CN203465428U - Deep sea simulation acoustic experiment platform - Google Patents
Deep sea simulation acoustic experiment platform Download PDFInfo
- Publication number
- CN203465428U CN203465428U CN201320542620.9U CN201320542620U CN203465428U CN 203465428 U CN203465428 U CN 203465428U CN 201320542620 U CN201320542620 U CN 201320542620U CN 203465428 U CN203465428 U CN 203465428U
- Authority
- CN
- China
- Prior art keywords
- pressure
- water tank
- valve
- regulating
- way valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002474 experimental method Methods 0.000 title abstract description 19
- 238000004088 simulation Methods 0.000 title abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 145
- 230000001105 regulatory effect Effects 0.000 claims abstract description 70
- 239000007788 liquid Substances 0.000 claims description 30
- 238000005273 aeration Methods 0.000 claims description 16
- 230000000087 stabilizing effect Effects 0.000 claims description 16
- 239000013535 sea water Substances 0.000 claims description 15
- 239000000523 sample Substances 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 229920005372 Plexiglas® Polymers 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 9
- 239000007789 gas Substances 0.000 description 28
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000197192 Bulla gouldiana Species 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- -1 cold seeps Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Images
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
技术领域 technical field
本实用新型属于海洋勘探设备技术领域,涉及一种深海模拟声学实验台。 The utility model belongs to the technical field of marine exploration equipment and relates to a deep-sea simulated acoustic experiment platform. the
背景技术 Background technique
海底拥有丰富的矿藏资源,海洋资源的开发,特别是深海底赋存的各种矿藏资源的开发是一个崭新的技术领域。深海热液、冷泉、石油和天然气等资源将成为21世纪人类的主要能源之一。在地壳内部的作用下,它们经常会以气泡的形式往外排放富含各种化学物质的气体,通过探测这些气泡可探测并定位相应的深海矿藏。但由于深海底复杂的地质、洋流、压力、温度等环境条件,研究深海探测方法是当今世界的前沿科学。声学探测是迄今为止,在海洋探测方面应用较为广泛的一种的方法,但均局限于近距离接触式或大范围普查式。为研究远距离声学精准探测方法的机理,并在实验室进行模拟实验,开发相关实验台迫在眉睫。目前,用于科研的较为完善的深海模拟声学实验台未见大范围推广。 The seabed is rich in mineral resources, and the development of marine resources, especially the development of various mineral resources in the deep seabed is a new technical field. Resources such as deep-sea hydrothermal fluids, cold seeps, oil and natural gas will become one of the main energy sources for human beings in the 21st century. Under the action of the interior of the earth's crust, they often emit gases rich in various chemical substances in the form of bubbles. By detecting these bubbles, the corresponding deep-sea mineral deposits can be detected and located. However, due to the complex geology, ocean currents, pressure, temperature and other environmental conditions of the deep seabed, the study of deep-sea detection methods is a frontier science in the world today. Acoustic detection is a method that has been widely used in ocean detection so far, but it is limited to close contact or large-scale census. In order to study the mechanism of the long-distance acoustic precision detection method and conduct simulation experiments in the laboratory, it is imminent to develop a related experimental platform. At present, there is no large-scale promotion of relatively complete deep-sea simulated acoustic test benches for scientific research. the
