[go: up one dir, main page]

CN203551371U - In-situ tester for microcosmic properties of multi-load and multi-physics coupling material - Google Patents

In-situ tester for microcosmic properties of multi-load and multi-physics coupling material Download PDF

Info

Publication number
CN203551371U
CN203551371U CN201320597290.3U CN201320597290U CN203551371U CN 203551371 U CN203551371 U CN 203551371U CN 201320597290 U CN201320597290 U CN 201320597290U CN 203551371 U CN203551371 U CN 203551371U
Authority
CN
China
Prior art keywords
module
load
situ
coupling material
property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201320597290.3U
Other languages
Chinese (zh)
Inventor
赵宏伟
任露泉
李聪
曲涵
张永利
缑旭
佟达
唐可洪
范尊强
朱仲伟
高景
程虹柄
林增宇
张富
邹青
徐丽霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201320597290.3U priority Critical patent/CN203551371U/en
Application granted granted Critical
Publication of CN203551371U publication Critical patent/CN203551371U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本实用新型涉及一种多载荷多物理场耦合材料微观性能原位测试试验机,属于材料力学性能测试技术领域。包括有微/纳精度的驱动/传动模块、“机-电-热-磁”加载模块、控制模块,并集成了高景深3D显微成像镜头和拉曼光谱仪、可视化原位监测模块,能够动态监控加载过程中材料的变形行为、损伤机制与性能演变规律。优点在于:整机结构紧凑,节省空间布局。其中“拉伸/压缩--扭转-弯曲-压痕”四种形式的载荷既可以单独加载,也可以实现两种或两种以上的载荷进行组合式加载,结合热-电-磁等外加物理场可以最大限度的模拟材料构件的真实工况下,为接近服役条件下材料微观力学性能测试提供有效的手段和方法。

Figure 201320597290

The utility model relates to an in-situ testing machine for testing the microscopic properties of materials coupled with multiple loads and multiple physical fields, which belongs to the technical field of testing mechanical properties of materials. Including micro/nano-precision driving/transmission modules, "mechanical-electrical-thermal-magnetic" loading modules, control modules, and integrated high-depth 3D microscopic imaging lenses and Raman spectrometers, visual in-situ monitoring modules, capable of dynamic Monitor the deformation behavior, damage mechanism and performance evolution of the material during the loading process. The advantage is that the whole machine is compact in structure and saves space in layout. Among them, the four types of loads of "tension/compression-torsion-bending-indentation" can be loaded separately, or two or more loads can be combined for loading, combined with thermal-electric-magnetic and other external physical The field can simulate the real working conditions of material components to the greatest extent, and provide effective means and methods for testing the micromechanical properties of materials under service conditions.

Figure 201320597290

Description

多载荷多物理场耦合材料微观性能原位测试试验机Multi-load and multi-physics field coupling material microscopic performance in-situ testing machine

技术领域 technical field

    本实用新型涉及材料性能测试领域,特别涉及一种多载荷多物理场耦合材料微观性能原位测试试验机。  The utility model relates to the field of material performance testing, in particular to a testing machine for in-situ testing of microscopic properties of materials coupled with multiple loads and multiple physical fields. the

背景技术 Background technique

基于标准试样的常规拉伸、弯曲、扭转测试技术已经相对成熟,可以在满足材料强度和疲劳特性等宏观力学性能测试的需求的同时,能够对单一载荷下的样件进行微观力学性能的分析。但其测试原理多为离位测试,不能对测试过程中试件的微观组织形貌进行实时动态的观察,因此很难将材料微观组织变化的内在机理与材料宏观力学性能有效地结合起来综合分析材料的性能。特别是材料在实际工况下,往往是多载荷作用下工作,材料的各种力学性能已经不能以单一载荷测试下的性能进行评定。  Conventional tensile, bending, and torsion testing techniques based on standard specimens are relatively mature, and can analyze the microscopic mechanical properties of samples under a single load while meeting the requirements of macroscopic mechanical properties such as material strength and fatigue properties. . However, most of the testing principles are off-site testing, and it is impossible to conduct real-time dynamic observation of the microstructure morphology of the specimen during the testing process. Therefore, it is difficult to effectively combine the internal mechanism of the material microstructure change with the macroscopic mechanical properties of the material for comprehensive analysis. Material properties. In particular, materials often work under multiple loads under actual working conditions, and various mechanical properties of materials cannot be evaluated by the performance under a single load test. the

而现有研究中,复合载荷模式的加载主要是通过将被测试件与拉伸/压缩轴线互成角度的不规则装夹来实现。将驱动源输出的加载轴向力通过不同轴或不等高的拉伸/压缩装夹方式,使材料内部出现拉弯组合或压剪组合等复合载荷测试形式。这种复合的形式相对单一,不能够有效地控制载荷的加载时间,也就无法模拟实际工况下载荷的作用情况,无法就材料及其制品在复合载荷作用下的力学性能及变性损伤机制做出准确评价,限制了材料试验机的普及应用。  In the existing research, the loading of the composite load mode is mainly realized by irregular clamping with the test piece and the tension/compression axis at an angle to each other. The loaded axial force output by the driving source is passed through the tension/compression clamping method with different axes or different heights, so that composite load test forms such as tension-bend combination or compression-shear combination appear inside the material. This composite form is relatively simple, and it cannot effectively control the loading time of the load, and it is also impossible to simulate the action of the load under actual working conditions, and it is impossible to make a comprehensive analysis of the mechanical properties and denatured damage mechanisms of materials and their products under the action of composite loads. Accurate evaluation limits the popularization and application of material testing machines. the

同时,随着社会的发展,具有优良的力学性能的功能材料已经逐渐被人们所使用。这就使得对电-热-磁等多种物理场作用下的力学性能的分析的需求迫切。而现有商业化的试验机很难满足上述多场耦合下材料性能测试过程的模拟与检测,因此开发一种能够基于多种载荷多物理场耦合环境下的材料力学性能测试试验机已成为新型材料试验机的发展趋势。  At the same time, with the development of society, functional materials with excellent mechanical properties have been gradually used by people. This makes the analysis of mechanical properties under the action of various physical fields such as electricity, heat, and magnetism urgently needed. However, the existing commercial testing machine is difficult to meet the simulation and detection of the material performance testing process under the multi-field coupling. The development trend of material testing machine. the

