CN203519540U - Single-chip micro-gas sensor - Google Patents
Single-chip micro-gas sensor Download PDFInfo
- Publication number
- CN203519540U CN203519540U CN201320599081.2U CN201320599081U CN203519540U CN 203519540 U CN203519540 U CN 203519540U CN 201320599081 U CN201320599081 U CN 201320599081U CN 203519540 U CN203519540 U CN 203519540U
- Authority
- CN
- China
- Prior art keywords
- silicon
- heating element
- stiff end
- temperature measuring
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 107
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 107
- 239000010703 silicon Substances 0.000 claims abstract description 107
- 238000010438 heat treatment Methods 0.000 claims abstract description 54
- 239000003054 catalyst Substances 0.000 claims abstract description 25
- 238000007084 catalytic combustion reaction Methods 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims 3
- 230000005611 electricity Effects 0.000 claims 2
- 239000004484 Briquette Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 239000003245 coal Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
一种单片微瓦斯传感器,传感器的加热元件和测温元件通过固定端固定在硅框架支座上,在加热元件上设有催化剂载体,加热元件和测温元件是相互独立的,加热元件、测温元件不存在电气连接;采用加热元件单独加热催化剂载体,测温元件单独检测因瓦斯催化燃烧形成的温升;采用MEMS技术加工的用于煤矿井下检测瓦斯浓度的一种瓦斯传感器,其制备工艺与CMOS工艺兼容。优点:该传感器配置简单,操作容易,功耗低、灵敏度高。加热元件整体嵌入催化剂载体中,提高电致发热效率,高效利用加热器的热量,还可独立调控加热元件、检测测温元件。
A monolithic micro-gas sensor, the heating element and the temperature measuring element of the sensor are fixed on the silicon frame support through the fixed end, a catalyst carrier is arranged on the heating element, the heating element and the temperature measuring element are independent of each other, and there is no electrical connection between the heating element and the temperature measuring element; the heating element is used to heat the catalyst carrier alone, and the temperature measuring element is used to detect the temperature rise caused by the catalytic combustion of gas alone; a gas sensor processed by MEMS technology for detecting gas concentration in coal mines, and its preparation process is compatible with CMOS process. Advantages: The sensor has simple configuration, easy operation, low power consumption and high sensitivity. The heating element is embedded in the catalyst carrier as a whole, which improves the efficiency of electrothermal heating, efficiently utilizes the heat of the heater, and can also independently control the heating element and detect the temperature measuring element.
Description
技术领域 technical field
本实用新型涉及一种瓦斯传感器,特别是一种单片微瓦斯传感器。 The utility model relates to a gas sensor, in particular to a single-chip micro gas sensor.
背景技术 Background technique
目前基于传统铂丝加热的催化燃烧式瓦斯传感器仍在煤矿井下广泛应用,但其功耗较大,不能很好的满足物联网对低功耗瓦斯传感器的应用需求。而其它的瓦斯传感器则较难适应煤矿井下高湿度的环境。以往报道的微瓦斯传感器,多采用金属铂电阻作为加热元件,该铂电阻同时也作为测温元件。由于加热元件、测温元件是同一个铂电阻,这使得对温度测量的诸多先进技术受同时施加在铂电阻上的加热电压或电流的制约而无法应用,限制了瓦斯检测技术的发展。 At present, the catalytic combustion gas sensor based on traditional platinum wire heating is still widely used in coal mines, but its power consumption is relatively large, which cannot well meet the application requirements of the Internet of Things for low-power gas sensors. Other gas sensors are more difficult to adapt to the environment of high humidity in coal mines. Most of the microgas sensors reported in the past use metal platinum resistors as heating elements, and the platinum resistors are also used as temperature measuring elements. Since the heating element and the temperature measuring element are the same platinum resistor, many advanced technologies for temperature measurement are restricted by the heating voltage or current applied to the platinum resistor at the same time, which limits the development of gas detection technology.
实用新型内容 Utility model content
技术问题:本实用新型的目的是提供一种单片微瓦斯传感器,解决现有催化燃烧式瓦斯传感器的铂丝电阻元件复用所带来的问题,即同一个铂丝电阻同时作为加热元件及测温元件在控制温度与测量温度时无法分别调控的问题。 Technical problem: The purpose of this utility model is to provide a single-chip micro-gas sensor to solve the problem caused by the reuse of platinum wire resistance elements of existing catalytic combustion gas sensors, that is, the same platinum wire resistance can be used as a heating element and a heating element at the same time. The problem that the temperature measuring element cannot be adjusted separately when controlling the temperature and measuring the temperature.
