CN203627131U - Oppositely-arranged moving coil linear compressor allowing axial magnetizing to be achieved through long coils - Google Patents
Oppositely-arranged moving coil linear compressor allowing axial magnetizing to be achieved through long coils Download PDFInfo
- Publication number
- CN203627131U CN203627131U CN201320740807.XU CN201320740807U CN203627131U CN 203627131 U CN203627131 U CN 203627131U CN 201320740807 U CN201320740807 U CN 201320740807U CN 203627131 U CN203627131 U CN 203627131U
- Authority
- CN
- China
- Prior art keywords
- yoke
- coil
- displacement sensor
- piston
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 74
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000003825 pressing Methods 0.000 claims abstract description 30
- 230000005415 magnetization Effects 0.000 claims abstract description 26
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims description 7
- 238000003466 welding Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000005389 magnetism Effects 0.000 description 10
- 238000000206 photolithography Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000003754 machining Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000007769 metal material Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000000306 component Substances 0.000 description 3
- 239000008358 core component Substances 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
Images
Landscapes
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
本专利公开了一种采用长线圈轴向充磁的对置式动圈直线压缩机,整体结构采用对置式以抵消左右两部分的机械振动;左部及右部除共用机座外,均由各自的气缸衬套、永磁体、上轭铁、下轭铁、载流线圈、线圈骨架、活塞、上板弹簧组、下板弹簧组、上压片结构、下压片结构、上支撑结构、下支撑结构、位移传感器铁芯、位移传感器线圈、位移传感器支撑、机壳组成;永磁体轴向充磁,载流线圈采用长线圈;左部及右部的上轭铁、活塞以及载流线圈需满足各自载流线圈的轴向高度大于各自上轭铁的轴向厚度与各自活塞的最大行程之和。本专利结构紧凑、振动低、电机效率高、预期寿命长,对高可靠、长寿命、高效率直线压缩机的发展具有重要意义。
This patent discloses an opposed moving coil linear compressor adopting axial magnetization of long coils. The overall structure adopts the opposed type to offset the mechanical vibration of the left and right parts; Cylinder liner, permanent magnet, upper yoke, lower yoke, current-carrying coil, coil bobbin, piston, upper leaf spring group, lower leaf spring group, upper pressing structure, lower pressing structure, upper supporting structure, lower Supporting structure, displacement sensor core, displacement sensor coil, displacement sensor support, and casing; the permanent magnet is axially magnetized, and the current-carrying coil adopts a long coil; the upper yoke iron, piston and current-carrying coil on the left and right parts need It is satisfied that the axial height of each current-carrying coil is greater than the sum of the axial thickness of each upper yoke and the maximum stroke of each piston. The patent has the advantages of compact structure, low vibration, high motor efficiency and long life expectancy, and is of great significance to the development of high reliability, long life and high efficiency linear compressors.
Description
技术领域technical field
本专利涉及直线压缩机,特别涉及一种采用长线圈轴向充磁的对置式动圈直线压缩机。This patent relates to a linear compressor, in particular to an opposed moving-coil linear compressor adopting axial magnetization of a long coil.
背景技术Background technique
直线压缩机是往复式活塞压缩机的一种。传统的往复式活塞压缩机大多属于旋转压缩机,即采用旋转电机驱动、通过曲柄连杆机构等的机械传动来实现往复运动。旋转压缩机的技术较为成熟,但其能量传递环节多、振动和噪声大、整机控制复杂、能量转化效率偏低,特别是因结构特点而对活塞施加的侧向力,是产生无用功和机械磨损的主要来源之一,因而大大限制了其工作寿命。直线压缩机利用直线电机驱动活塞在气缸中作往复直线运动,理论上完全消除了对活塞的径向作用力,因而消除了活塞和气缸壁之间的机械磨损以及由此产生的无用功,工作寿命和能量转化效率都大大提高,故而在需要长寿命和高效率工作的航空、航天、军事等特殊领域有着非常重要的应用。Linear compressors are a type of reciprocating piston compressors. Most of the traditional reciprocating piston compressors are rotary compressors, which are driven by a rotary motor and achieve reciprocating motion through mechanical transmission such as a crank connecting rod mechanism. The technology of the rotary compressor is relatively mature, but its energy transmission links are many, the vibration and noise are large, the control of the whole machine is complicated, and the energy conversion efficiency is low. One of the main sources of wear, thus greatly limiting its working life. The linear compressor uses a linear motor to drive the piston to make a reciprocating linear motion in the cylinder, which theoretically completely eliminates the radial force on the piston, thus eliminating the mechanical wear between the piston and the cylinder wall and the resulting useless work. Both energy and energy conversion efficiency are greatly improved, so it has very important applications in special fields such as aviation, aerospace, and military that require long life and high-efficiency work.
直线压缩机的核心部件是直线电机。直线电机根据其中的运动部件主要分为三类:动铁式、动圈式和动磁式。动铁式直线电机不使用永磁体,因而价格较低廉,但是性能相对不稳定,控制较困难,其应用逐渐减少;动圈式和动磁式直线电机都包括三类核心部件:永磁体、轭铁和载流线圈,根据运动时是载流线圈还是永磁体运动而区分为动圈式和动磁式。其中,动圈式直线压缩机因其结构上的特点实现了径向力的完全消除,而且在开路时在载流线圈上不产生轴向力和扭矩,因而具有高效率、低噪声和高可靠的突出优点,因而成为近30年来国际范围内空间回热式低温制冷机(如脉冲管制冷机和斯特林制冷机)的首选动力源。以美国为代表的西方发达国家为例,在近20年间发射升空的航天脉冲管制冷机和斯特林制冷机中,绝大多数都采用了动圈式直线压缩机。The core component of the linear compressor is the linear motor. Linear motors are mainly divided into three categories according to the moving parts: moving iron type, moving coil type and moving magnet type. The moving iron linear motor does not use permanent magnets, so the price is relatively low, but the performance is relatively unstable, the control is difficult, and its application is gradually reduced; both the moving coil and the moving magnet linear motor include three types of core components: permanent magnet, yoke Iron and current-carrying coils are divided into moving coil and moving magnet according to whether the current-carrying coil or the permanent magnet moves when moving. Among them, the moving coil linear compressor realizes the complete elimination of radial force due to its structural characteristics, and does not generate axial force and torque on the current-carrying coil when the circuit is open, so it has high efficiency, low noise and high reliability. Because of its outstanding advantages, it has become the preferred power source for space regenerative cryogenic refrigerators (such as pulse tube refrigerators and Stirling refrigerators) in the past 30 years. Taking the western developed countries represented by the United States as an example, most of the aerospace pulse tube refrigerators and Stirling refrigerators launched into space in the past 20 years have adopted moving coil linear compressors.
目前,国际上应用于航天领域需要保证长寿命、高可靠、高效率工作的动圈式直线压缩机主要采用牛津型和对置式结构形式。所谓牛津型,其得名源于英国牛津大学的两项关键技术——间隙密封和板弹簧支撑,这两项技术是无油润滑而能长寿命运转的关键保障;所谓对置式结构形式,是指在主体结构中采用两个完全对等的运动及支撑结构来相互抵消自身产生的机械振动,该项技术是实现直线压缩机低振动的可靠保障。At present, the moving coil linear compressors used in the aerospace field in the world that need to ensure long life, high reliability and high efficiency work mainly adopt Oxford type and opposed structure. The so-called Oxford type is named after two key technologies of Oxford University in the United Kingdom - gap seal and leaf spring support. These two technologies are the key guarantees for long-life operation without oil lubrication; the so-called opposed structure is It refers to the use of two completely equal movement and support structures in the main structure to offset the mechanical vibration generated by itself. This technology is a reliable guarantee for the low vibration of the linear compressor.