发明内容 Contents of the invention

本实用新型的目的在于提供一种多载荷多物理场耦合材料微观性能原位测试试验机,解决了现有技术存在的上述问题。是对材料在多载荷多物理场下微观力学性能实时观测分析的试验机,对功能材料的测试分析亦适用。本实用新型可以对样件施加“拉伸/压缩-扭转-弯曲-压痕”四种形式载荷中的单一载荷,也可以在选择性地加载温度场、电场和磁场的同时施加其中两种或两种以上的复合载荷,尤其针对铁磁、热磁、半导体等功能性材料在温度场、电场和磁场与应力场相耦合的情况下的力学性能测试,并且可以结合三维动态成像平台可以对测试过程进行动态实时观测与性能分析。为研究接近服役条件下材料的微观组织形貌和宏观力学性能之间的内在联系以及裂纹的扩展规律提供有效地测试手段。  The purpose of the utility model is to provide a multi-load and multi-physics-field coupling material microscopic property in-situ testing machine, which solves the above-mentioned problems existing in the prior art. It is a testing machine for real-time observation and analysis of the micro-mechanical properties of materials under multiple loads and multiple physical fields, and it is also applicable to the test and analysis of functional materials. The utility model can apply a single load in the four types of loads of "tension/compression-torsion-bending-indentation" to the sample, and can also apply two or more of them while selectively loading the temperature field, electric field and magnetic field. Two or more composite loads, especially for the mechanical performance test of ferromagnetic, thermomagnetic, semiconductor and other functional materials in the case of coupled temperature field, electric field, magnetic field and stress field, and can be combined with a three-dimensional dynamic imaging platform to test Process dynamic real-time observation and performance analysis. It provides an effective test method for studying the internal relationship between the microstructure morphology and macroscopic mechanical properties of materials under service conditions, as well as the law of crack propagation. the

本实用新型的上述目的通过以下技术方案实现:  The above-mentioned purpose of the utility model is realized through the following technical solutions:

多载荷多物理场耦合材料微观性能原位测试试验机,包括拉/压模块1、扭转模块2、压痕模块3、原位观测模块4、三点弯曲模块5、热磁加载模块6、框架支撑模块8和夹持模块9,该试验机整体采用卧式非对称结构布置,单侧布置拉/扭传感器7和拉扭模块传感器;所述压痕模块3和原位观测模块4集成于同一升降台;三点弯曲模块5和热磁加载模块6集成于同一升降台;拉/压模块1、扭转模块2安装于框架支撑模块8上;可以实现“拉伸/压缩--扭转-弯曲-压痕”四种形式载荷的加载、“温度场、电场、磁场”三种物理场的加载条件下研究功能材料在 “机-电-热-磁”多载荷多物理场耦合条件下的微观力学性能以及原位测试。 Multi-load multi-physics coupling material micro-performance in-situ testing machine, including tension/compression module 1, torsion module 2, indentation module 3, in-situ observation module 4, three-point bending module 5, thermal-magnetic loading module 6, frame The supporting module 8 and the clamping module 9, the testing machine as a whole adopts a horizontal asymmetric structure arrangement, and the pull/twist sensor 7 and the pull-twist module sensor are arranged on one side; the indentation module 3 and the in-situ observation module 4 are integrated in the same Lifting platform; the three-point bending module 5 and the thermal-magnetic loading module 6 are integrated on the same lifting platform; the tension/compression module 1 and the torsion module 2 are installed on the frame support module 8; "tension/compression-torsion-bending- Under the loading conditions of four types of loads "indentation" and three physical fields of "temperature field, electric field, and magnetic field", the micromechanics of functional materials under the coupling conditions of "mechanical-electrical-thermal-magnetic" multiple loads and multiple physical fields performance and in situ testing.

所述的拉/压模块1采用单侧拉伸结构,由电机通过导轨直接带动位于拉伸模块1上的扭转模块2,降低了结构的复杂性。  The tension/compression module 1 adopts a single-side tension structure, and the motor directly drives the torsion module 2 on the tension module 1 through guide rails, which reduces the complexity of the structure. the

所述的扭转模块2通过齿轮在齿形带30的旋转刻度值来确定扭转模块2的进给量,采用滚珠花键来将轴向拉/压运动与扭转运动独立开来,使得拉/压模块1和扭转模块2相互独立。  The torsion module 2 determines the feed rate of the torsion module 2 through the rotation scale value of the gear on the toothed belt 30, and uses a ball spline to separate the axial pull/press movement from the torsion movement, so that the pull/press Module 1 and Torsion Module 2 are independent of each other. the

所述的原位观测模块4安装于可上下升降的镜头支架42上,并且可由微调连接块44和微调传动箱45调节原位观测模块4在水平面内的自由度,满足实时动态观测需求。  The in-situ observation module 4 is installed on the lens bracket 42 that can be lifted up and down, and the degree of freedom of the in-situ observation module 4 in the horizontal plane can be adjusted by the fine-tuning connection block 44 and the fine-tuning transmission box 45 to meet the real-time dynamic observation requirements. the

所述的三点弯曲模块5通过升降移动支架52下安装的丝杠导轨64,使得上层三点弯曲模块可相对于框架支撑模块8整体浮动,实现内力型三点弯曲。  The three-point bending module 5 lifts and moves the screw guide rail 64 installed under the support 52, so that the upper three-point bending module can float relative to the frame support module 8 as a whole, and realizes the internal force three-point bending. the

所述的热磁加载模块6采用试件直接通电的方式施加电场,采用永磁体直接回路法施加磁场,采用半导体制冷和光照辐射相结合的方式实现温度场的施加。  The thermomagnetic loading module 6 adopts the method of directly electrifying the test piece to apply the electric field, adopts the permanent magnet direct circuit method to apply the magnetic field, and adopts the combination of semiconductor refrigeration and light radiation to realize the application of the temperature field. the