技术方案:本实用新型的目的是这样实现的:该单片微瓦斯传感器包括催化剂载体、加热元件、测温元件、固定端与硅框架支座;所述硅框架支座包括硅衬底与设在硅衬底上的埋层氧化硅;所述固定端包括支撑硅层、设在支撑硅层外的氧化硅层,设在氧化硅层上的用作电引出焊盘Pad的金属层;所述固定端的支撑硅层内设有掺杂硅层;所述电引出焊盘Pad的金属层通过氧化硅层的窗口与固定端的掺杂硅层相接触构成欧姆接触;所述固定端设在硅框架支座上的埋层氧化硅上;所述加热元件、测温元件均包括支撑硅层、设在支撑硅层外的氧化硅层;加热元件设有硅加热器、两个对称设置的硅悬臂;所述硅加热器较佳为圆环形,圆环形硅加热器中间较佳设有两个对称内伸的散热-支撑硅块;所述硅悬臂的一端与硅加热器相连,另一端与硅框架支座上的固定端相连;所述加热元件的硅加热器上设有催化剂载体,加热元件的硅加热器完全嵌入在催化剂载体中,并且催化剂载体贯穿于硅加热器中,尤其是催化剂载体是一个整体结构;所述测温元件设有硅测温环、两个对称设置的硅连接臂,两个对称设置的硅支撑臂;所述硅测温环、硅连接臂、硅支撑臂、固定端依次相连;加热元件、测温元件分别与其各自的固定端构成独立的二端器件通路,并通过固定端固定在硅框架支座上的埋层氧化硅上; Technical solution: the purpose of this utility model is achieved in this way: the single-chip micro gas sensor includes a catalyst carrier, a heating element, a temperature measuring element, a fixed end and a silicon frame support; the silicon frame support includes a silicon substrate and a device Buried layer of silicon oxide on the silicon substrate; the fixed end includes a supporting silicon layer, a silicon oxide layer disposed outside the supporting silicon layer, and a metal layer disposed on the silicon oxide layer as an electrical lead-out pad Pad; The supporting silicon layer of the fixed end is provided with a doped silicon layer; the metal layer of the electrical lead-out pad Pad is in contact with the doped silicon layer of the fixed end through the window of the silicon oxide layer to form an ohmic contact; the fixed end is arranged on the silicon On the buried layer of silicon oxide on the frame support; the heating element and the temperature measuring element all include a supporting silicon layer and a silicon oxide layer arranged outside the supporting silicon layer; the heating element is provided with a silicon heater, two symmetrically arranged silicon Cantilever; the silicon heater is preferably circular, and two symmetrical heat dissipation-supporting silicon blocks are preferably provided in the middle of the circular silicon heater; one end of the silicon cantilever is connected with the silicon heater, and the other One end is connected with the fixed end on the silicon frame support; the silicon heater of the heating element is provided with a catalyst carrier, the silicon heater of the heating element is completely embedded in the catalyst carrier, and the catalyst carrier runs through the silicon heater, especially The catalyst carrier is an integral structure; the temperature measuring element is provided with a silicon temperature measuring ring, two symmetrically arranged silicon connecting arms, and two symmetrically arranged silicon supporting arms; the silicon temperature measuring ring, the silicon connecting arm, the silicon The support arm and the fixed end are connected in sequence; the heating element and the temperature measuring element form independent two-terminal device paths with their respective fixed ends, and are fixed on the buried silicon oxide on the silicon frame support through the fixed ends;
所述测温元件的硅测温环与加热元件的硅加热器的边缘距离为3um至100um;与测温元件相连的固定端以及与加热元件相连的固定端较佳设置在硅框架支座的相同一侧的位置; The edge distance between the silicon temperature measuring ring of the temperature measuring element and the silicon heater of the heating element is 3um to 100um; the fixed end connected with the temperature measuring element and the fixed end connected with the heating element are preferably arranged on the silicon frame support position on the same side;
加热元件独立加热催化剂载体,测温元件独立检测因瓦斯催化燃烧造成的温升,测温元件测量时不受加热元件所施加的电压或电流的影响。 The heating element independently heats the catalyst carrier, and the temperature measuring element independently detects the temperature rise caused by the catalytic combustion of gas. The temperature measuring element is not affected by the voltage or current applied by the heating element during measurement.