如前所述,动圈式直线电机包括三类核心部件:永磁体、轭铁和载流线圈。工作时载流线圈在永磁体和轭铁共同形成的气隙内,受磁场力的作用,成往复的直线运动。根据载流线圈的长短和永磁体的充磁方向,可以将动圈式直线电机分为四种,图1给出了这四种形式的示意图,其中(1)为长线圈轴向充磁形式,(2)为短线圈轴向充磁形式,(3)为长线圈径向充磁形式,(4)为短线圈径向充磁形式,其中63为永磁体,64为上轭铁,65为下轭铁,66为载流线圈,67为中心通孔。As mentioned earlier, a moving coil linear motor consists of three core components: permanent magnets, yokes, and current-carrying coils. When working, the current-carrying coil is in the air gap formed by the permanent magnet and the yoke iron, and is affected by the magnetic field force to move in a reciprocating linear motion. According to the length of the current-carrying coil and the magnetization direction of the permanent magnet, the moving coil linear motor can be divided into four types. Figure 1 shows the schematic diagrams of these four forms, where (1) is the long coil axial magnetization form , (2) is the form of short coil axial magnetization, (3) is the form of long coil radial magnetization, (4) is the form of short coil radial magnetization, of which 63 is the permanent magnet, 64 is the upper yoke, 65 For the lower yoke, 66 is a current-carrying coil, and 67 is a central through hole.
动圈式直线压缩机根据其采用的直线电机的种类,也被相应地分为四种形式,即:采用长线圈轴向充磁的动圈式直线压缩机、采用短线圈轴向充磁的动圈式直线压缩机、采用长线圈径向充磁的动圈式直线压缩机、采用短线圈径向充磁的动圈式直线压缩机。动圈式直线压缩机无论采用上述四种形式中的哪一种,如果要确保其能稳定工作,都必须遵循以下基本原则:(1)要么是在整个活塞行程中,始终保证稳定磁场处在载流线圈之内(对应于长线圈形式);(2)要么是在整个活塞行程中,始终保证载流线圈处于稳定的磁场之内(对应于短线圈形式)。目前这四种形式的动圈式直线压缩机在国内的发展都刚刚起步。Moving coil linear compressors are also divided into four types according to the types of linear motors they use, namely: moving coil linear compressors using long coils for axial magnetization, and using short coils for axial magnetization Moving coil linear compressor, moving coil linear compressor using long coil radial magnetization, moving coil linear compressor using short coil radial magnetization. Regardless of which of the above four forms the moving coil linear compressor adopts, if it is to ensure that it can work stably, the following basic principles must be followed: (1) Either in the entire piston stroke, the stable magnetic field must always be at (corresponding to the long coil form); (2) either throughout the entire piston stroke, always ensure that the current-carrying coil is within a stable magnetic field (corresponding to the short coil form). At present, the development of these four types of moving coil linear compressors has just started in China.
发明内容Contents of the invention
本专利提出一种采用长线圈轴向充磁的对置式动圈直线压缩机。This patent proposes an opposed moving-coil linear compressor adopting axial magnetization of long coils.
所发明的采用长线圈轴向充磁的对置式动圈直线压缩机由共用机座0、左部气缸衬套1、左部永磁体2、左部上轭铁3、左部下轭铁4、左部载流线圈5、左部线圈骨架6、左部活塞7、左部上板弹簧组8、左部下板弹簧组9、左部上压片结构10、左部下压片结构11、左部上支撑结构12、左部下支撑结构13、左部位移传感器铁芯14、左部位移传感器线圈15、左部位移传感器支撑16、左部机壳17以及右部气缸衬套1′、右部永磁体2′、右部上轭铁3′、右部下轭铁4′、右部载流线圈5′、右部线圈骨架6′、右部活塞7′、右部上板弹簧组8′、右部下板弹簧组9′、右部上压片结构10′、右部下压片结构11′、右部上支撑结构12′、右部下支撑结构13′、右部位移传感器铁芯14′、右部位移传感器线圈15′、右部位移传感器支撑16′、右部机壳17′共同组成,其特征在于,整体结构采用对置式以抵消左右两部分产生的机械振动,即以垂直中心线40为对称轴,左部所有部件及结构布置与右部相应部件及结构布置互为镜像体;水平轴线50所指示为轴向方向;共用机座0由左部气缸41、右部气缸41′以及共用出气孔42组成;左部气缸衬套1过盈配合镶嵌于左部气缸41的内部,右部气缸衬套1′过盈配合镶嵌于右部气缸41′的内部;左部永磁体2为圆筒状结构,中心位置沿轴向加工有直径为d的左部磁体内通孔43;左部上轭铁3为圆筒状结构,其外径与左部永磁体2的外径相等,中心位置沿轴向加工有直径为d的左部上轭铁内通孔44;左部下轭铁4为U型结构,U形体的内径大于左部永磁体2的外径,在U形体底部的中心位置沿轴向加工有直径为d的左部下轭铁内通孔45;左部永磁体2沿轴向充磁至饱和,之后左部上轭铁3与左部下轭铁4将左部永磁体2完全包裹其中,左部上轭铁左端面18与左部下轭铁左端面19齐平,左部上轭铁右端面20与左部永磁体左端面21紧贴在一起,左部永磁体右端面22与左部下轭铁左端面23紧贴在一起;左部永磁体2、左部上轭铁3、左部下轭铁4共同形成左部环状气隙46,左部载流线圈5同心地插入左部环状气隙46内,右部永磁体2′、右部上轭铁3′、右部下轭铁4′共同形成右部环状气隙46′,右部载流线圈5′同心地插入右部环状气隙46′内;左部载流线圈5与右部载流线圈5′的轴向高度均为h;左部活塞7与右部活塞7′工作时的最大行程均为s;左部上轭铁3与右部上轭铁3′的轴向厚度均为δ,并满足关系:h>s+δ,以保证在整个活塞行程中,始终确保稳定磁场处在载流线圈之内;左上支撑右端面24支撑于左部下轭铁左端面19之上,二者通过螺钉紧固,左部上支撑结构12的左侧加工成上环状平面25;左下支撑右端面47支撑于共用机座左侧面48之上,二者焊接在一起;左下支撑左前侧面26支撑于左部下轭铁右端面27之上,二者通过螺钉紧固,左部下支撑结构13的左下侧面加工成下环状平面28;左部上板弹簧组8由若干单片板弹簧薄片叠加而成,在外缘形