所述的三点弯曲模块5和热磁加载模块6固定于同一可升降的支架上,并且该支架可以沿试验机横向方向移动,实现两个加载模块的切换。  The three-point bending module 5 and the thermal-magnetic loading module 6 are fixed on the same liftable support, and the support can move along the transverse direction of the testing machine to realize switching between the two loading modules. the

所述的压痕模块3通过负载传感器75和微进机构84精确地确定压痕位置与压痕位移。  The indentation module 3 accurately determines the indentation position and indentation displacement through the load sensor 75 and the indentation mechanism 84 . the

所述的原位观测模块4和压痕模块3固定于可沿试验机纵向方向移动的升降平台上,可方便的实现这两个单原间的切换以及各自模块相对于样件位置的粗调。  The in-situ observation module 4 and the indentation module 3 are fixed on the lifting platform that can move along the longitudinal direction of the testing machine, so that the switching between the two units and the rough adjustment of the position of each module relative to the sample can be easily realized . the

所述的框架支撑模块8采用大理石台面27,可有效地保证试验机表面的平度,该大理石台面27与气浮隔振台92固定,有效地降低了外界因素对试验测试时的影响。  The frame support module 8 adopts a marble table 27, which can effectively ensure the flatness of the surface of the testing machine. The marble table 27 is fixed with the air-floating vibration isolation table 92, which effectively reduces the influence of external factors on the test. the

本实用新型基于“机-电-热-磁”多物理场耦合原理,其机械加载部分可实现“拉伸/压缩-扭转-弯曲-压痕”四种形式载荷的施加,可根据试验的实际要求高效地将四种外加场进行组合,完成多物理场下的测试需求。  The utility model is based on the "mechanical-electrical-thermal-magnetic" multi-physical field coupling principle, and its mechanical loading part can realize the application of four types of loads in "tension/compression-torsion-bending-indentation". It is required to efficiently combine the four external fields to complete the test requirements under multi-physics fields. the

本实用新型的有益效果在于:  The beneficial effects of the utility model are:

1、可实现“拉伸/压缩-扭转-弯曲-压痕”四种形式载荷的施加,可根据试验的实际要求高效地将“机-电-热-磁”四种外加场进行组合,完成多载荷多物理场下的测试需求,也可对其中的两种或两种以上的载荷组合加载,可以真实地模拟真实工况下材料微观力学性能。 1. It can realize the application of four types of loads in "tension/compression-torsion-bending-indentation", and can efficiently combine the four types of applied fields of "mechanical-electrical-thermal-magnetic" according to the actual requirements of the test to complete the test. For testing requirements under multiple loads and multiple physical fields, two or more of the loads can also be loaded in combination, which can truly simulate the micromechanical properties of materials under real working conditions.

2、在结构上进行了模块化设计,结构紧凑、功能齐全。  2. Modular design is carried out in structure, compact structure and complete functions. the

3、在试验机的主体框架中集成了三维动态观测平台,通过观高景深3D成像等显微成像镜头和拉曼光谱仪,可以实时动态的对试样的微观组织形貌,对于研究材料的微观组织形貌和宏观力学性能之间的内在联系提供有有效地测试手段。  3. A three-dimensional dynamic observation platform is integrated in the main frame of the testing machine. Through the observation of high-depth 3D imaging and other microscopic imaging lenses and Raman spectrometers, the microstructure and morphology of the sample can be dynamically monitored in real time. The intrinsic relationship between tissue morphology and macroscopic mechanical properties provides an effective means of testing. the

4、可为各类金属材料、半导体材料、功能材料的结构设计、装备制造、寿命预测和可靠性评估提供新方法,研究工作具有十分重要的科学意义和很高的经济效益。  4. It can provide new methods for structural design, equipment manufacturing, life prediction and reliability evaluation of various metal materials, semiconductor materials and functional materials. The research work has very important scientific significance and high economic benefits. the

附图说明 Description of drawings

此处所说明的附图用来提供对本实用新型的进一步理解,构成本申请的一部分,本实用新型的示意性实例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。  The accompanying drawings described here are used to provide a further understanding of the utility model and constitute a part of the application. The schematic examples and descriptions of the utility model are used to explain the utility model and do not constitute improper limitations to the utility model. the

图1为本实用新型总体俯视图;  Fig. 1 is the overall top view of the utility model;

图2为本实用新型集成拉伸模块的整体示意图; Fig. 2 is the overall schematic diagram of the integrated stretching module of the utility model;

图3为本实用新型扭转模块的整体示意图; Fig. 3 is the overall schematic diagram of the torsion module of the utility model;

图4为本实用新型原位观测模块的整体示意图; Fig. 4 is the overall schematic diagram of the in-situ observation module of the present invention;

图5为本实用新型三点弯曲模块示意图; Fig. 5 is a schematic diagram of a three-point bending module of the present invention;

图6为本实用新型热磁模块的示意图; Fig. 6 is the schematic diagram of the thermomagnetic module of the utility model;

图7为本实用新型压痕模块的示意图; Fig. 7 is a schematic diagram of the indentation module of the utility model;

图8为本实用新型压痕模块和原位观测模块的位置示意图; Fig. 8 is a schematic diagram of the positions of the indentation module and the in-situ observation module of the present invention;

图9为本实用新型框架支撑模块示意图。 Fig. 9 is a schematic diagram of the frame support module of the present invention.