实用新型内容 Utility model content
本实用新型目的是克服现有技术的不足,提供一种深海模拟声学实验台,可实现深海模拟高压环境下,进行声学探测实验。 The purpose of the utility model is to overcome the deficiencies of the prior art, and provide a deep-sea simulated acoustic experiment platform, which can realize the acoustic detection experiment in the deep-sea simulated high-pressure environment. the
本实用新型包括水箱系统、调压保压系统、气泡发生系统、水箱压力保护系统和声学系统。 The utility model comprises a water tank system, a pressure regulating and maintaining system, a bubble generating system, a water tank pressure protection system and an acoustic system. the
所述水箱系统包括密闭的水箱外壳、密封圈、锁紧卡箍、支撑台架、自动开启装置、温度计、压力补偿器以及若干连接通道,其中水箱外壳由铁质材料制成框架,除底面外的五个面均配有耐高温、耐高压、耐腐蚀的有机玻璃或石英玻璃制成的玻璃窗,水箱外壳由水箱盖和水箱体组成,并由水箱盖两侧的锁紧卡箍将两者锁紧固定,结合处由密封圈确保密封无隙;支撑台架位于水箱体底部;自动开启装置安装于水箱盖上部中央;温度计安装于水箱盖左侧上;压力补偿器安装于水箱体右侧中部;分别位于水箱体左侧的两个连接通道和右侧、底部的两个连接通道作为调压保压系统、气泡发生系统、水箱压力保护系统、声学系统与水箱系统之间的接口。 The water tank system includes a closed water tank shell, a sealing ring, a locking clip, a support stand, an automatic opening device, a thermometer, a pressure compensator and several connecting channels, wherein the water tank shell is made of iron materials, except for the bottom surface The five sides of the water tank are equipped with glass windows made of high temperature, high pressure and corrosion resistant plexiglass or quartz glass. The water tank shell is composed of the water tank cover and the water tank body, and is fixed by the locking clips on both sides of the water tank cover. The two are locked and fixed, and the joint is sealed by a sealing ring; the support stand is located at the bottom of the water tank; the automatic opening device is installed in the center of the upper part of the water tank cover; the thermometer is installed on the left side of the water tank cover; the pressure compensator is installed in the water tank. The middle part of the right side of the tank; the two connecting channels on the left side of the water tank and the two connecting channels on the right and bottom are used as the connection between the pressure regulating and maintaining system, the bubble generation system, the water tank pressure protection system, the acoustic system and the water tank system. interface between. the
所述调压保压系统包括第一气体压缩机、前调压二通阀、模拟海水箱、调压稳压阀、调压流量计、液体增压泵、液体增压泵二通阀、调压压力表、调压三通阀、后调压二通阀、保压三通阀、保压压力表、回流二通阀、第一控制器以及泄压阀;所述第一气体压缩机具有两个出口,其中一个出口与前调压二通阀的一端相连,另一个出口与位于水箱顶部的回流二通阀的一端相连,回流二通阀的另一端与水箱相连;所述前调压二通阀的另一端与模拟海水箱的一个接口相连,模拟海水箱的另外两个接口中的一个接口由管道连接至调压稳压阀的进口,另一个接口由管道连接至泄压阀的出口,泄压阀进口与调压三通阀、后调压二通阀之间的管道相连;所述调压稳压阀出口与调压流量计的一端相连,调压流量计另一端与调压三通阀的左侧进口相连;调压三通阀的右侧出口与后调压二通阀的一端相连,上侧出口与调压压力表相连;后调压二通阀的另一端与水箱相连;液体增压泵二通阀的一端与液体增压泵相连,另一端与调压流量计和调压三通阀之间的管道相连;液体增压泵外接第一控制器;位于水箱顶部的保压三通阀配有保压压力表。 The pressure regulating and maintaining system includes a first gas compressor, a front pressure regulating two-way valve, a simulated seawater tank, a pressure regulating and stabilizing valve, a pressure regulating flowmeter, a liquid booster pump, a liquid booster pump two-way valve, a regulator Pressure gauge, pressure regulating three-way valve, post-pressure regulating two-way valve, pressure maintaining three-way valve, pressure maintaining pressure gauge, return flow two-way valve, first controller and pressure relief valve; the first gas compressor has Two outlets, one of which is connected to one end of the front pressure regulating two-way