成左上组外缘29,在内缘形成左上组内缘30,在中心部位沿轴向加工有直径为d的左上组簧体中心孔31,其中左上组外缘29放置于左部上支撑结构12的上环状平面25之上,并通过螺钉紧固;左部下板弹簧组9由若干单片板弹簧薄片叠加而成,在外缘形成左下组外缘32,在内缘形成左下组内缘33,在中心部位沿轴向加工有直径为d的左下组簧体中心孔34,其中左下组外缘32放置于左部下支撑结构13的下环状平面28之上,并通过螺钉紧固;左部活塞7由左部活塞头35、左部活塞中间过渡台36以及左部活塞杆37组成,在左部活塞杆37的末端加工有长1~3mm的左杆螺纹段49,左部活塞头35的外径较之左部气缸41的内径小10~30μm,同时保证左部活塞杆37的直径小于d;左部活塞杆37依次贯穿左下组簧体中心孔34、左部下轭铁内通孔45、左部磁体内通孔43、左部上轭铁内通孔44、左上组簧体中心孔31;左部上压片结构10将左上组内缘30以及左部线圈骨架6与左部活塞杆37紧固在一起,左部下压片结构11将左下组内缘33与左部活塞中间过渡台36紧固在一起,从而保证左部载流线圈5、左部线圈骨架6与左部活塞7、左部上板弹簧组8、左部下板弹簧组9连接为一个可同时运动的整体;左部位移传感器铁芯14内部加工有与左杆螺纹段49相配合的左铁芯螺纹段51,左杆螺纹段49旋入左铁芯螺纹段51内并紧固;在左部位移传感器铁芯14之外设置与左部位移传感器支撑16紧固在一起的左部位移传感器线圈15,左部位移传感器支撑16进而支撑于左部上支撑结构12之上并与之紧固在一起;左部机壳17通过左部机壳外端面61与左下支撑外端面52焊接固定,从而形成左部密闭腔体,将左部气缸衬套1、左部永磁体2、左部上轭铁3、左部下轭铁4、左部载流线圈5、左部线圈骨架6、左部活塞7、左部上板弹簧组8、左部下板弹簧组9、左部上压片结构10、左部下压片结构11、左部上支撑结构12、左部下支撑结构13、左部位移传感器铁芯14、左部位移传感器线圈15、左部位移传感器支撑16、左部机壳17全部罩于其中;右部所有部件及结构布置是左部相应部件及结构布置关于垂直中心线40的镜像体,右部机壳17′通过右部机壳外端面61′与右下支撑外端面52′焊接固定,形成右部密闭腔体,将右部气缸衬套1′、右部永磁体2′、右部上轭铁3′、右部下轭铁4′、右部载流线圈5′、右部线圈骨架6′、右部活塞7′、右部上板弹簧组8′、右部下板弹簧组9′、右部上压片结构10′、右部下压片结构11′、右部上支撑结构12′、右部下支撑结构13′、右部位移传感器铁芯14′、右部位移传感器线圈15′、右部位移传感器支撑16′、右部机壳17′全部罩于其中,从而形成一种采用长线圈轴向充磁的对置式动圈直线压缩机。The invented opposed moving coil linear compressor adopting long coil axial magnetization consists of a
下面结合附图对所发明的采用长线圈轴向充磁的对置式动圈直线压缩机的制造方法进行说明如下:The manufacturing method of the invented opposed moving-coil linear compressor adopting axial magnetization of the long coil is described as follows in conjunction with the accompanying drawings:
图2为所发明的采用长线圈轴向充磁的对置式动圈直线压缩机的平面剖视图;以垂直中心线40为对称轴而互为镜像体的左部所有部件与右部相应部件需采用同一批次生产的零件以使个体间的差异最小化;Fig. 2 is a plane sectional view of the invented opposed moving coil linear compressor adopting long coil axial magnetization; with the
图3为共用机座0的立体剖视图;共用机座0采用机械强度高、热膨胀系数小的钛合金材料制作,采用五轴机床同时加工出左部气缸41和右部气缸41′,保证左部气缸41和右部气缸41′关于垂直中心线40对称,并保证左部气缸41和右部气缸41′的同轴度优于1.0μm,同时保证上述两气缸的内孔圆度均优于0.5μm;在左部气缸41和右部气缸41′加工完毕后,使用同一五轴机床加工出共用出气孔42,保证共用出气孔42与左部气缸41以及右部气缸41′的垂直度均优于2.0μm;Figure 3 is a three-dimensional sectional view of the shared
图4为左部气缸衬套1的立体剖视图(对于左右互为镜像体的部件,附图中一般只给出左部的详细示意图,而制造方法则将左部和右部部件一同叙述,下同);左部气缸衬套1及右部气缸衬套1′均采用硬度大于58的模具钢材料使用慢走丝线切割的方法加工成圆筒状,保证左部气缸衬套1及右部气缸衬套1′的外径分别比左部气缸41及右部气缸41′的内径大0.5~1.0mm,然后采用过盈配合和热胀冷缩的方式分别镶嵌入左部气缸41及右部气缸41′内,具体镶嵌方法如下:将如图3所示的共用机座0整体放置于内部温度为160℃的恒温加热箱内均匀加热4~6小时,在共用机座0取出恒温加热箱前5~10分钟,将左部气缸衬套1及右部气缸衬套1′同时放置于液氮中浸泡,在共用机座0从恒温加热箱取出的同时,将左部气缸衬套1及右部气缸衬套1′从液氮中取出,然后使用机械外力将左部气缸衬套1及右部气缸衬套1′分别推入左部气缸41及右部气缸41′内部,从而保证左部气缸衬套1及右部气缸衬套1′的外壁分别与左部气缸41及右部气缸41′的内壁紧密结合;然后使用坐标磨床对左部气缸衬套1及右部气缸衬套1′的内孔进行精细研磨,保证其内孔圆度均优于0.5μm;Figure 4 is a three-dimensional sectional view of the left cylinder liner 1 (for the left and right parts that are mirror images of each other, generally only the detailed schematic diagram of the left part is given in the drawings, and the manufacturing method is described together with the left and right parts, below The same); the
图5为左部活塞7的平面剖视图;左部活塞7及右部活塞7′均采用机械强度高、热膨胀系数小的钛合金材料制作,首先采用数控机床加工出毛坯,然后采用坐标磨床进行精细研磨,保证左部活塞头35及右部活塞头35′的圆度均优于0.5μm,并保证左部活塞杆37和右部活塞杆37′沿轴向的跳动低于3.0μm,以及左部活塞杆37与左部活塞头35的垂直度优于1.0μm,右部活塞杆37′与右部活塞头35′的垂直度优于1.0μm;在左部活塞杆37和右部活塞杆37′的末端使用精密数控机床分别加工出左杆螺纹段49和右杆螺纹段49′;左部活塞7及右部活塞7′工作时的最大行程均设计为s,由限位结构保证行程精度优于2.0μm;Figure 5 is a plane sectional view of the
图6为左部上板弹簧组8与左部上压片结构10的组合示意图,图7为左部下板弹簧组9与左部下压片结构11的组合示意图;左部上压片结构10、左部下压片结构11以及右部上压片结构10′、右部下压片结构11′均由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度均优于9.0μm;左部上板弹簧组8、左部下板弹簧组9以及右部上板弹簧组8′、右部下板弹簧组9′均由若干片薄片板弹簧叠加组成,单片薄片板弹簧的厚度和数量由具体应用所需要的弹性刚度决定,材质为铍青铜或不锈钢,采用光刻的方法精确加工出内部型线,内部型线可以是螺旋形,也可以是直臂形,型线要求平滑、无毛刺、无折角,并通过板簧振动试验机进行超过108个循环以上的疲劳检验;Fig. 6 is a schematic diagram of the combination of the left upper