图中:1-拉/压模块;2-扭转模块;3-压痕模块;4-原位观测模块;5-三点弯曲模块;6-热磁加载模块;7-拉/扭传感器;8-框架支撑模块;9-夹持模块;10-拉伸伺服电机;11-减速器;12-内六角螺栓Ⅰ;13-螺母Ⅰ;14-轴套Ⅰ;15-丝杠螺母座Ⅲ;16-丝杠螺母座Ⅳ;17-丝杠;18-基座Ⅰ;19-内六角螺钉Ⅰ;20-丝杠螺母Ⅰ;21-推力轴承;22-导轨滑块Ⅰ;23-导轨Ⅰ;24-内六角螺钉Ⅱ;25-电机座Ⅰ;26-内六角螺钉Ⅲ;27-大理石台面;28-固定板;29-固定挡板;30-齿形带;31-上齿轮;32-键Ⅰ;33-张紧机构;34-下齿轮;35-键Ⅱ;36-外花键轴;37-内花键轴;38-镜头基座;39-微调手轮;40-镜身;41-镜头;42-镜头支架;43-螺栓;44-连接块; 45-微调传动箱;46-导轨;47-定位板;48-头部定位块Ⅰ;49-弯曲头;50-头部定位块Ⅱ;51-导轨滑块Ⅰ;52-升降移动支架;53-弯曲模块基座;54-移动丝杠座Ⅰ;55-伺服电机;56-移动支撑架Ⅰ;57-移动模块基座Ⅰ;58-丝杠螺母Ⅰ;59-丝杠Ⅰ;60-移动丝杠座Ⅱ;61-丝杠Ⅱ;62-导轨滑块Ⅱ;63-支撑块;64-丝杠导轨;65-丝杠螺母座Ⅰ;66-丝杠螺母座Ⅱ;67-顶梁磁头;68-连接块;69-夹紧块;70-支撑块;71-热磁基座架;72-调节螺母;73-调节螺杆;74-柔性铰链;75-负载传感器;76-压痕头;77-头部固定器;78-连接杆;79-遮挡板;80-安装杆;81-调整支架;82-内六角螺栓Ⅱ;83-螺母Ⅱ;84-微进机构;85-压板;86-基座Ⅱ;87-连接板;88-盖板;89-压痕壳体;90-内六角螺钉Ⅳ;91-侧板。92-气浮隔振台。  In the figure: 1-tension/compression module; 2-torsion module; 3-indentation module; 4-in-situ observation module; 5-three-point bending module; 6-thermo-magnetic loading module; 7-pull/torsion sensor; 8 -frame support module; 9-clamping module; 10-stretching servo motor; 11-reducer; 12-hexagon socket bolt Ⅰ; 13-nut Ⅰ; -Screw nut seat IV; 17-lead screw; 18-base I; 19-hexagon socket screw I; 20-lead screw nut I; 21-thrust bearing; -Inner hexagon screw II; 25-Motor seat I; 26-Inner hexagon screw III; 27-Marble countertop; 28-Fixed plate; 29-Fixed baffle; ;33-tension mechanism; 34-lower gear; 35-key II; 36-external spline shaft; 37-inner spline shaft; 38-lens base; 39-fine-tuning handwheel; 40-mirror body; 41- Lens; 42-lens bracket; 43-bolt; 44-connecting block; 45-fine-tuning transmission box; 46-guide rail; 47-positioning plate; 48-head positioning block I; 49-bending head; Ⅱ; 51-rail slider Ⅰ; 52-lifting mobile bracket; 53-bending module base; 54-moving screw seat Ⅰ; 55-servo motor; 56-moving support frame Ⅰ; 57-moving module base Ⅰ; 58-lead screw nut Ⅰ; 59-lead screw Ⅰ; 60-moving screw seat Ⅱ; 61-lead screw Ⅱ; 62-rail slider Ⅱ; 63-support block; 64-lead screw guide rail; 65-lead screw nut Seat Ⅰ; 66-screw nut seat Ⅱ; 67-top beam magnetic head; 68-connecting block; 69-clamping block; 70-supporting block; 71-thermal magnetic base frame; 72-adjusting nut; 73-adjusting screw ;74-flexible hinge; 75-load sensor; 76-indentation head; 77-head holder; 78-connecting rod; ;83-nut II; 84-micro-feeding mechanism; 85-pressure plate; 86-base II; 87-connection plate; 88-cover plate; 89-indentation shell; . 92-Air flotation vibration isolation table. the

具体实施方式 Detailed ways

下面结合附图进一步说明本实用新型的详细内容及其具体实施方式。  Further illustrate the detailed content of the utility model and its specific implementation below in conjunction with accompanying drawing. the

参见图1至图9所示,本实用新型的多载荷多物理场耦合材料微观性能原位测试试验机,包括拉/压模块1、扭转模块2、压痕模块3、原位观测模块4、三点弯曲模块5、热磁加载模块6、框架支撑模块8和夹持模块9,该试验机整体采用卧式非对称结构布置,单侧布置拉/扭传感器7和拉扭模块传感器;所述压痕模块3和原位观测模块4集成于同一升降台;三点弯曲模块5和热磁加载模块6集成于同一升降台;拉/压模块1、扭转模块2安装于框架支撑模块8上;可以实现“拉伸/压缩--扭转-弯曲-压痕”四种形式载荷的加载、“温度场、电场、磁场”三种物理场的加载条件下研究功能材料在 “机-电-热-磁”多载荷多物理场耦合条件下的微观力学性能以及原位测试。  Referring to Fig. 1 to Fig. 9, the multi-load multi-physical field coupling material microscopic performance in-situ testing machine of the present invention includes a tension/compression module 1, a torsion module 2, an indentation module 3, an in-situ observation module 4, Three-point bending module 5, thermal-magnetic loading module 6, frame support module 8, and clamping module 9, the testing machine adopts a horizontal asymmetric structure arrangement as a whole, and pull/twist sensor 7 and pull-twist module sensor are arranged on one side; The indentation module 3 and the in-situ observation module 4 are integrated on the same lifting platform; the three-point bending module 5 and the thermal-magnetic loading module 6 are integrated on the same lifting platform; the pull/press module 1 and the torsion module 2 are installed on the frame support module 8; It can realize the loading of four types of loads of "tension/compression-torsion-bending-indentation" and the loading conditions of three physical fields of "temperature field, electric field and magnetic field" to study functional materials in "mechanical-electrical-thermal- Micro-mechanical properties and in-situ testing under multi-load multi-physics field coupling conditions. the

