pen of the present invention separates the detection circuit and the feedback drive circuit in sequence, effectively avoiding the signal processing module from forming a closed-loop loop to generate self-excited oscillation, which can not only precisely position the active capacitive pen The position of the conductive pen tip, and it is easier to distinguish whether the conductive object is a finger or an active capacitive pen. At the same time, the active capacitive pen of the present invention can also transmit feedback driving signals of different strengths according to settings.
上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何本领域技术人员均可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰与改变。因此,本实用新型的权利保护范围,应如权利要求书所列。The above-mentioned embodiments only illustrate the principles and effects of the present utility model, but are not intended to limit the present utility model. Any person skilled in the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the utility model should be as listed in the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320850816.4U CN203673444U (en) | 2013-12-20 | 2013-12-20 | active capacitive pen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320850816.4U CN203673444U (en) | 2013-12-20 | 2013-12-20 | active capacitive pen |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203673444U true CN203673444U (en) | 2014-06-25 |
Family
ID=50969717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320850816.4U Expired - Fee Related CN203673444U (en) | 2013-12-20 | 2013-12-20 | active capacitive pen |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203673444U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103729073A (en) * | 2013-12-20 | 2014-04-16 | 艾攀科技有限公司 | Active capacitive pen and touch detection and feedback driving method thereof |
WO2015096007A1 (en) * | 2013-12-23 | 2015-07-02 | 艾攀科技有限公司 | Active capacitive pen, and touch detection and feedback driving methods therefor |
CN107533384A (en) * | 2015-04-20 | 2018-01-02 | 株式会社和冠 | Method, sensor controller and the active stylus of active stylus and sensor controller are used |
CN108008840A (en) * | 2016-10-27 | 2018-05-08 | 翰硕电子股份有限公司 | Method for transmitting signal by synchronous time difference, capacitive pen and touch input device |
CN110892366A (en) * | 2017-06-30 | 2020-03-17 | 微软技术许可有限责任公司 | Phase error compensation in single correlator systems |
US12079403B2 (en) | 2020-03-31 | 2024-09-03 | Huawei Technologies Co., Ltd. | Sampling a to-be-measured signal by a stylus |
-
2013
- 2013-12-20 CN CN201320850816.4U patent/CN203673444U/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103729073A (en) * | 2013-12-20 | 2014-04-16 | 艾攀科技有限公司 | Active capacitive pen and touch detection and feedback driving method thereof |
CN103729073B (en) * | 2013-12-20 | 2016-07-06 | 艾攀科技有限公司 | Active capacitance pen |
WO2015096007A1 (en) * | 2013-12-23 | 2015-07-02 | 艾攀科技有限公司 | Active capacitive pen, and touch detection and feedback driving methods therefor |
US10055033B2 (en) | 2013-12-23 | 2018-08-21 | Shanghai Yishang Information Technology Co., Ltd. | Active capacitive pen, and touch detection and feedback driving methods therefor |
CN107533384A (en) * | 2015-04-20 | 2018-01-02 | 株式会社和冠 | Method, sensor controller and the active stylus of active stylus and sensor controller are used |
CN107533384B (en) * | 2015-04-20 | 2020-10-20 | 株式会社和冠 | Method using active stylus and sensor controller, and active stylus |
CN108008840A (en) * | 2016-10-27 | 2018-05-08 | 翰硕电子股份有限公司 | Method for transmitting signal by synchronous time difference, capacitive pen and touch input device |
CN108008840B (en) * | 2016-10-27 | 2019-09-06 | 翰硕电子股份有限公司 | Method for transmitting signal by synchronous time difference, capacitive pen and touch input device |
CN110892366A (en) * | 2017-06-30 | 2020-03-17 | 微软技术许可有限责任公司 | Phase error compensation in single correlator systems |
CN110892366B (en) * | 2017-06-30 | 2023-08-25 | 微软技术许可有限责任公司 | Phase error compensation in a single correlator system |
US12079403B2 (en) | 2020-03-31 | 2024-09-03 | Huawei Technologies Co., Ltd. | Sampling a to-be-measured signal by a stylus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103729073B (en) | Active capacitance pen | |
CN203673444U (en) | active capacitive pen | |
US11340718B2 (en) | Transmitter and transmitting method | |
KR101461157B1 (en) | touch screen system and driving method thereof | |
CN103279247B (en) | A kind of capacitive touch screen | |
EP2656183B1 (en) | Active stylus for use with touch-sensitive interfaces and corresponding method | |
CN104571745B (en) | Touch-sensing system and display device | |
CN111164553B (en) | Touch sensing method, touch chip, electronic equipment and touch system | |
CN103440055B (en) | Active capacitance pen, capacitance touch panel and touch device | |
CN104951157B (en) | Capacitive touch device and method for detecting active pen and object | |
CN104423647A (en) | Touch input device and system | |
CN103941889B (en) | Capacitive pen, capacitive touch panel and touch device | |
TWI521394B (en) | Capacitive active multi-stylus and control method for the capacitive active multi-stylus | |
TW201545004A (en) | Touch processor, touch device, touch system and touch method | |
US10055033B2 (en) | Active capacitive pen, and touch detection and feedback driving methods therefor | |
US11422663B1 (en) | Stylus sensing on touchscreens | |
CN103455176B (en) | Active capacitance pen, capacitance touch panel and touch device | |
TWI517014B (en) | Method and device for identifying touch signal | |
CN104049778B (en) | Active capacitance pen | |
CN111813257B (en) | Touch processor, touch device, touch system and touch method | |
US20130093700A1 (en) | Touch-control communication system | |
CN108475133A (en) | The touch tablet driving circuit of multiple patterns is realized with a sensing circuit and utilizes its touch-sensing method | |
KR101446244B1 (en) | Hybrid electronic pen both ultrasonic waves and capacitive type | |
CN104077001B (en) | A method for identifying touch screen contact objects and a method for transmitting signals by a capacitive pen | |
CN203376726U (en) | Capacitive touch screen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140625 Termination date: 20191220 |