内部型线为螺旋形的单片薄片板弹簧的示意图如图8所示,在薄片上以光刻法刻蚀出螺旋形型线38,从而自然形成螺旋形板簧臂39,外侧留出单片板弹簧外缘53,并在其上以光刻法均匀刻蚀出若干用于螺钉固定的螺钉孔54,在内侧留出单片板弹簧内缘55;As shown in Figure 8, the schematic diagram of a single-piece thin leaf spring with a spiral inner shape line is etched with a spiral shape line 38 on the sheet by photolithography, thereby naturally forming a spiral shape leaf spring arm 39, leaving a single leaf spring arm 39 outside. Leaf spring outer edge 53, and a number of screw holes 54 for screw fixing are evenly etched on it by photolithography, leaving a single leaf spring inner edge 55 on the inside;
内部型线为直臂形的单片薄片板弹簧的示意图如图9所示,在薄片上以光刻法刻蚀出直臂型板弹簧臂56以及运动臂57,外侧留出单片板弹簧外缘58,并在其上以光刻法均匀刻蚀出若干用于螺钉固定的螺钉孔59,在内侧留出单片板弹簧内缘60;The schematic diagram of a single-piece leaf spring with a straight arm-shaped internal profile is shown in Figure 9. A straight-arm leaf spring arm 56 and a moving arm 57 are etched on the sheet by photolithography, and a single leaf spring is left on the outside. Outer edge 58, and on it, evenly etches some
图10和图11分别为左部上支撑结构12和左部下支撑结构13的平面剖视图;左部上支撑结构12及左部下支撑结构13均由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度均优于5.0μm;左部上支撑结构12的左侧使用精密数控机床加工成上环状平面25;左上支撑右端面24支撑于左部下轭铁左端面19之上,二者通过螺钉紧固;左下支撑右端面47支撑于共用机座左侧面48之上,二者通过电子束焊接技术焊接在一起,左下支撑左前侧面26支撑于左部下轭铁右端面27之上,二者通过螺钉紧固,左部下支撑结构13的左下侧面使用精密数控机床加工出下环状平面28,左部下支撑结构13的左上侧面使用精密数控机床加工出左下支撑外端面52;Fig. 10 and Fig. 11 are respectively the plane sectional views of the left
图12为右部下支撑结构13′的平面剖视图;右部下支撑结构13′由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度优于5.0μm,其右上侧面使用精密数控机床加工出左下支撑外端面52′;Figure 12 is a plane sectional view of the lower support structure 13' on the right; the lower support structure 13' on the right is made of a metal material with high mechanical strength and low residual magnetism by CNC machine tools, and the machining accuracy is better than 5.0 μm. Use a precision numerical control machine tool to process the outer end surface 52' of the lower left support;
图13为左部位移传感器铁芯14的平面剖视图;左部位移传感器铁芯14及右部位移传感器铁芯14′均由纯铁材料制作,内部分别加工有与左杆螺纹段49及右杆螺纹段49′相配合的左铁芯螺纹段51及右铁芯螺纹段51′,左杆螺纹段49及右杆螺纹段49′分别旋入左铁芯螺纹段51及右铁芯螺纹段51′内并紧固;Fig. 13 is the plane sectional view of the left part displacement
左部线圈骨架6、右部线圈骨架6′、左部位移传感器支撑16、左部位移传感器支撑16′均由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度均优于9.0μm;左部位移传感器线圈15及右部位移传感器线圈15′均由漆包铜线在相应骨架上绕制而成;The
图14为左部永磁体2的平面剖视图;左部永磁体2及右部永磁体2′均采用磁能积较高的稀土永磁材料制作,使用激光加工的方式加工成型,左部永磁体2及右部永磁体2′均使用脉冲充磁机沿轴向充磁至饱和;Figure 14 is a plane sectional view of the left
图15为左部上轭铁3的平面剖视图;左部上轭铁3及右部上轭铁3′均采用导磁率较高的纯铁材料,使用精密数控机床加工而成,左部上轭铁3及右部上轭铁3′的轴向厚度均为δ,加工精度均优于2.0μm;Figure 15 is a plane sectional view of the
图16为左部下轭铁4的平面剖视图;左部下轭铁4及右部下轭铁4′均采用导磁率较高的纯铁材料,使用精密数控机床加工而成;Figure 16 is a plane sectional view of the
图17为左部载流线圈5的示意图;左部载流线圈5及右部载流线圈5′均采用漆包铜线在固体支撑上绕制而成,漆包铜线的直径和厚度由需要提供的电机力决定;左部载流线圈5与右部载流线圈5′的轴向高度均为h,制作时由机床精度及绕制工艺保证h的精度优于2.0μm;Fig. 17 is the schematic diagram of left part current-carrying
图18为左部永磁体2、左部上轭铁3、左部下轭铁4以及左部载流线圈5的组合平面剖视图;左部上轭铁3与左部下轭铁4将左部永磁体2完全包裹其中,共同形成左部环状气隙46,左部载流线圈5同心地插入左部环状气隙46内;右部上轭铁3′与右部下轭铁4′将右部永磁体2′完全包裹其中,共同形成右部环状气隙46′,右部载流线圈5′同心地插入右部环状气隙46′内;左部上轭铁3、左部载流线圈5、左部活塞7以及右部上轭铁3′与右部载流线圈5′、右部活塞7′在制作时均需保证满足:h>s+δ,以保证在整个活塞行程中,始终确保稳定磁场处在载流线圈之内;Figure 18 is a combined plane sectional view of the left
图19和图20分别为左部机壳17及右部机壳17′的平面剖视图;左部机壳17及右部机壳17′均由机械强度高、结构致密、剩磁较低的金属材料使用精密数控机床加工制作成形;左部机壳外端面61与左下支撑外端面52使用电子束技术焊接在一起,形成左侧密闭腔体;右部机壳外端面61′与右下支撑外端面52′使用电子束技术焊接在一起,形成右部密闭腔体,对上述两个焊接完毕的密闭腔体均充入高纯氦气检验,耐压强度均需高于5.0MPa,氦气泄漏率均需低于3.0×10-8Pa·m3/s。Fig. 19 and Fig. 20 are the plane sectional views of
本专利的优点在于:以长线圈和轴向充磁的方式实现了动圈直线压缩机的稳定、可靠和连续运转,具有结构紧凑、振动低、电机效率高、预期寿命长的突出优点,对高可靠、长寿命、高效率直线压缩机的发展具有重要意义。The advantage of this patent is that the stable, reliable and continuous operation of the moving coil linear compressor is realized by means of long coil and axial magnetization, and it has the outstanding advantages of compact structure, low vibration, high motor efficiency and long expected life. The development of high reliability, long life and high efficiency linear compressor is of great significance.