参见图2所示,本实用新型的拉/压模块1采用非对称结构,主要由拉伸伺服电机10、减速器11、内六角螺栓Ⅰ12、螺母Ⅰ13、轴套Ⅰ14、丝杠螺母座Ⅲ15、丝杠螺母座Ⅳ16、丝杠17、基座Ⅰ18、内六角螺钉Ⅰ19、丝杠螺母Ⅰ20、推力轴承21、导轨滑块Ⅰ22、导轨Ⅰ23、内六角螺钉Ⅱ24、电机座Ⅰ25、内六角螺钉Ⅲ26组成。导轨Ⅰ23和电机座Ⅰ25为该模块的固定部分,通过螺栓与大理石台27固定,电机座Ⅰ25上安装有丝杠螺母座Ⅲ15,拉伸伺服电机10和减速器11组装后通过内六角螺栓Ⅰ12与电机座Ⅰ25固定,减速器轴与丝杠螺母座Ⅲ15之间选择轴套Ⅰ14连接,由此就可以将拉伸伺服电机10主轴的旋转运动传递给丝杠17,由丝杠17带动基座Ⅰ18沿导轨Ⅰ23的直线运动,从而实现了沿试验机纵向方向的拉伸/压缩功能。拉伸运动端由伺服电机10驱动丝杠15运转,带动导轨滑块22运动,对所夹持的样件施加拉伸/压缩载荷。另一端固定端安装有拉扭传感器7,该拉扭传感器7由空气轴承支撑,可有效消除轻浮力的干扰。  Referring to Fig. 2, the pulling/pressing module 1 of the present utility model adopts an asymmetric structure, and is mainly composed of a pulling servo motor 10, a reducer 11, an inner hexagonal bolt I12, a nut I13, a shaft sleeve I14, a lead screw nut seat III15, Lead screw nut base Ⅳ16, lead screw 17, base Ⅰ18, inner hexagon screw Ⅰ19, lead screw nut Ⅰ20, thrust bearing 21, guide rail slider Ⅰ22, guide rail Ⅰ23, inner hexagon screw Ⅱ24, motor seat Ⅰ25, inner hexagon screw Ⅲ26 . The guide rail I23 and the motor base I25 are the fixed parts of the module, which are fixed to the marble table 27 by bolts. The screw nut base III15 is installed on the motor base I25. After the tension servo motor 10 and the reducer 11 are assembled, they are connected with the hexagon socket bolt I12. The motor seat I25 is fixed, and the shaft sleeve I14 is selected between the reducer shaft and the lead screw nut seat III15 to connect, so that the rotational movement of the main shaft of the stretching servo motor 10 can be transmitted to the lead screw 17, and the lead screw 17 drives the base I18 The linear movement along the guide rail I23 realizes the tension/compression function along the longitudinal direction of the testing machine. The stretching movement end is driven by the servo motor 10 to rotate the lead screw 15, which drives the slide block 22 of the guide rail to move, and applies a tensile/compressive load to the clamped sample. The other fixed end is equipped with a tension torsion sensor 7, which is supported by an air bearing, which can effectively eliminate the interference of light buoyancy. the

参见图3所示,本实用新型的扭转模块2主要由固定板28、固定挡板29、齿形带30、上齿轮31、键Ⅰ32、张紧机构33、下齿轮34、键Ⅱ35、外花键轴36、内花键轴37组成。扭转模块伺服电机通过键Ⅰ32与上齿轮31连接,齿形带30用于传递上齿轮31和下齿轮34之间的扭转力,下齿轮34通过外花键轴36、内花键轴37实现与拉/压模块1主轴的连接,既可以实现拉/压、扭转力的传递与复合,整个模块安装固定于固定板28和固定挡板29上,其中张紧机构33用于防止齿形带30松弛。扭转模块2通过齿轮在齿形带30上的旋转刻度值来确定扭转模块的进给量,采用滚珠花键来将轴向拉/压运动与扭转运动独立开来,使得拉/压模块1和扭转模块2相互独立。扭转力采用样件两侧同时加载的方式,以保证观测点的固定。  Referring to Fig. 3, the torsion module 2 of the present utility model is mainly composed of a fixed plate 28, a fixed baffle plate 29, a toothed belt 30, an upper gear 31, a key I 32, a tensioning mechanism 33, a lower gear 34, a key II 35, an outer flower Key shaft 36, inner spline shaft 37 form. The torsion module servo motor is connected with the upper gear 31 through the key I32, the toothed belt 30 is used to transmit the torsional force between the upper gear 31 and the lower gear 34, and the lower gear 34 realizes the connection with the outer spline shaft 36 and the inner spline shaft 37. The connection of the main shaft of the pull/press module 1 can realize the transmission and combination of pull/press and torsional force. The whole module is installed and fixed on the fixed plate 28 and the fixed baffle 29, wherein the tension mechanism 33 is used to prevent the toothed belt 30 from relaxation. The torsion module 2 determines the feed rate of the torsion module through the rotation scale value of the gear on the toothed belt 30, and uses a ball spline to separate the axial pull/press movement from the torsion movement, so that the pull/press module 1 and The torsion modules 2 are independent of each other. The torsional force is loaded simultaneously on both sides of the sample to ensure the fixation of the observation point. the

参见图7及图8所示,本实用新型的压痕模块3主要由柔性铰链74、负载传感器75、压痕头76、头部固定器77、连接杆78、遮挡板79、安装杆80、调整支架81、内六角螺栓Ⅱ82、螺母Ⅱ83、微进机构84、压板85、基座Ⅱ86、连接板87、盖板88、压痕壳体89、内六角螺钉Ⅳ90、侧板91组成。压痕头76通过头部固定器77、遮挡板79和连接杆78连接到负载传感器75,负载传感器75与柔性铰链74连接,这部分组成了压痕模块的前端压痕工作单元,安装杆80和调整支架81通过内六角螺栓Ⅱ82和螺母Ⅱ83连接后,与微进机构84固定,由微进机构84带动压板85,实现压痕头76的压痕精确进给功能。整个模块下端设计粗略进给单元,包括连接板87、盖板88、压痕壳体89、内六角螺钉Ⅳ90和侧板91。压痕模块3与原位观测模块4共用同一个两自由度升降支架,有效地进行压痕模块3与原位观测模块4位置的切换,以及粗略定位,负载传感器75和微进机构84精确地确定压痕位置与压痕位移量。  7 and 8, the indentation module 3 of the present invention is mainly composed of a flexible hinge 74, a load sensor 75, an indentation head 76, a head holder 77, a connecting rod 78, a shielding plate 79, a mounting rod 80, Adjusting bracket 81, hexagon socket bolt II 82, nut II 83, micro-feed mechanism 84, pressure plate 85, base II 86, connection plate 87, cover plate 88, indentation shell 89, hexagon socket screw IV 90, side plate 91. The indentation head 76 is connected to the load sensor 75 through the head holder 77, the shielding plate 79 and the connecting rod 78, and the load sensor 75 is connected to the flexible hinge 74, which constitutes the front-end indentation working unit of the indentation module, and the installation rod 80 After being connected with the adjustment bracket 81 by the hexagon socket bolt II 82 and the nut II 83, it is fixed with the indentation mechanism 84, and the indentation mechanism 84 drives the pressure plate 85 to realize the indentation precision feed function of the indentation head 76. The rough feed unit is designed at the lower end of the whole module, including connecting plate 87, cover plate 88, indentation housing 89, hexagon socket head cap screw IV 90 and side plate 91. The indentation module 3 and the in-situ observation module 4 share the same two-degree-of-freedom lifting bracket, which can effectively switch between the indentation module 3 and the in-situ observation module 4, as well as rough positioning. The load sensor 75 and the micro-feed mechanism 84 are precisely Determine the indentation position and indentation displacement. the