valve, the other outlet is connected to one end of the backflow two-way valve on the top of the water tank, and the other end of the backflow two-way valve is connected to the water tank; the front pressure regulating The other end of the two-way valve is connected to an interface of the simulated seawater tank, one of the other two interfaces of the simulated seawater tank is connected to the inlet of the pressure regulating and stabilizing valve by a pipeline, and the other is connected to the pressure relief valve by a pipeline The outlet, the inlet of the pressure relief valve are connected to the pipeline between the pressure regulating three-way valve and the rear pressure regulating two-way valve; the outlet of the pressure regulating and stabilizing valve is connected to one end of the pressure regulating flowmeter, and the other end of the pressure regulating flowmeter is connected to The left inlet of the pressure three-way valve is connected; the right outlet of the pressure regulating three-way valve is connected with one end of the rear pressure regulating two-way valve, and the upper outlet is connected with the pressure regulating pressure gauge; the other end of the rear pressure regulating two-way valve is connected with the The water tank is connected; one end of the two-way valve of the liquid booster pump is connected to the liquid booster pump, and the other end is connected to the pipeline between the pressure regulating flowmeter and the pressure regulating three-way valve; the liquid booster pump is externally connected to the first controller; located in the water tank The pressure-holding three-way valve on the top is equipped with a pressure-holding pressure gauge. the
所述气泡发生系统包括压力表、流量计、稳压阀、节流阀、曝气装置以及第二气体压缩机;其中曝气装置位于水箱右下侧;第二气体压缩机出口与节流阀进口相连;节流阀的出口与稳压阀的进口相连;稳压阀的出口与流量计的一端相连;流量计的另一端与压力表的一端相连;压力表的另一端与曝气装置相连。 The bubble generating system includes a pressure gauge, a flow meter, a pressure stabilizing valve, a throttle valve, an aeration device and a second gas compressor; wherein the aeration device is located at the lower right side of the water tank; the outlet of the second gas compressor and the throttle valve The inlet is connected; the outlet of the throttle valve is connected with the inlet of the pressure-stabilizing valve; the outlet of the pressure-stabilizing valve is connected with one end of the flowmeter; the other end of the flowmeter is connected with one end of the pressure gauge; the other end of the pressure gauge is connected with the aeration device . the
所述水箱压力保护系统包括第二控制器、电磁阀、气动阀、防爆阀、盛水器以及第三气体压缩机;其中电磁阀进口与水箱相连,出口与气动阀的进口相连,同时外接第二控制器、第三空气压缩机;气动阀的出口与盛水器相连;其中防爆阀的进口连接于水箱与电磁阀之间的管道,出口连接于盛水器;第二控制器配有压力传感器。 The water tank pressure protection system includes a second controller, a solenoid valve, a pneumatic valve, an explosion-proof valve, a water container and a third gas compressor; the inlet of the solenoid valve is connected to the water tank, the outlet is connected to the inlet of the pneumatic valve, and the second Two controllers, the third air compressor; the outlet of the pneumatic valve is connected to the water container; the inlet of the explosion-proof valve is connected to the pipeline between the water tank and the solenoid valve, and the outlet is connected to the water container; the second controller is equipped with a pressure sensor. the