附图说明Description of drawings
图1为动圈式直线电机四种形式的示意图,其中(1)为长线圈轴向充磁形式,(2)为短线圈轴向充磁形式,(3)为长线圈径向充磁形式,(4)为短线圈径向充磁形式。其中63为永磁体,64为上轭铁,65为下轭铁,66为载流线圈,67为中心通孔;Figure 1 is a schematic diagram of four types of moving coil linear motors, in which (1) is the axial magnetization form of the long coil, (2) is the axial magnetization form of the short coil, and (3) is the radial magnetization form of the long coil , (4) is the form of short coil radial magnetization. Wherein 63 is a permanent magnet, 64 is an upper yoke, 65 is a lower yoke, 66 is a current-carrying coil, and 67 is a central through hole;
图2为所发明的采用长线圈轴向充磁的对置式动圈直线压缩机的平面剖视图,其中:0为共用机座、1为左部气缸衬套、2为左部永磁体、3为左部上轭铁、4为左部下轭铁、5为左部载流线圈、6为左部线圈骨架、7为左部活塞、8为左部上板弹簧组、9为左部下板弹簧组、10为左部上压片结构、11为左部下压片结构、12为左部上支撑结构、13为左部下支撑结构、14为左部位移传感器铁芯、15为左部位移传感器线圈、16为左部位移传感器支撑、17为左部机壳;1′为右部气缸衬套、2′为右部永磁体、3′为右部上轭铁、4′为右部下轭铁、5′为右部载流线圈、6′为右部线圈骨架、7′为右部活塞、8′为右部上板弹簧组、9′为右部下板弹簧组、10′为右部上压片结构、11′为右部下压片结构、12′为右部上支撑结构、13′为右部下支撑结构、14′为右部位移传感器铁芯、15′为右部位移传感器线圈、16′为右部位移传感器支撑、17′为右部机壳;Fig. 2 is a planar cross-sectional view of the invented opposed moving coil linear compressor adopting axial magnetization of long coils, wherein: 0 is the common base, 1 is the left cylinder liner, 2 is the left permanent magnet, 3 is Left upper yoke, 4 is left lower yoke, 5 is left current-carrying coil, 6 is left coil bobbin, 7 is left piston, 8 is left upper plate spring group, 9 is left lower plate spring group , 10 is the left upper tablet structure, 11 is the left lower tablet structure, 12 is the left upper support structure, 13 is the left lower support structure, 14 is the left displacement sensor core, 15 is the left displacement sensor coil, 16 is the left displacement sensor support, 17 is the left casing; 1' is the right cylinder liner, 2' is the right permanent magnet, 3' is the right upper yoke, 4' is the right lower yoke, 5 ' is the right current-carrying coil, 6' is the right coil bobbin, 7' is the right piston, 8' is the right upper plate spring group, 9' is the right lower plate spring group, 10' is the right upper plate Structure, 11' is the right lower plate structure, 12' is the right upper support structure, 13' is the right lower support structure, 14' is the right displacement sensor core, 15' is the right displacement sensor coil, 16' is Right displacement sensor support, 17' is the right casing;
图3为共用机座0的立体剖视图,其中41为左部气缸,41′为右部气缸,42为共用出气孔,48为共用机座左侧面;Fig. 3 is the three-dimensional sectional view of shared
图4为左部气缸衬套1的立体剖视图;Fig. 4 is a three-dimensional sectional view of the
图5为左部活塞7的平面剖视图,其中35为左部活塞头,36为左部活塞中间过渡台,37为左部活塞杆,49为左杆螺纹段;Fig. 5 is the plane sectional view of
图6为左部上板弹簧组8与左部上压片结构10的组合示意图,其中29为左上组外缘,30为左上组内缘,左上组簧体中心孔31;Fig. 6 is a schematic diagram of the combination of the left upper
图7为左部下板弹簧组9与左部下压片结构11的组合示意图,其中32为左下组外缘,33为左下组内缘,34为左下组簧体中心孔;Fig. 7 is a schematic diagram of the combination of the left lower
图8为内部型线为螺旋形的单片薄片板弹簧的示意图,其中38为螺旋形型线,39为螺旋形板簧臂,53为单片板弹簧外缘,54为螺钉孔,55为单片板弹簧内缘;Fig. 8 is the schematic diagram of the monolithic thin plate spring whose internal profile is spiral, wherein 38 is the spiral profile, 39 is the spiral leaf spring arm, 53 is the outer edge of the single plate spring, 54 is the screw hole, and 55 is Single leaf spring inner edge;
图9为内部型线为直臂形的单片薄片板弹簧的示意图,其中56为直臂型板弹簧臂,57为运动臂,58为单片板弹簧外缘,59为螺钉孔,60为单片板弹簧内缘;Fig. 9 is the schematic diagram of the monolithic thin plate spring whose internal profile is straight arm shape, wherein 56 is the straight arm type leaf spring arm, 57 is the movement arm, 58 is the outer edge of the single leaf spring, 59 is the screw hole, and 60 is Single leaf spring inner edge;
图10为左部上支撑结构12的平面剖视图,其中24为左上支撑右端面,25为上环状平面;Figure 10 is a plane sectional view of the
图11为左部下支撑结构13的平面剖视图,其中26为左下支撑左前侧面,28为下环状平面,47为左下支撑右端面,52为左下支撑外端面;Fig. 11 is a plane sectional view of the left
图12为右部下支撑结构13′的平面剖视图,其中52′为右下支撑外端面;Fig. 12 is a plane sectional view of the right lower support structure 13', wherein 52' is the outer end surface of the right lower support;
图13为左部位移传感器铁芯14的平面剖视图,其中51为左铁芯螺纹段;Fig. 13 is a plane sectional view of the left
图14为左部永磁体2的平面剖视图,其中21为左部永磁体左端面;22为左部永磁体右端面;43为左部磁体内通孔;Fig. 14 is the plane sectional view of left
图15为左部上轭铁3的平面剖视图,其中18为左部上轭铁左端面;20为左部上轭铁右端面;44为左部上轭铁内通孔;Fig. 15 is a plane sectional view of the left
图16为左部下轭铁4的平面剖视图,其中19为左部下轭铁左端面;23为左部下轭铁左端面,27为左部下轭铁右端面;45为左部下轭铁内通孔;Fig. 16 is a plane sectional view of the left
图17为左部载流线圈5的示意图;Fig. 17 is a schematic diagram of the left current-carrying
图18为左部永磁体2、左部上轭铁3、左部下轭铁4以及左部载流线圈5的组合平面剖视图,其中46为左部环状气隙;Fig. 18 is a combined plane sectional view of the left
图19为左部机壳17的平面剖视图,其中61为左部机壳外端面,62为左部机壳体;Figure 19 is a plane sectional view of the
图20为右部机壳17′的平面剖视图,其中61′为右部机壳外端面,62′为右部机壳体。Fig. 20 is a plane sectional view of the right casing 17', wherein 61' is the outer end surface of the right casing, and 62' is the right casing.