参见图4及图8所示,本实用新型的原位观测模块4主要由镜头基座38、微调手轮39、镜身40、镜头41、镜头支架42、螺栓43、微调连接块44、微调传动箱45、导轨46组成。镜身40、镜头41和镜头支架42是组成件,通过螺栓43与微调连接块44连接,可实现镜头41沿样件轴向方向的精确进给运动。微调连接块44与微调传动箱45固定,通过微调手轮39的调节,实现微调传动箱45上的滑块沿导轨46方向的运动,由此实现镜头41沿样件径向的进给运动。原位观测模块4通过镜头基座38粗调移动位置,通过微调连接块44和微调传动箱45进行精确定位观测点。  4 and 8, the in-situ observation module 4 of the present invention is mainly composed of a lens base 38, a fine-tuning hand wheel 39, a mirror body 40, a lens 41, a lens bracket 42, a bolt 43, a fine-tuning connection block 44, a fine-tuning Transmission case 45, guide rail 46 form. The mirror body 40, the lens 41 and the lens bracket 42 are components, which are connected with the fine-tuning connection block 44 through bolts 43, so that the precise feed movement of the lens 41 along the axial direction of the sample can be realized. The fine-tuning connection block 44 is fixed to the fine-tuning transmission box 45, and through the adjustment of the fine-tuning handwheel 39, the movement of the slide block on the fine-tuning transmission box 45 along the direction of the guide rail 46 is realized, thereby realizing the feed movement of the lens 41 along the radial direction of the sample. The in-situ observation module 4 roughly adjusts the moving position through the lens base 38 , and accurately locates the observation point through the fine-tuning connection block 44 and the fine-tuning transmission box 45 . the

参见图5所示,本实用新型的三点弯曲模块5主要由定位板47、头部定位块Ⅰ48、弯曲头49、头部定位块Ⅱ50、导轨滑块Ⅰ51、升降移动支架52、弯曲模块基座53、移动丝杠座Ⅰ54、伺服电机55、移动支撑架Ⅰ56、移动模块基座Ⅰ57、丝杠螺母Ⅰ58、丝杠Ⅰ59、移动丝杠座Ⅱ60、丝杠Ⅱ61、导轨滑块Ⅱ62、支撑块63、丝杠导轨64、丝杠螺母座Ⅰ65、丝杠螺母座Ⅱ66组成。弯曲头49的固定端安装于头部定位块Ⅰ48固定,弯曲头49运动端安装于头部定位块Ⅱ50,部定位块Ⅱ50上的导轨滑块Ⅰ51可沿弯曲模块基座53上的导轨直线运动,实现弯曲头49运动端沿样件径向的进给运动。定位板47与升降移动支架52连接,实现整个弯曲模块的升降功能,丝杠导轨64与移动丝杠座Ⅰ54连接,由伺服电机55驱动移动支撑架Ⅰ56实现弯曲模块的粗略进给功能。三点弯曲模块5通过升降移动支架52下安装的丝杠导轨64,使得上层三点弯曲模块可相对于框架支撑模块8整体浮动,再由伺服电机实现内力型三点弯曲。  Referring to Fig. 5, the three-point bending module 5 of the present invention is mainly composed of a positioning plate 47, a head positioning block I48, a bending head 49, a head positioning block II50, a guide rail slider I51, a lifting and moving bracket 52, and a bending module base. Seat 53, mobile screw seat Ⅰ54, servo motor 55, mobile support frame Ⅰ56, mobile module base Ⅰ57, lead screw nut Ⅰ58, lead screw Ⅰ59, mobile screw seat Ⅱ60, lead screw Ⅱ61, guide rail slider Ⅱ62, support block 63, leading screw guide rail 64, leading screw nut seat I 65, leading screw nut seat II 66 form. The fixed end of the bending head 49 is fixed on the head positioning block I48, and the moving end of the bending head 49 is installed on the head positioning block II50. The guide rail slider I51 on the head positioning block II50 can move linearly along the guide rail on the bending module base 53 , to realize the feed movement of the moving end of the bending head 49 along the radial direction of the sample. The positioning plate 47 is connected with the lifting and moving bracket 52 to realize the lifting function of the whole bending module, the screw guide rail 64 is connected with the moving screw seat I54, and the servo motor 55 drives the moving support frame I56 to realize the rough feeding function of the bending module. The three-point bending module 5 lifts and moves the lead screw guide rail 64 installed under the bracket 52, so that the upper three-point bending module can float relative to the frame support module 8 as a whole, and then the internal force three-point bending is realized by the servo motor. the