有益效果,由于采用了上述方案,本实用新型的单片硅微瓦斯传感器采用MEMS工艺加工,加热元件与测温元件从SOI硅片中释放出来、悬在空气中,很大程度上降低了通过SOI硅片的热量损失,因此可有效的降低加热元件的功耗;加热元件与测温元件没有直接接触,加热元件及其在在瓦斯催化燃烧时所释放的热量主要通过空气的热传导及热辐射的方式被其一侧的测温元件检测。其制备方法可与CMOS工艺兼容,批量制作可降低成本、并提高一致性。传感器功耗低、灵敏度高,能够满足煤矿井下环境物联网对瓦斯传感器的需求。 Beneficial effects, due to the adoption of the above scheme, the single-chip silicon micro-gas sensor of the present invention is processed by MEMS technology, and the heating element and the temperature measuring element are released from the SOI silicon chip and suspended in the air, which greatly reduces the temperature passing through. The heat loss of the SOI silicon chip can effectively reduce the power consumption of the heating element; the heating element and the temperature measuring element are not in direct contact, and the heat released by the heating element and its catalytic combustion of gas is mainly through the heat conduction and heat radiation of the air The way is detected by the temperature measuring element on one side. The preparation method is compatible with the CMOS process, and the batch production can reduce the cost and improve the consistency. The sensor has low power consumption and high sensitivity, which can meet the needs of the coal mine environment Internet of Things for gas sensors.
优点:本实用新型提供的单片微瓦斯传感器,其加热元件与测温元件都通过固定端固定在同一个器件上,实现瓦斯的单片检测;加热元件与测温元件相互独立,不再受传统的单一元件加热与测温功能复用的限制,可单独调控加热元件、单独对测温元件进行检测。分别对加热元件与测温元件进行调控,可为传感器提供多样性的工作模式,且配置简单、工作灵活、因此提高了传感器的综合性能。 Advantages: The single-chip micro-gas sensor provided by the utility model has both the heating element and the temperature measuring element fixed on the same device through the fixed end, so as to realize single-chip detection of gas; the heating element and the temperature measuring element are independent of each other and are no longer affected Due to the limitations of the multiplexing of the traditional single element heating and temperature measurement functions, the heating element can be controlled separately and the temperature measurement element can be tested separately. Regulating the heating element and the temperature measuring element separately can provide a variety of working modes for the sensor, and the configuration is simple and the work is flexible, thus improving the overall performance of the sensor.
所述加热元件、测温元件等构件的图形根据MEMS加工实际情况可能不同于本实用新型的描述,仍属本实用新型所主张的权利要求。 The graphics of the heating element, temperature measuring element and other components may be different from the description of the utility model according to the actual situation of MEMS processing, and still belong to the claims of the utility model.
附图说明 Description of drawings
图1为本实用新型的分立的硅器件的俯视示意图。 FIG. 1 is a schematic top view of a discrete silicon device of the present invention.
图2为本实用新型的分立的硅器件负载催化剂载体后的俯视示意图。 Fig. 2 is a schematic top view of a discrete silicon device of the present invention loaded with a catalyst carrier.
图3为本实用新型的分立的硅器件或负载有催化剂载体及催化剂的分立的硅器件的固定端的剖视图,即图2中的A-A截面剖视图。 Fig. 3 is a cross-sectional view of the fixed end of the discrete silicon device of the present invention or the discrete silicon device loaded with catalyst carrier and catalyst, that is, the cross-sectional view of A-A in Fig. 2 .
图4为本实用新型的分立的硅器件负载催化剂载体后的剖视图,即图2中的B-B截面剖视图。 Fig. 4 is a cross-sectional view of a discrete silicon device of the present invention loaded with a catalyst carrier, that is, a cross-sectional view along B-B in Fig. 2 . the
具体实施方式 Detailed ways
下面结合附图对本实用新型的一个实施例作进一步的描述: An embodiment of the present utility model is further described below in conjunction with accompanying drawing:
如图1、图2所示,本实用新型的单片微瓦斯传感器包括催化剂载体105、加热元件103、测温元件104、固定端102与硅框架支座101;所述硅框架支座101包括硅衬底11与设在硅衬底11上的埋层氧化硅12;所述固定端102如图3所示,包括支撑硅层21、设在支撑硅层21外的氧化硅层23,设在氧化硅层23上的用作电引出焊盘Pad的金属层22;所述固定端102的支撑硅层21内设有掺杂硅层24;所述电引出焊盘Pad的金属层22通过氧化硅层23的窗口与固定端102的掺杂硅层24相接触构成欧姆接触;所述固定端102设在硅框架支座101上的埋层氧化硅12上;所述加热元件103、测温元件104均包括支撑硅层21、设在支撑硅层21外的氧化硅层23;加热元件103设有硅加热器1031、两个对称设置的硅悬臂1032;所述硅加热器1031较佳为圆环形,圆环形硅加热器1031中间较佳设有两个对称内伸的散热-支撑硅块1033;所述硅悬臂1032的一端与硅加热器1031相连,另一端与硅框架支座101上的固定端102相连;所述加热元件103的硅加热器1031上设有催化剂载体105,加热元件103的硅加热器1031完全嵌入在催化剂载体105中,并且催化剂载体105贯穿于硅加热器1031中,尤其是催化剂载体105是一个整体结构,如图4所示;所述测温元件104设有硅测温环1041、两个对称设置的硅连接臂1042,两个对称设置的硅支撑臂1043;所述硅测温环1041、硅连接臂1042、硅支撑臂1043、固定端102依次相连;加热元件103、测温元件104分别与其各自的固定端102构成独立的二端器件通路,并通过固定端102固定在硅框架支座101上的埋层氧化硅12上;