具体实施方式Detailed ways
下面结合附图及实施例对本专利的具体实施方式作进一步地详细说明:Below in conjunction with accompanying drawing and embodiment the specific implementation manner of this patent is described in further detail:
所发明的采用长线圈轴向充磁的对置式动圈直线压缩机由共用机座0、左部气缸衬套1、左部永磁体2、左部上轭铁3、左部下轭铁4、左部载流线圈5、左部线圈骨架6、左部活塞7、左部上板弹簧组8、左部下板弹簧组9、左部上压片结构10、左部下压片结构11、左部上支撑结构12、左部下支撑结构13、左部位移传感器铁芯14、左部位移传感器线圈15、左部位移传感器支撑16、左部机壳17以及右部气缸衬套1′、右部永磁体2′、右部上轭铁3′、右部下轭铁4′、右部载流线圈5′、右部线圈骨架6′、右部活塞7′、右部上板弹簧组8′、右部下板弹簧组9′、右部上压片结构10′、右部下压片结构11′、右部上支撑结构12′、右部下支撑结构13′、右部位移传感器铁芯14′、右部位移传感器线圈15′、右部位移传感器支撑16′、右部机壳17′共同组成,其特征在于,整体结构采用对置式以抵消左右两部分产生的机械振动,即以垂直中心线40为对称轴,左部所有部件及结构布置与右部相应部件及结构布置互为镜像体;水平轴线50所指示为轴向方向;共用机座0由左部气缸41、右部气缸41′以及共用出气孔42组成;左部气缸衬套1过盈配合镶嵌于左部气缸41的内部,右部气缸衬套1′过盈配合镶嵌于右部气缸41′的内部;左部永磁体2为圆筒状结构,中心位置沿轴向加工有直径为d的左部磁体内通孔43;左部上轭铁3为圆筒状结构,其外径与左部永磁体2的外径相等,中心位置沿轴向加工有直径为d的左部上轭铁内通孔44;左部下轭铁4为U型结构,U形体的内径大于左部永磁体2的外径,在U形体底部的中心位置沿轴向加工有直径为d的左部下轭铁内通孔45;左部永磁体2沿轴向充磁至饱和,之后左部上轭铁3与左部下轭铁4将左部永磁体2完全包裹其中,左部上轭铁左端面18与左部下轭铁左端面19齐平,左部上轭铁右端面20与左部永磁体左端面21紧贴在一起,左部永磁体右端面22与左部下轭铁左端面23紧贴在一起;左部永磁体2、左部上轭铁3、左部下轭铁4共同形成左部环状气隙46,左部载流线圈5同心地插入左部环状气隙46内,右部永磁体2′、右部上轭铁3′、右部下轭铁4′共同形成右部环状气隙46′,右部载流线圈5′同心地插入右部环状气隙46′内;左部载流线圈5与右部载流线圈5′的轴向高度均为h;左部活塞7与右部活塞7′工作时的最大行程均为s;左部上轭铁3与右部上轭铁3′的轴向厚度均为δ,并满足关系:h>s+δ,以保证在整个活塞行程中,始终确保稳定磁场处在载流线圈之内;左上支撑右端面24支撑于左部下轭铁左端面19之上,二者通过螺钉紧固,左部上支撑结构12的左侧加工成上环状平面25;左下支撑右端面47支撑于共用机座左侧面48之上,二者焊接在一起;左下支撑左前侧面26支撑于左部下轭铁右端面27之上,二者通过螺钉紧固,左部下支撑结构13的左下侧面加工成下环状平面28;左部上板弹簧组8由若干单片板弹簧薄片叠加而成,在外缘形成左上组外缘29,在内缘形成左上组内缘30,在中心部位沿轴向加工有直径为d的左上组簧体中心孔31,其中左上组外缘29放置于左部上支撑结构12的上环状平面25之上,并通过螺钉紧固;左部下板弹簧组9由若干单片板弹簧薄片叠加而成,在外缘形成左下组外缘32,在内缘形成左下组内缘33,在中心部位沿轴向加工有直径为d的左下组簧体中心孔34,其中左下组外缘32放置于左部下支撑结构13的下环状平面28之上,并通过螺钉紧固;左部活塞7由左部活塞头35、左部活塞中间过渡台36以及左部活塞杆37组成,在左部活塞杆37的末端加工有长2mm的左杆螺纹段49,左部活塞头35的外径较之左部气缸41的内径小20μm,同时保证左部活塞杆37的直径小于d;左部活塞杆37依次贯穿左下组簧体中心孔34、左部下轭铁内通孔45、左部磁体内通孔43、左部上轭铁内通孔44、左上组簧体中心孔31;左部上压片结构10将左上组内缘30以及左部线圈骨架6与左部活塞杆37紧固在一起,左部下压片结构11将左下组内缘33与左部活塞中间过渡台36紧固在一起,从而保证左部载流线圈5、左部线圈骨架6与左部活塞7、左部上板弹簧组8、左部下板弹簧组9连接为一个可同时运动的整体;左部位移传感器铁芯14内部加工有与左杆螺纹段49相配合的左铁芯螺纹段51,左杆螺纹段49旋入左铁芯螺纹段51内并紧固;在左部位移传感器铁芯14之外设置与左部位移传感器支撑16紧固在一起的左部位移传感器线圈15,左部位移传感器支撑16进而支撑于左部上支撑结构12之上并与之紧固在一起;左部机壳17通过左部机壳外端面61与左下支撑外端面52焊接固定,从而形成左部密闭腔体,将左部气缸衬套1、左部永磁体2、左部上轭铁3、左部下轭铁4、左部载流线圈5、左部线圈骨架6、左部活塞7、左部上板弹簧组8、左部下板弹簧组9、左部上压片结构10、左部下压片结构11、左部上支撑结构12、左部下支撑结构13、左部位移传感器铁芯14、左部位移传感器线圈15、左部位移传感器支撑16、左部机壳17全部罩于其中;右部所有部件及结构布置是左部相应部件及结构布置关于垂直中心线40的镜像体,右部机壳17′通过右部机壳外端面61′与右下支撑外端面52′焊接固定,形成右部密闭腔体,将右部气缸衬套1′、右部永磁体2′、右部上轭铁3′、右部下轭铁4′、右部载流线圈5′、右部线圈骨架6′、右部活塞7′、右部上板弹簧组8′、右部下板弹簧组9′、右部上压片结构10′、右部下压片结构11′、右部上支撑结构12′、右部下支撑结构13′、右部位移传感器铁芯14′、右部位移传感器线圈15′、右部位移传感器支撑16′、右部机壳17′全部罩于其中,从而形成一种采用长线圈轴向充磁的对置式动圈直线压缩机。The invented opposed moving coil linear compressor adopting long coil axial magnetization consists of a
所发明的采用长线圈轴向充磁的对置式动圈直线压缩机的制造方法可按如下方法实施:The invented manufacturing method of the opposed moving coil linear compressor adopting the axial magnetization of the long coil can be implemented as follows:
图2为所发明的采用长线圈轴向充磁的对置式动圈直线压缩机的平面剖视图;以垂直中心线40为对称轴而互为镜像体的左部所有部件与右部相应部件需采用同一批次生产的零件以使个体间的差异最小化;Fig. 2 is a plane sectional view of the invented opposed moving coil linear compressor adopting long coil axial magnetization; with the
图3为共用机座0的立体剖视图;共用机座0采用机械强度高、热膨胀系数小的钛合金材料制作,采用五轴机床同时加工出左部气缸41和右部气缸41′,保证左部气缸41和右部气缸41′关于垂直中心线40对称,并保证左部气缸41和右部气缸41′的同轴度优于1.0μm,同时保证上述两气缸的内孔圆度均优于0.5μm;在左部气缸41和右部气缸41′加工完毕后,使用同一五轴机床加工出共用出气孔42,保证共用出气孔42与左部气缸41以及右部气缸41′的垂直度均优于2.0μm;Figure 3 is a three-dimensional sectional view of the shared
图4为左部气缸衬套1的立体剖视图(对于左右互为镜像体的部件,附图中一般只给出左部的详细示意图,而制造方法则将左部和右部部件一同叙述,下同);左部气缸衬套1及右部气缸衬套1′均采用硬度大于58的模具钢材料使用慢走丝线切割的方法加工成圆筒状,保证左部气缸衬套1及右部气缸衬套1′的外径分别比左部气缸41及右部气缸41′的内径大0.8mm,然后采用过盈配合和热胀冷缩的方式分别镶嵌入左部气缸41及右部气缸41′内,具体镶嵌方法如下:将如图3所示的共用机座0整体放置于内部温度为160℃的恒温加热箱内均匀加热5小时,在共用机座0取出恒温加热箱前7分钟,将左部气缸衬套1及右部气缸衬套1′同时放置于液氮中浸泡,在共用机座0从恒温加热箱取出的同时,将左部气缸衬套1及右部气缸衬套1′从液氮中取出,然后使用机械外力将左部气缸衬套1及右部气缸衬套1′分别推入左部气缸41及右部气缸41′内部,从而保证左部气缸衬套1及右部气缸衬套1′的外壁分别与左部气缸41及右部气缸41′的内壁紧密结合;然后使用坐标磨床对左部气缸衬套1及右部气缸衬套1′的内孔进行精细研磨,保证其内孔圆度均优于0.5μm;Figure 4 is a three-dimensional sectional view of the left cylinder liner 1 (for the left and right parts that are mirror images of each other, generally only the detailed schematic diagram of the left part is given in the drawings, and the manufacturing method is described together with the left and right parts, below The same); the
图5为左部活塞7的平面剖视图;左部活塞7及右部活塞7′均采用机械强度高、热膨胀系数小的钛合金材料制作,首先采用数控机床加工出毛坯,然后采用坐标磨床进行精细研磨,保证左部活塞头35及右部活塞头35′的圆度均优于0.5μm,并保证左部活塞杆37和右部活塞杆37′沿轴向的跳动低于3.0μm,以及左部活塞杆37与左部活塞头35的垂直度优于1.0μm,右部活塞杆37′与右部活塞头35′的垂直度优于1.0μm;在左部活塞杆37和右部活塞杆37′的末端使用精密数控机床分别加工出左杆螺纹段49和右杆螺纹段49′;左部活塞7及右部活塞7′工作时的最大行程均设计为s,由限位结构保证行程精度优于2.0μm;Figure 5 is a plane sectional view of the
图6为左部上板弹簧组8与左部上压片结构10的组合示意图,图7为左部下板弹簧组9与左部下压片结构11的组合示意图;左部上压片结构10、左部下压片结构11以及右部上压片结构10′、右部下压片结构11′均由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度均优于9.0μm;左部上板弹簧组8、左部下板弹簧组9以及右部上板弹簧组8′、右部下板弹簧组9′均由若干片薄片板弹簧叠加组成,单片薄片板弹簧的厚度和数量由具体应用所需要的弹性刚度决定,材质为铍青铜或不锈钢,采用光刻的方法精确加工出内部型线,内部型线可以是螺旋形,也可以是直臂形,型线要求平滑、无毛刺、无折角,并通过板簧振动试验机进行超过108个循环以上的疲劳检验;Fig. 6 is a schematic diagram of the combination of the left upper