参见图6所示,本实用新型的热磁加载模块6主要由顶梁磁头67、连接块68、夹紧块69、支撑块70、热磁基座架71、调节螺母72、调节螺杆73组成。连接块68用于连接顶梁磁头67和支撑块70,夹紧块69与支撑块70固定,由连接于夹紧块69的调节螺母72和调节螺杆73来调节对样件的夹持力。热磁基座架71与定位板47固定。该热磁加载模块6采用永磁体直接回路法施加磁场,通过调节螺杆73调节永磁体与软铁形成的磁回路的相对位置来实现不同磁场强度的加载。温度场的实现则是通过半导体帕尔贴片对试件进行制冷,将帕尔贴片通以规定方向的直流电,由于帕尔贴效应帕尔贴片制冷侧会吸收大量的热量,使得试件的温度降低达到制冷的效果。采用两根对称的发光体发出红外光,光线经两个弧形反射面反射后聚焦于试件中心一点,使该区域温度迅速提升,经过一段时间的内部热量传导整个试件会达到测试要求的温度。  Referring to Fig. 6, the thermal magnetic loading module 6 of the present utility model is mainly composed of a top beam magnetic head 67, a connecting block 68, a clamping block 69, a supporting block 70, a thermal magnetic base frame 71, an adjusting nut 72, and an adjusting screw rod 73. . The connecting block 68 is used to connect the top beam magnetic head 67 and the supporting block 70 , the clamping block 69 is fixed to the supporting block 70 , and the clamping force on the sample is adjusted by the adjusting nut 72 and the adjusting screw 73 connected to the clamping block 69 . The thermomagnetic base frame 71 is fixed with the positioning plate 47 . The thermal-magnetic loading module 6 adopts the permanent magnet direct circuit method to apply the magnetic field, and adjusts the relative position of the magnetic circuit formed by the permanent magnet and the soft iron by adjusting the screw 73 to realize loading with different magnetic field intensities. The realization of the temperature field is to cool the test piece through the semiconductor Pal patch, and pass the direct current through the Pal patch in the specified direction. Due to the Peltier effect, the cooling side of the Pal patch will absorb a large amount of heat, making the test piece The temperature drop achieves the cooling effect. Two symmetrical luminous bodies are used to emit infrared light. The light is reflected by two arc-shaped reflective surfaces and then focused on a point in the center of the specimen, so that the temperature in this area rises rapidly. After a period of internal heat conduction, the entire specimen will meet the test requirements. temperature. the

三点弯曲模块5和热磁加载模块6固定于同一可升降的支架上,并且该支架可以沿试验机横向方向移动,实现两个加载模块的切换。  The three-point bending module 5 and the thermal-magnetic loading module 6 are fixed on the same liftable support, and the support can move along the lateral direction of the testing machine to realize switching between the two loading modules. the

    本实用新型主要用能材料之拉伸/压缩、三点弯曲、压痕、扭转的多载荷加载模式下,以及耦合热、磁物理场的条件下功能材料微观力学性能的原位监测测试。本实用新型集成有微/纳精度的驱动/传动模块、“机-电-热-磁”加载模块、控制模块,并集成了高景深3D显微成像镜头和拉曼光谱仪、可视化原位监测模块,能够动态监控加载过程中材料的变形行为、损伤机制与性能演变规律。  This utility model mainly uses the in-situ monitoring and testing of the microscopic mechanical properties of functional materials under the multi-load loading modes of tensile/compression, three-point bending, indentation, and torsion of energy materials, and under the conditions of coupled thermal and magnetic physical fields. The utility model integrates a micro/nano-accurate drive/transmission module, a "mechanical-electrical-thermal-magnetic" loading module, a control module, and integrates a high-depth-of-field 3D microscopic imaging lens, a Raman spectrometer, and a visual in-situ monitoring module. , which can dynamically monitor the deformation behavior, damage mechanism and performance evolution law of the material during the loading process. the

本实用新型中的三点弯曲模块和热磁加载模块采用互换式布局,压痕单元和观测单元均可根据实验的要求进行快速替换,有效地节省了空间布局,实现整机结构的紧凑性。其中“拉伸/压缩- -扭转-弯曲-压痕”四种形式的载荷既可以单独加载,也可以实现两种或两种以上的载荷进行组合式加载,结合热-电-磁等外加物理场可以最大限度的模拟材料构件的真实工况下,为接近服役条件下材料微观力学性能测试提供有效的手段和方法。  The three-point bending module and the thermal-magnetic loading module in the utility model adopt an interchangeable layout, and the indentation unit and the observation unit can be quickly replaced according to the requirements of the experiment, which effectively saves the space layout and realizes the compactness of the whole machine structure . Among them, the four types of loads of "tension/compression--torsion-bending-indentation" can be loaded separately, or two or more types of loads can be loaded in combination, combined with thermal-electric-magnetic and other external physical The field can simulate the real working conditions of material components to the greatest extent, and provide effective means and methods for testing the micromechanical properties of materials under service conditions. the

以上所述仅为本实用新型的优选实例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡对本实用新型所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。  The above descriptions are only preferred examples of the utility model, and are not intended to limit the utility model. For those skilled in the art, the utility model can have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made to the utility model shall be included in the protection scope of the utility model. the

Claims (10)