所述声学系统包括信号发生器、功率放大器、超声波探头和数据采集系统,其中超声波探头集超声波发生和接收于一体,布放于水箱的左侧;数据采集系统包括数据采集卡和计算机,与超声波探头的信号输出端相连;功率放大器的输出端与超声波探头的信号输入端相连, 功率放大器的输入端与信号发生器的信号输出端相连。 The acoustic system includes a signal generator, a power amplifier, an ultrasonic probe and a data acquisition system, wherein the ultrasonic probe integrates ultrasonic generation and reception, and is placed on the left side of the water tank; the data acquisition system includes a data acquisition card and a computer, and the ultrasonic The signal output end of the probe is connected; the output end of the power amplifier is connected with the signal input end of the ultrasonic probe, and the input end of the power amplifier is connected with the signal output end of the signal generator. the
本实用新型的有益效果是: The beneficial effects of the utility model are:
1、在规定范围内,模拟任何深度的深海环境。通过人工计算,可得到海洋中某深度的压强值,本实用新型通过液压系统即可加压到指定值,而实验台水箱高度产生的压力差相较于该指定值,可忽略不计,即真实地模拟了该深度的压强环境; 1. Simulate the deep sea environment at any depth within the specified range. Through manual calculation, the pressure value at a certain depth in the ocean can be obtained. The utility model can be pressurized to a specified value through the hydraulic system, and the pressure difference generated by the height of the water tank of the test bench is negligible compared with the specified value, that is, the real The pressure environment at this depth is accurately simulated;
2、实现实时保压,本实用新型可维持水箱内压强恒定,并实现实时调控; 2. Realize real-time pressure maintenance. The utility model can maintain a constant pressure in the water tank and realize real-time regulation;
3、根据实验要求,可产生大小、运动速度、数量可控的气泡; 3. According to the experimental requirements, it can produce bubbles with controllable size, speed and quantity;
4、根据实验要求,可产生内含指定化学成分的气泡,从而真正地模拟深海矿藏产生的气泡,实现深海模拟探测实验。 4. According to the experimental requirements, bubbles containing specified chemical components can be generated, so as to truly simulate the bubbles produced by deep-sea mineral deposits and realize deep-sea simulation detection experiments.
5、根据实验要求,可以产生各种形态的声波,满足各种实验要求,最终实现声学探测深海矿藏机理的研究。 5. According to the experimental requirements, it can generate various forms of sound waves to meet various experimental requirements, and finally realize the research on the mechanism of acoustic detection of deep-sea mineral deposits. the
6、在本实用新型的系统基础上,可安装其他必要设备,在实验台上开展除声学外的各类深海模拟实验。 6. On the basis of the system of the present utility model, other necessary equipment can be installed, and various deep-sea simulation experiments except acoustics can be carried out on the test bench. the
附图说明 Description of drawings
图1是本实用新型的实验台总体设计布局图; Fig. 1 is the general design layout drawing of the experimental bench of the present utility model;
图2是本实用新型的水箱系统结构示意图; Fig. 2 is the structural representation of the water tank system of the present utility model;
图3是本实用新型的调压保压系统结构示意图; Fig. 3 is a structural schematic diagram of the pressure regulating and maintaining system of the present invention;
图4是本实用新型的气泡发生系统结构示意图; Fig. 4 is a schematic structural view of the bubble generating system of the present invention;
图5 是本实用新型的水箱压力保护系统结构示意图; Fig. 5 is the structural representation of the water tank pressure protection system of the present utility model;
图6是本实用新型的声学探测结构示意图。 Fig. 6 is a schematic diagram of the acoustic detection structure of the present invention.