内部型线为螺旋形的单片薄片板弹簧的示意图如图8所示,在薄片上以光刻法刻蚀出螺旋形型线38,从而自然形成螺旋形板簧臂39,外侧留出单片板弹簧外缘53,并在其上以光刻法均匀刻蚀出若干用于螺钉固定的螺钉孔54,在内侧留出单片板弹簧内缘55;As shown in Figure 8, the schematic diagram of a single-piece thin leaf spring with a spiral inner shape line is etched with a spiral shape line 38 on the sheet by photolithography, thereby naturally forming a spiral shape leaf spring arm 39, leaving a single leaf spring arm 39 outside. Leaf spring outer edge 53, and a number of screw holes 54 for screw fixing are evenly etched on it by photolithography, leaving a single leaf spring inner edge 55 on the inside;
内部型线为直臂形的单片薄片板弹簧的示意图如图9所示,在薄片上以光刻法刻蚀出直臂型板弹簧臂56以及运动臂57,外侧留出单片板弹簧外缘58,并在其上以光刻法均匀刻蚀出若干用于螺钉固定的螺钉孔59,在内侧留出单片板弹簧内缘60;The schematic diagram of a single-piece leaf spring with a straight arm-shaped internal profile is shown in Figure 9. A straight-arm leaf spring arm 56 and a moving arm 57 are etched on the sheet by photolithography, and a single leaf spring is left on the outside. Outer edge 58, and on it, evenly etches some screw holes 59 for screw fixing with photolithography method, leaves the inner edge 60 of monolithic plate spring in the inner side;
图10和图11分别为左部上支撑结构12和左部下支撑结构13的平面剖视图;左部上支撑结构12及左部下支撑结构13均由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度均优于5.0μm;左部上支撑结构12的左侧使用精密数控机床加工成上环状平面25;左上支撑右端面24支撑于左部下轭铁左端面19之上,二者通过螺钉紧固;左下支撑右端面47支撑于共用机座左侧面48之上,二者通过电子束焊接技术焊接在一起,左下支撑左前侧面26支撑于左部下轭铁右端面27之上,二者通过螺钉紧固,左部下支撑结构13的左下侧面使用精密数控机床加工出下环状平面28,左部下支撑结构13的左上侧面使用精密数控机床加工出左下支撑外端面52;Fig. 10 and Fig. 11 are respectively the plane sectional views of the left upper support structure 12 and the left lower support structure 13; the left upper support structure 12 and the left lower support structure 13 are all made of metal materials with higher mechanical strength and lower residual magnetism Manufactured by CNC machine tools, the machining accuracy is better than 5.0 μm; the left side of the left upper support structure 12 is processed into an upper ring-shaped plane 25 using a precision CNC machine tool; the right end surface 24 of the left upper support is supported by the left end surface 19 of the left lower yoke Above, the two are fastened by screws; the lower left support and the right end surface 47 are supported on the left side 48 of the shared machine base, the two are welded together by electron beam welding technology, the left lower support and the left front side 26 are supported on the right end of the left lower yoke On the surface 27, the two are fastened by screws, the lower left side of the left lower support structure 13 is processed with a precision numerical control machine tool to form a lower annular plane 28, and the upper left side of the left lower support structure 13 is processed with a precision numerical control machine tool to produce the outer end surface of the left lower support 52;
图12为右部下支撑结构13′的平面剖视图;右部下支撑结构13′由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度优于5.0μm,其右上侧面使用精密数控机床加工出左下支撑外端面52′;Figure 12 is a plane sectional view of the lower support structure 13' on the right; the lower support structure 13' on the right is made of a metal material with high mechanical strength and low residual magnetism by CNC machine tools, and the machining accuracy is better than 5.0 μm. Use a precision numerical control machine tool to process the outer end surface 52' of the lower left support;
图13为左部位移传感器铁芯14的平面剖视图;左部位移传感器铁芯14及右部位移传感器铁芯14′均由纯铁材料制作,内部分别加工有与左杆螺纹段49及右杆螺纹段49′相配合的左铁芯螺纹段51及右铁芯螺纹段51′,左杆螺纹段49及右杆螺纹段49′分别旋入左铁芯螺纹段51及右铁芯螺纹段51′内并紧固;Fig. 13 is the plane sectional view of the left part displacement
左部线圈骨架6、右部线圈骨架6′、左部位移传感器支撑16、左部位移传感器支撑16′均由机械强度较高、剩磁较低的金属材料采用数控机床加工制作而成,加工精度均优于9.0μm;左部位移传感器线圈15及右部位移传感器线圈15′均由漆包铜线在相应骨架上绕制而成;The
图14为左部永磁体2的平面剖视图;左部永磁体2及右部永磁体2′均采用磁能积较高的稀土永磁材料制作,使用激光加工的方式加工成型,左部永磁体2及右部永磁体2′均使用脉冲充磁机沿轴向充磁至饱和;Figure 14 is a plane sectional view of the left
图15为左部上轭铁3的平面剖视图;左部上轭铁3及右部上轭铁3′均采用导磁率较高的纯铁材料,使用精密数控机床加工而成,左部上轭铁3及右部上轭铁3′的轴向厚度均为δ,加工精度均优于2.0μm;Figure 15 is a plane sectional view of the
图16为左部下轭铁4的平面剖视图;左部下轭铁4及右部下轭铁4′均采用导磁率较高的纯铁材料,使用精密数控机床加工而成;Figure 16 is a plane sectional view of the
图17为左部载流线圈5的示意图;左部载流线圈5及右部载流线圈5′均采用漆包铜线在固体支撑上绕制而成,漆包铜线的直径和厚度由需要提供的电机力决定;左部载流线圈5与右部载流线圈5′的轴向高度均为h,制作时由机床精度及绕制工艺保证h的精度优于2.0μm;Fig. 17 is the schematic diagram of left part current-carrying
图18为左部永磁体2、左部上轭铁3、左部下轭铁4以及左部载流线圈5的组合平面剖视图;左部上轭铁3与左部下轭铁4将左部永磁体2完全包裹其中,共同形成左部环状气隙46,左部载流线圈5同心地插入左部环状气隙46内;右部上轭铁3′与右部下轭铁4′将右部永磁体2′完全包裹其中,共同形成右部环状气隙46′,右部载流线圈5′同心地插入右部环状气隙46′内;左部上轭铁3、左部载流线圈5、左部活塞7以及右部上轭铁3′与右部载流线圈5′、右部活塞7′在制作时均需保证满足:h>s+δ,以保证在整个活塞行程中,始终确保稳定磁场处在载流线圈之内;Figure 18 is a combined plane sectional view of the left
图19和图20分别为左部机壳17及右部机壳17′的平面剖视图;左部机壳17及右部机壳17′均由机械强度高、结构致密、剩磁较低的金属材料使用精密数控机床加工制作成形;左部机壳外端面61与左下支撑外端面52使用电子束技术焊接在一起,形成左侧密闭腔体;右部机壳外端面61′与右下支撑外端面52′使用电子束技术焊接在一起,形成右部密闭腔体,对上述两个焊接完毕的密闭腔体均充入高纯氦气检验,耐压强度均需高于5.0MPa,氦气泄漏率均需低于3.0×10-8Pa·m3/s。Fig. 19 and Fig. 20 are the plane sectional views of