1. a multi-load multiple physical field coupling material micro-property in-situ test machine, it is characterized in that: comprise drawing/die block (1), reverse module (2), impression module (3), in-situ observation module (4), three-point bending module (5), pyromagnetic load-on module (6), frame supported module (8) and self-clamping module (9), this testing machine entirety adopts horizontal unsymmetric structure to arrange, sensor (7) and tension-torsion module sensors are drawn/turned round to single-sided arrangement; Described impression module (3) and in-situ observation module (4) are integrated in same lifting table; Three-point bending module (5) and pyromagnetic load-on module (6) are integrated in same lifting table; Draw/die block (1), torsion module (2) to be installed in frame supported module (8).
2. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1, it is characterized in that: described drawing/die block (1) adopts one-sided stretching structure, by motor, by rail direct tape splicing, moved the torsion module (2) being positioned on stretching module (1).
3. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1, it is characterized in that: described torsion module (2) is determined the amount of feeding that reverses module (2) in the rotating scale value of cog belt (30) by gear, adopt ball spline axially to draw/to press motion and twisting motion independent, make to draw/die block (1) and reverse module (2) separate.
4. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1, it is characterized in that: described in-situ observation module (4) be installed on can oscilaltion lens bracket (42) upper, and can be by contiguous block (44) and fine setting transmission case (45) adjusting in-situ observation module (4) degree of freedom in surface level.
5. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1, it is characterized in that: described three-point bending module (5) is by the lower lead screw guide rails (64) of installing of lifting moving support (52), upper strata three-point bending module can be floated with respect to frame supported module (8) entirety, realize internal force type three-point bending.
6. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1, it is characterized in that: described pyromagnetic load-on module (6) adopts the mode of test specimen direct-electrifying to apply electric field, adopt the direct loop method of permanent magnet to apply magnetic field, the mode that adopts semiconductor refrigerating and light radiation to combine realizes applying of temperature field.
7. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1 or 5, it is characterized in that: described three-point bending module (5) and pyromagnetic load-on module (6) are fixed on same liftable support, and this support can move along testing machine horizontal direction, realizes the switching of two load-on modules.
8. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1, is characterized in that: described impression module (3) is accurately determined Indentation position and impression displacement by load cell (75) and Wei Jin mechanism (84).
9. according to the multi-load multiple physical field coupling material micro-property in-situ test machine described in claim 1 or 4, it is characterized in that: described in-situ observation module (4) and impression module (3) are fixed on the hoistable platform that can move along testing machine longitudinal direction, can realize easily the switching of former of these two lists and separately module with respect to the coarse adjustment of exemplar position.
10. multi-load multiple physical field coupling material micro-property in-situ test machine according to claim 1, it is characterized in that: described frame supported module (8) adopts marble countertop (27), the Pingdu on warranty test machine surface effectively, this marble countertop (27) is fixing with air supporting vibration isolation table (92).
CN201320597290.3U 2013-09-26 2013-09-26 In-situ tester for microcosmic properties of multi-load and multi-physics coupling material Expired - Fee Related CN203551371U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201320597290.3U CN203551371U (en) 2013-09-26 2013-09-26 In-situ tester for microcosmic properties of multi-load and multi-physics coupling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201320597290.3U CN203551371U (en) 2013-09-26 2013-09-26 In-situ tester for microcosmic properties of multi-load and multi-physics coupling material

Publications (1)

Publication Number Publication Date
CN203551371U true CN203551371U (en) 2014-04-16

Family

ID=50469469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201320597290.3U Expired - Fee Related CN203551371U (en) 2013-09-26 2013-09-26 In-situ tester for microcosmic properties of multi-load and multi-physics coupling material

Country Status (1)

Country Link
CN (1) CN203551371U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499483A (en) * 2013-09-26 2014-01-08 吉林大学 In-situ testing machine for microcosmic performance of multi-load and multi-physical-field coupling material
CN104101545A (en) * 2014-06-25 2014-10-15 中国海洋石油总公司 Device for measuring flexural rigidity and torsional rigidity of hose
CN105223076A (en) * 2015-07-17 2016-01-06 吉林大学 Material in situ proving installation and method under multi-load multiple physical field coupling service condition
CN105890979A (en) * 2016-04-06 2016-08-24 吉林大学 Pre-tightening type mechanical clamping mechanism for combined load material mechanical property testing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499483A (en) * 2013-09-26 2014-01-08 吉林大学 In-situ testing machine for microcosmic performance of multi-load and multi-physical-field coupling material
CN104101545A (en) * 2014-06-25 2014-10-15 中国海洋石油总公司 Device for measuring flexural rigidity and torsional rigidity of hose
CN105223076A (en) * 2015-07-17 2016-01-06 吉林大学 Material in situ proving installation and method under multi-load multiple physical field coupling service condition
US10444130B2 (en) 2015-07-17 2019-10-15 Jilin University Material in-situ detection device and method under multi-load and multi-physical field coupled service conditions
CN105890979A (en) * 2016-04-06 2016-08-24 吉林大学 Pre-tightening type mechanical clamping mechanism for combined load material mechanical property testing
CN105890979B (en) * 2016-04-06 2018-07-06 吉林大学 For the prefastening machinery clamping mechanism of combined load material mechanical performance test

Similar Documents

Publication Publication Date Title
CN103499483B (en) Multi-load multiple physical field coupling material micro-property in-situ test machine
CN105628487B (en) Combined load pattern power electric heating coupling material performance in-situ test instrument and method
CN103512803B (en) Multi-load multiple physical field coupling material Micro Mechanical Properties in-situ test instrument
CN203551371U (en) In-situ tester for microcosmic properties of multi-load and multi-physics coupling material
CN203551383U (en) In-situ testing instrument for micromechanical property of material under multi-load and multi-physical field coupling action
CN102359912B (en) Mechanical testing platform for in-situ tension/compression materials under scanning electronic microscope based on quasi-static loading
CN105223076B (en) Material in situ test device and method under multi-load multiple physical field coupling service condition
CN103487315B (en) A kind of material mechanical performance proving installation
CN103308404B (en) In-situ nano-indentation tester based on adjustable stretching-bending preload
CN102680325B (en) Material mechanical performance testing platform for small-sized test sample under stretching bending composite loading mode
CN105842080A (en) Mechanical testing system for material with composite load in induction heating mode
CN107607410A (en) Portable alternating temperature original position tension/compression testing device
CN105973694A (en) Nano indentation testing device under stretch-four-point bending preload
CN205015236U (en) Compound load normal position nanometer indentation testing arrangement of drawing - bending
CN202256050U (en) In-situ stretch/compression material mechanical test platform based on quasi-static loaded scanning electron microscope
CN203337492U (en) In-Situ Nanoindentation Tester Based on Adjustable Tensile-Bending Preload
CN205981945U (en) Normal position indentation mechanical testing device based on under biaxial stretching load
CN206945459U (en) Transmission-type fatigue tester in a kind of face of large-sized double-shaft original position
CN204718887U (en) Portablely to draw-curved-turn round combined load material mechanical performance testing machine
CN114354377B (en) Device and method for pulse current assisted low-temperature stretching
CN102494955A (en) Cross-scale in-situ micro-nanometer three-point/four-point bending test device under microscopic assembly
CN2639874Y (en) Dynamic environment testing device for rubber parts of minicar steering bar assembly
WO2019024609A1 (en) Automatic pcb impedance tester and integrated structure of linear module and mounting base thereof
CN104132857B (en) Multi-axial fatigue testing machine
CN206161448U (en) Test platform is twistd reverse to normal position and observation system thereof

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140416

Termination date: 20160926

CF01 Termination of patent right due to non-payment of annual fee