CN203352263U - Braking energy recovery-type direct current traction power supply system - Google Patents
Braking energy recovery-type direct current traction power supply system Download PDFInfo
- Publication number
- CN203352263U CN203352263U CN 201320460327 CN201320460327U CN203352263U CN 203352263 U CN203352263 U CN 203352263U CN 201320460327 CN201320460327 CN 201320460327 CN 201320460327 U CN201320460327 U CN 201320460327U CN 203352263 U CN203352263 U CN 203352263U
- Authority
- CN
- China
- Prior art keywords
- traction
- power supply
- electric vehicle
- discharging
- supply system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种直流牵引供电系统。特别是涉及一种将换电为主的电动汽车充放电系统与直流牵引供电系统相结合的制动能量回收式直流牵引供电系统。The utility model relates to a direct current traction power supply system. In particular, it relates to a braking energy recovery type DC traction power supply system which combines an electric vehicle charging and discharging system mainly for battery swapping with a DC traction power supply system.
背景技术Background technique
随着经济和城市化进程的快速发展,能源危机、环境污染和交通拥堵已成为当今世界所面临的严重问题。城市电气化交通车辆(地铁、有轨电车和无轨电车)和电动汽车可以缓解城市日益严重的交通拥堵,降低有限的化石燃料的消耗,减少空气污染,实现节能减排和城市的可持续发展,是未来城市大力发展的主要交通工具。With the rapid development of economy and urbanization, energy crisis, environmental pollution and traffic congestion have become serious problems facing the world today. Urban electrified transportation vehicles (subways, trams and trolleybuses) and electric vehicles can alleviate the increasingly serious traffic congestion in cities, reduce the consumption of limited fossil fuels, reduce air pollution, and achieve energy saving and emission reduction and sustainable urban development. The main means of transportation for the vigorous development of cities in the future.
电动汽车的发展需要相对应的充电系统,常用的充电模式有常规充电、快速充电和动力电池组快速更换系统(简称换电)三种。对于城市公共交通电动车辆,换电是一种很好的充电模式。电动汽车充电系统不仅需要巨大的建设成本,而且会对电力系统产生许多不良影响。同时,电动汽车动力电池也是一个容量巨大的储能设备。The development of electric vehicles requires a corresponding charging system. The commonly used charging modes include conventional charging, fast charging and power battery pack quick replacement system (referred to as battery replacement). For urban public transport electric vehicles, battery swapping is a good charging mode. The electric vehicle charging system not only requires huge construction costs, but also has many adverse effects on the power system. At the same time, the electric vehicle power battery is also a huge capacity energy storage device.
传统的直流牵引供电系统通常采用二极管整流器供电,牵引变电站向接触网供电的方式有单边供电和双边供电。我国国标规定的直流供电的电压等级有750V和l500V两种。电力机车的制动能量通常消耗在制动电阻上,这不仅造成了能量的浪费,而且还会导致隧道温度的升高,增加温控系统的负担,进一步导致能源的浪费。电力机车制动能量的回收利用是牵引供电系统未来发展的方向。Traditional DC traction power supply systems usually use diode rectifiers for power supply, and there are unilateral and bilateral power supply methods for traction substations to catenary. There are two voltage levels of DC power supply stipulated in my country's national standard: 750V and 1500V. The braking energy of the electric locomotive is usually consumed in the braking resistor, which not only causes a waste of energy, but also increases the temperature of the tunnel, increases the burden on the temperature control system, and further leads to a waste of energy. The recovery and utilization of electric locomotive braking energy is the future development direction of traction power supply system.
如图1所示,现有的直流牵引供电系统包括有:一个或两个以上的用于向电力机车2提供直流电能的牵引变电站1,该牵引变电站1是采用传统的二极管整流直流牵引供电系统。每一个牵引变电站1都是由变压器11、整流器12、直流母线13、接触网14、钢轨15和分区所16构成。其中,变压器11可以是双绕组变压器、三绕组变压器或原边采用延边三角形连接的移相±7.5°的三绕组变压器。整流器12可以是六脉波整流器、12脉波整流器或24脉波整流器。As shown in Figure 1, the existing DC traction power supply system includes: one or more than two
但是,现有的直流牵引供电系统,在电力机车运行低谷和停运期间,交流侧主变电站的功率因数很低,需要采取无功补偿措施。However, in the existing DC traction power supply system, the power factor of the main substation on the AC side is very low during the trough and outage of the electric locomotive, and reactive power compensation measures are required.