具体实施方式 Detailed ways
以下结合附图对本实用新型作进一步说明。 Below in conjunction with accompanying drawing, the utility model is further described. the
如图1所示,深海模拟声学实验台,包括水箱系统01、调压保压系统02、气泡发生系统03、水箱压力保护系统04和声学系统05。
As shown in Figure 1, the deep-sea simulated acoustic test bench includes a
如图2所示,所述水箱系统01包括密闭的水箱外壳101、密封圈102、锁紧卡箍103、支撑台架104、自动开启装置105、温度计106、压力补偿器107以及若干连接通道,其中水箱外壳101由铁质材料制成框架,除底面外的五个面均配有耐高温、耐高压、耐腐蚀的有机玻璃或石英玻璃制成的玻璃窗110,方便实验人员观察,摄像记录,水箱外壳101由水箱盖108和水箱体109组成,并由水箱盖108两侧的锁紧卡箍103将两者锁紧固定,结合处由密封圈102确保密封无隙;具有避震功能的支撑台架104位于水箱体109底部;自动开启装置105安装于水箱盖108上部中央,可自动开启、关闭锁紧卡箍103和水箱盖108;温度计106安装于水箱盖108左侧上,用以实时测量水箱内部的温度;压力补偿器107安装于水箱体109右侧中部,用以补偿调节;分别位于水箱体109左侧的两个连接通道和右侧、底部的两个连接通道作为调压保压系统02、气泡发生系统03、水箱压力保护系统04、声学系统05与水箱系统01之间的接口;
As shown in Figure 2, the
如图3所示,所述调压保压系统02包括第一气体压缩机201、前调压二通阀202、模拟海水箱203、调压稳压阀204、调压流量计205、液体增压泵206、液体增压泵二通阀207、调压压力表208、调压三通阀209、后调压二通阀210、保压三通阀211、保压212、回流二通阀213、第一控制器214以及泄压阀215;所述第一气体压缩机201具有两个出口,其中一个出口与前调压二通阀202的一端相连,主要用于在实验开始前,产生气源将模拟海水箱203中的液体压入水箱01中,另一个出口与位于水箱01顶部的回流二通阀213相连,主要用于在实验结束后,产生气源将水箱01中剩余的液体压入模拟海水箱203中;所述前调压二通阀202的另一端与模拟海水箱203相连,模拟海水箱203有三个接口,另外两个接口,其中的一个接口由管道连接至调压稳压阀204的一端进口,另一个接口由管道连接至泄压阀215的出口,泄压阀215进口与调压三通阀209、后调压二通阀210之间的管道相连,用于泄压;所述调压稳压阀204出口与调压流量计205的一端相连,调压流量计205另一端与调压三通阀209的左侧进口相连;调压三通阀209的右侧出口与后调压二通阀210的一端相连,调压三通阀208上侧出口与调压压力表相连208相连,往水箱01加水时,上侧出口关闭,左侧进口和右侧出口打开,模拟海水箱203中的液体通过;往水箱01加压时,调压压力表208设置一个压强值,当压力达到该值后,调压三通阀209上侧出口打开,左侧进口关闭,从而通过第一控制器214使液体增压泵206停止工作,调压压力表208实时检测水箱中的压强,若有出现变动,调压三通阀209上侧出口立即关闭,同时左侧进口打开,第一控制器214控制液体增压泵206工作,使水箱01中的压强恢复到指定值,这样周而复始来实现水箱01的保压;后调压二通阀210另一端与水箱01相连;液体增压泵206通过液体增压泵二通阀207与调压流量计205和调压三通阀209之间的管道相连,同时外接第一控制器214,用以实时控制液体增压泵206的工作状态;位于水箱顶部的保压三通阀211配有保压压力表212,用于实时测定水箱顶部的压强;
As shown in Figure 3, the pressure regulating and maintaining
如图4所示,所述气泡发生系统03包括压力表301、流量计302、稳压阀303、节流阀304、曝气装置305以及第二气体压缩机306;其中位于水箱01右下侧的曝气装置305可通过调节曝气板出气孔孔径大小,产生尺寸不同的气泡;第二气体压缩机306输入实验所需的各种不同气体,从而在水箱01里产生内含不同化学成分的气泡;第二气体压缩机306和曝气装置305之间依次为节流阀304、稳压阀303、流量计302、压力表301,通过这些部件的调节,可实现气流速度、大小控制,从而可以按照实验要求,产生特定尺寸、数量、运动速度、内含指定化学成分的气泡;
As shown in Figure 4, the
如图5所示,所述水箱压力保护系统04包括第二控制器401、电磁阀402、气动阀403、防爆阀404、盛水器405以及第三气体压缩机406;其中电磁阀402进口与水箱01相连,出口与气动阀403的进口相连,同时外接第二控制器401、第三空气压缩机406;气动阀403的出口与盛水器405相连;其中防爆阀404的进口连接于水箱01与电磁阀402之间的管道,出口连接于盛水器405;第二控制器401配有压力传感器,实时测定水箱01内部的压强并实时显示,该压强为水箱01底部的压强;同时第二控制器401控制整个水箱01压力保护系统的工作状态,若水箱01内压强超过预设值,第二控制器401就会发送命令,第三气体压缩机406工作,产生气源作用于气动阀403,使气动阀403开启,为水箱01泄压;同时,其中防爆阀404起到二重保护作用,避免水箱01压力超过极限后发生危险。
As shown in Figure 5, the water tank
如图6所示,所述声学系统05包括信号发生器503、功率放大器502、超声波探头501和数据采集系统504,其中超声波探头501集超声波发生和接收于一体,布放于水箱01的左侧;数据采集系统504包括数据采集卡和计算机,与超声波探头501的信号输出端相连;功率放大器502的输出端与超声波探头501的信号输入端相连, 功率放大器502的输入端与信号发生器503的信号输出端相连。
As shown in Figure 6, the