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320740807.XU CN203627131U (en) | 2013-11-21 | 2013-11-21 | Oppositely-arranged moving coil linear compressor allowing axial magnetizing to be achieved through long coils |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320740807.XU CN203627131U (en) | 2013-11-21 | 2013-11-21 | Oppositely-arranged moving coil linear compressor allowing axial magnetizing to be achieved through long coils |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203627131U true CN203627131U (en) | 2014-06-04 |
Family
ID=50813616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320740807.XU Expired - Lifetime CN203627131U (en) | 2013-11-21 | 2013-11-21 | Oppositely-arranged moving coil linear compressor allowing axial magnetizing to be achieved through long coils |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203627131U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103671012A (en) * | 2013-11-21 | 2014-03-26 | 中国科学院上海技术物理研究所 | Oppositely-arranged moving coil linear compressor adopting long-coil radial magnetization and manufacturing method |
CN106286361A (en) * | 2015-06-26 | 2017-01-04 | Lg电子株式会社 | Compressor and include the refrigeration system of this compressor |
CN112523990A (en) * | 2020-11-25 | 2021-03-19 | 杭州电子科技大学 | Moving-coil linear compressor |
-
2013
- 2013-11-21 CN CN201320740807.XU patent/CN203627131U/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103671012A (en) * | 2013-11-21 | 2014-03-26 | 中国科学院上海技术物理研究所 | Oppositely-arranged moving coil linear compressor adopting long-coil radial magnetization and manufacturing method |
CN103671012B (en) * | 2013-11-21 | 2016-03-30 | 中国科学院上海技术物理研究所 | Adopt opposed type moving-coil linear compressor and the manufacture method of long loop axial charging |
CN106286361A (en) * | 2015-06-26 | 2017-01-04 | Lg电子株式会社 | Compressor and include the refrigeration system of this compressor |
CN112523990A (en) * | 2020-11-25 | 2021-03-19 | 杭州电子科技大学 | Moving-coil linear compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103671012B (en) | Adopt opposed type moving-coil linear compressor and the manufacture method of long loop axial charging | |
CN103671000B (en) | Adopt opposed type moving-coil linear compressor and the manufacture method of long-coil radial magnetization | |
CN201110257Y (en) | Moving magnetic exciter | |
CN105397920B (en) | Giant Magnetostrictive Rotary Ultrasonic Vibration Tool Holder | |
CN109904957B (en) | A kind of magnetic suspension motor rotor and its processing technology | |
Dang | Development of high performance moving-coil linear compressors for space Stirling-type pulse tube cryocoolers | |
CN101741208B (en) | Miniature moving-magnet exciter | |
CN203627131U (en) | Oppositely-arranged moving coil linear compressor allowing axial magnetizing to be achieved through long coils | |
CN203627130U (en) | Oppositely-arranged moving coil linear compressor allowing axial magnetizing to be achieved through short coils | |
CN110855118A (en) | A cylindrical voice coil motor magnetic gravity compensator and voice coil motor and components thereof | |
CN105298792B (en) | Electric linear compressor | |
CN103671014B (en) | Opposed moving coil linear compressor using short coil radial magnetization and manufacturing method | |
CN102259088A (en) | Miniature moving-magnet vibration exciter | |
CN203627122U (en) | Oppositely-arranged moving coil linear compressor allowing radial magnetizing to be achieved through long coils | |
CN203589996U (en) | Linear reciprocating oscillation motor with high power factor | |
CN203708062U (en) | Moving-magnetic type linear motor for Stirling refrigerator | |
CN103560639A (en) | High power factor linear reciprocating oscillation motor | |
CN203627132U (en) | Oppositely-arranged moving coil linear compressor allowing radial magnetizing to be achieved through short coils | |
CN110788380B (en) | Moving magnetic type flexible active supporting and vibration suppressing device suitable for mirror image milling machine tool | |
CN106100438B (en) | Dynamic permanent magnet field drive-type ultra-magnetic deformation actuator | |
CN102005892B (en) | An Electromagnetic Linear Actuator Using Axially Magnetized Permanent Magnets | |
CN103671013B (en) | Use opposed type moving-coil linear compressor and the manufacture method of short coil axial charging | |
WO2021087743A1 (en) | Magnetic gravity compensator for cylindrical voice coil actuator, voice coil actuator, and voice coil actuator assembly | |
CN106014915A (en) | Linear compressor | |
CN211830524U (en) | Stirling linear motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20140604 Effective date of abandoning: 20160330 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20140604 Effective date of abandoning: 20160330 |
|
C25 | Abandonment of patent right or utility model to avoid double patenting |