As shown in Fig. 1 and Fig. 2, the monolithic microgas sensor of the present utility model includes a
所述测温元件104的硅测温环1041与加热元件103的硅加热器1031的边缘距离为3um至100um;与测温元件104相连的固定端102以及与加热元件103相连的固定端102较佳设置在硅框架支座101的相同一侧的位置;
The edge distance between the silicon temperature measuring
加热元件103独立加热催化剂载体105,测温元件104独立检测因瓦斯催化燃烧造成的温升,测温元件104测量时不受加热元件103所施加的电压或电流的影响。
The
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320599081.2U CN203519540U (en) | 2013-09-26 | 2013-09-26 | Single-chip micro-gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320599081.2U CN203519540U (en) | 2013-09-26 | 2013-09-26 | Single-chip micro-gas sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203519540U true CN203519540U (en) | 2014-04-02 |
Family
ID=50378458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320599081.2U Expired - Lifetime CN203519540U (en) | 2013-09-26 | 2013-09-26 | Single-chip micro-gas sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203519540U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103499617A (en) * | 2013-09-26 | 2014-01-08 | 中国矿业大学 | Monolithic micro-gas sensor and manufacturing method thereof |
WO2016066089A1 (en) * | 2014-10-31 | 2016-05-06 | 中国矿业大学 | Methane sensor based on single heating component, manufacturing method, and applications |
WO2016066106A1 (en) * | 2014-10-31 | 2016-05-06 | 中国矿业大学 | All-silicon mems methane sensor, fuel gas detection application, and manufacturing method |
-
2013
- 2013-09-26 CN CN201320599081.2U patent/CN203519540U/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103499617A (en) * | 2013-09-26 | 2014-01-08 | 中国矿业大学 | Monolithic micro-gas sensor and manufacturing method thereof |
WO2016066089A1 (en) * | 2014-10-31 | 2016-05-06 | 中国矿业大学 | Methane sensor based on single heating component, manufacturing method, and applications |
WO2016066106A1 (en) * | 2014-10-31 | 2016-05-06 | 中国矿业大学 | All-silicon mems methane sensor, fuel gas detection application, and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203519540U (en) | Single-chip micro-gas sensor | |
CN104541161A (en) | Micro-hotplate device and sensor comprising such micro-hotplate device | |
CN103017943A (en) | Double-range pressure sensing mechanism | |
CN104316574B (en) | A kind of methane transducer and preparation method and application based on single heating element heater | |
CN108120747B (en) | Preparation method of tin dioxide-based gas sensor and carbon monoxide gas sensor system | |
Xu et al. | A high heating efficiency two-beam microhotplate for catalytic gas sensors | |
Lu et al. | Micro catalytic methane sensors based on 3D quartz structures with cone-shaped cavities etched by high-resolution abrasive sand blasting | |
CN103499617B (en) | A kind of monolithic micro gas sensor and its preparation method | |
CN102590289B (en) | Catalytic combustion type gas sensor | |
CN202814906U (en) | Catalytic combustion type gas sensor | |
CN106662548B (en) | Gas sensor | |
CN207571069U (en) | A kind of gas sensor | |
CN104458828A (en) | Acetone gas sensory semiconductor sensor | |
CN103482562B (en) | Micro-gas sensor with laminated structure and preparation method thereof | |
CN204154677U (en) | Based on the MEMS methane transducer of silicon well heater | |
CN204154680U (en) | A kind of MEMS methane transducer | |
CN203513269U (en) | Micro-gas sensor with laminated structure | |
CN104316575A (en) | Full-silicon MEMS (micro-electromechanical system) methane sensor, gas detection application and preparation method of full-silicon MEMS methane sensor | |
CN203519541U (en) | Recoverable repeatedly prepared gas micro-sensor | |
CN104316576B (en) | MEMS methane transducers based on silicon heater and preparation method and application | |
CN204154679U (en) | A kind of methane transducer based on single heating element | |
CN204154676U (en) | A kind of methane transducer based on flip chip bonding encapsulation | |
JP5927647B2 (en) | Gas detector | |
CN104316577A (en) | Methane sensor based on flip-chip packaging, as well as preparation method and application thereof | |
CN109239137B (en) | A kind of miniature methane sensor and methane detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20140402 Effective date of abandoning: 20150708 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20140402 Effective date of abandoning: 20150708 |
|
RGAV | Abandon patent right to avoid regrant |