使用上述深海模拟声学实验台的方法包括水箱装配、调压保压、气泡发生、声学探测三个部分,具体步骤如下: The method of using the above-mentioned deep-sea simulated acoustic test bench includes three parts: water tank assembly, pressure regulation and pressure maintenance, bubble generation, and acoustic detection. The specific steps are as follows:
A、水箱装配过程: A. Water tank assembly process:
A-1开始装配前,按照实验要求,在水箱内部布置好相关实验设备;再将气泡发生系统02中的曝气装置205和声学系统05安装完毕,同时将调压保压系统03、水箱压力保护系统04与水箱系统01之间的接口安装完毕;然后由自动开启装置105将水箱盖108合上,水箱盖108和水箱体109之间由密封圈102确保密封无隙,并由锁紧卡箍103将两者箍紧,保证在水箱高压状态下始终处于密封状态;其中温度计106作为水箱盖108的内嵌部件,压力补偿器107作为水箱体109的内嵌部件,两者在水箱盖108合上时,即开始工作;整个装配过程在支撑台架104上完成;
Before the assembly of A-1, according to the experimental requirements, arrange the relevant experimental equipment inside the water tank; then install the
A-2当实验操作完毕后,水箱01内降为常压后,可由自动开启装置105自动开启水箱01;
A-2 After the experimental operation is completed, the
B、调压保压过程: B. Pressure regulation and pressure holding process:
B-1调压前,水箱系统01中充满着空气,压强为大气压,保压三通阀211的阀门处于打开状态,其他所有阀门均处于闭合状态;
Before B-1 pressure regulation, the
B-2加压时,打开前调压二通阀202、溢流阀203、调压稳压阀204、后调压二通阀210以及调压三通阀209左侧进口和右侧出口之间的阀芯(使左侧进口和右侧出口打开,上侧出口关闭),由第一气体压缩机201产生气源,将模拟海水箱203中的液体挤入水箱系统01中,待保压三通阀211初有连续水流流出时,关闭前调压二通阀202,同时第一气体压缩机201停止工作;调压保压系统02中的所有阀门均关闭;此时,保持调压三通阀209左侧进口和右侧出口打开,上侧出口依然关闭,根据实验要求在调压压力表208处设定水箱01所要达到的压强值,并打开液体增压泵二通阀207和后调压二通阀210,由第一控制器214控制液体增压泵206开始工作,不断地给水箱01增压,当达到实验要求压强时,调压三通阀209的左侧进口立即关闭,上侧出口打开,同时第一控制器214发出命令,液体增压泵206停止工作,此时调压压力表208处实时监测并显示水箱01的压强,若有变化,调压三通阀209的上侧出口立即关闭,左侧进口打开,第一控制器214立即启动液体增压泵206给水箱01增压,当水箱达到指定值时候,停止工作,调压三通阀209也恢复左侧进口关闭,右侧和上侧出口打开的状态,如此周而复始,从而达到保压的功能;保压压力表212处显示的数据是水箱01顶部的压强,作为实验的备用参数;
When B-2 is pressurized, open the front pressure regulating two-
B-3泄压时,当处于某压强的实验环节结束时,需要泄压,此时使液体增压泵206和第一控制器214停止工作 ,关闭所有阀门,只将后调压二通阀210和泄压阀215打开,水箱01中的液体排入模拟海水箱203,水箱01中恢复常压;然后再打开回流二通阀213,由第一气体压缩机201产生气源,将水箱01中剩余的液体全部排入模拟海水箱203中;
B-3 When the pressure is released, when the experimental link at a certain pressure is over, the pressure needs to be released. At this time, the
B-4调压时,B-2步骤中加压完毕后,若要实现水箱01中的压强比现有压强大,则由第一控制器214和液体增压泵206在B-2步骤的基础上继续增压到指定压强即可;若要实现水箱01中的压强比现有压强小,则参照B-3步骤,各个阀均设置在B-3步骤的状态,并在泄压阀215设定一个指定压强值,开始泄压;当水箱01中达到指定压强时,各个阀恢复到B-2步骤的状态,并由第一控制器214和液体增压泵206共同作用,实现保压;
During B-4 pressure regulation, after the pressurization in the B-2 step is completed, if the pressure in the
B-5实验过程中,水箱01中压强非常大,存在着一定的危险性,为保证实验安全,水箱压力保护系统04起到非常重要的作用;当水箱01中压强超过一定安全值时,第二控制器401发出命令,在第三气体压缩机406的气源作用下,气动阀403打开,为水箱01泄压,从而达到保护的作用;同时,防爆阀404水箱01达到极限压强时,自动打开,为水箱01泄压;
During the B-5 experiment, the pressure in the
C、气泡发生过程: C. Bubble generation process:
在上述步骤均完毕后,水箱01已处于模拟深海状态,由第二气体压缩机306压入气体,并在节流阀304、稳压阀303、流量计302、压力表301以及曝气装置305的共同作用下,产生物理、化学可设置的气泡;其中通过第二气体压缩机306压入气体的化学成分不同,可以控制所产生气泡的化学成分;通过调整曝气装置中曝气板小孔孔径的尺寸,可以控制气泡的尺寸大小;通过调整曝气装置中曝气板小孔的数量以及气体的流量,可以控制气泡产生的数量和速度。
After the above steps are completed, the
D、声学探测过程: D. Acoustic detection process:
待产生的气泡处于实验要求状态后,由信号发生器503发出实验预设频率的信号,通过功率放大器502调整后,将信号输入超声波探头501,发出超声波;超声波遇到气泡等目标物后,声波将被反射,以一定的路径返回,由超声波探头501接收,最后由数据采集系统504进行数据分析处理,得出声学探测深海矿藏的机理。
After the bubbles to be generated are in the state required by the experiment, the
以上对本实用新型专利所提供的的一套系统进行了详细介绍,对于本领域的一般技术人员,依据本实用新型的构思,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本套系统的限制,凡依本实用新型涉及思想所做的任何改变都在本实用新型专利的保护范围之内。 The system provided by the utility model patent has been introduced in detail above. For those skilled in the art, according to the concept of the utility model, there will be changes in the specific implementation and application range. To sum up, the content of this specification should not be understood as a limitation on this system, and any changes made according to the ideas involved in the utility model are within the protection scope of the utility model patent. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320542620.9U CN203465428U (en) | 2013-09-02 | 2013-09-02 | Deep sea simulation acoustic experiment platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320542620.9U CN203465428U (en) | 2013-09-02 | 2013-09-02 | Deep sea simulation acoustic experiment platform |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203465428U true CN203465428U (en) | 2014-03-05 |
Family
ID=50177781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320542620.9U Expired - Lifetime CN203465428U (en) | 2013-09-02 | 2013-09-02 | Deep sea simulation acoustic experiment platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203465428U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454684A (en) * | 2013-09-02 | 2013-12-18 | 杭州电子科技大学 | Deep-sea simulation acoustic experiment table and using method thereof |
CN105588793A (en) * | 2014-10-24 | 2016-05-18 | 无锡南方声学工程有限公司 | Gas path system |
CN105588794A (en) * | 2014-10-24 | 2016-05-18 | 无锡南方声学工程有限公司 | Gas-liquid mixing pipeline system |
-
2013
- 2013-09-02 CN CN201320542620.9U patent/CN203465428U/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103454684A (en) * | 2013-09-02 | 2013-12-18 | 杭州电子科技大学 | Deep-sea simulation acoustic experiment table and using method thereof |
CN103454684B (en) * | 2013-09-02 | 2016-03-09 | 杭州电子科技大学 | A kind of deep-sea simulation acoustic experiment table and using method thereof |
CN105588793A (en) * | 2014-10-24 | 2016-05-18 | 无锡南方声学工程有限公司 | Gas path system |
CN105588794A (en) * | 2014-10-24 | 2016-05-18 | 无锡南方声学工程有限公司 | Gas-liquid mixing pipeline system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103454684B (en) | A kind of deep-sea simulation acoustic experiment table and using method thereof | |
CN103440813B (en) | Simulated deep sea comprehensive experiment table provided with bubble generator and use method thereof | |
CN103196819B (en) | A kind of deep sea environment simulation device being applicable to test material corrosion behavior | |
CN104819914B (en) | Ultrasonic wave promotes the experimental provision of gas flow | |
WO2016061854A1 (en) | Simulation experiment device for natural gas hydrate exploitation at permeable boundary layers | |
CN102608290B (en) | Large-scale piping testing apparatus capable of simulating overburden pressure of soil and testing method using large-scale piping testing apparatus | |
CN102162779A (en) | Triaxial test device for in-situ generation and decomposition of natural gas hydrate | |
CN107894383A (en) | Permeability measuring apparatus containing hydrate sediment and its method under condition of triaxial stress | |
CN108490151A (en) | Gas hydrates decompression exploitation hypergravity simulation system | |
CN207379888U (en) | Permeability measuring apparatus containing hydrate sediment under condition of triaxial stress | |
CN104076124B (en) | Low-frequency resonant ripple assists gel sealing characteristics evaluation experimental device and method | |
CN203465428U (en) | Deep sea simulation acoustic experiment platform | |
CN103792118A (en) | High-pressure gas dissolved saturation test device and application thereof in gas contained soil sample artificial preparation | |
CN105352846A (en) | Testing device and method for tectonic coal desorption gas energy distribution curve | |
CN103953332A (en) | Experimental device and experimental method for simulating dynamic leakage and leaking stoppage of drilling fluid | |
CN103913279A (en) | Method and device for testing leakproofness of oil cooler by mixing helium and air | |
CN107515289A (en) | A coal and gas outburst simulation test device | |
CN203465889U (en) | Deep sea simulation integrated experiment platform equipped with bubble generator | |
CN207662733U (en) | Deposit pore pressure response simulator under wave action | |
CN203772507U (en) | Closed valve service life test device | |
CN112683750A (en) | Natural gas hydrate two-phase seepage simulation device | |
WO2018166294A1 (en) | Three-dimensional physical simulation experiment device for microbial enhanced oil recovery | |
CN204461971U (en) | A kind of automatic makeup water type constant head saturation instrument | |
CN110029978A (en) | A kind of super anti-reflection system of mangneto forced vibration | |
CN209990484U (en) | Giant magnetostrictive forced vibration permeability increasing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20140305 Effective date of abandoning: 20160309 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20140305 Effective date of abandoning: 20160309 |
|
C25 | Abandonment of patent right or utility model to avoid double patenting |