发明内容Contents of the invention
本实用新型所要解决的技术问题是,提供一种制动能量回收式直流牵引供电系统,能够减小现有直流牵引供电系统直流电压的波动范围,实现电力机车制动能量的回收利用,提高直流牵引供电系统低负荷和空载时交流侧主变电站的功率因数,提高直流牵引供电系统的可靠性,减少电动汽车充电系统的建设成本;对供电系统具有"削峰填谷"的作用,可以提高整个系统的经济性。The technical problem to be solved by the utility model is to provide a braking energy recovery type DC traction power supply system, which can reduce the fluctuation range of the DC voltage of the existing DC traction power supply system, realize the recovery and utilization of the braking energy of the electric locomotive, and improve the DC traction power supply system. The power factor of the main substation on the AC side of the traction power supply system at low load and no load can improve the reliability of the DC traction power supply system and reduce the construction cost of the electric vehicle charging system; economics of the entire system.
本实用新型所采用的技术方案是:一种制动能量回收式直流牵引供电系统,包括有两个以上的用于向电力机车提供直流电能的牵引变电站,每一个牵引变电站都设置有一个以上的连接在交流母线上的变压器,每一个变压器的输出侧对应连接一个整流器,所有整流器的输出侧均连接在所位于的牵引变电站的直流母线上,所述的直流母线的正负极分别对应连接接触网和钢轨,所述的电力机车的正负极分别对应连接接触网和钢轨,每一个牵引变电站的接触网上都接有一个分区所,所述分区所的两端还分别连接所对应的直流母线的正极,在相邻的两个牵引变电站之间的直流母线上设置有电动汽车充放电系统,所述的电动汽车充放电系统与相邻的两个牵引变电站的直流母线相连,从而在一个供电分区内形成直流环形微电网。The technical solution adopted by the utility model is: a braking energy recovery type DC traction power supply system, including more than two traction substations for providing DC electric energy to electric locomotives, and each traction substation is provided with more than one traction substation For the transformers connected to the AC bus, the output side of each transformer is connected to a rectifier, and the output sides of all the rectifiers are connected to the DC bus of the traction substation where they are located. The positive and negative poles of the DC bus are respectively connected to the contact grid and rail, the positive and negative poles of the electric locomotive are respectively connected to the catenary and the rail, and each traction substation catenary is connected to a partition station, and the two ends of the partition station are also connected to the corresponding DC bus An electric vehicle charging and discharging system is installed on the DC bus between two adjacent traction substations, and the electric vehicle charging and discharging system is connected to the DC buses of two adjacent traction substations, so that a power supply A DC ring microgrid is formed in the partition.
所述的电动汽车充放电系统包括有连接在相邻的两个牵引变电站的直流母线上的电动汽车充放电直流母线,连接在电动汽车充放电直流母线上的1个以上的双向直流-直流充放电机。The electric vehicle charging and discharging system includes an electric vehicle charging and discharging DC bus connected to the DC buses of two adjacent traction substations, and more than one bidirectional DC-DC charging connected to the electric vehicle charging and discharging DC bus. discharge machine.
所述的每个双向直流-直流充放电机的输出端连接电动汽车动力电池。The output end of each bidirectional DC-DC charging and discharging motor is connected to the power battery of the electric vehicle.
所述的每个双向直流-直流充放电机的连接电动汽车动力电池的输出端还并联超级电容器。The output end of each bidirectional DC-DC charging and discharging motor connected to the power battery of the electric vehicle is also connected in parallel with a supercapacitor.
一种制动能量回收式直流牵引供电系统,包括有用于向电力机车提供直流电能的牵引变电站,所述的牵引变电站设置有一个以上的连接在交流母线上的变压器,每一个变压器的输出侧对应连接一个整流器,所有整流器的输出侧均连接在所位于的牵引变电站的直流母线上,所述的直流母线的正负极分别对应连接接触网和钢轨,所述的电力机车的正负极分别对应连接接触网和钢轨,在所述的直流母线上设置有电动汽车充放电系统,电动汽车充放电系统与牵引变电站的直流母线相连,从而在一个供电分区内形成直流环形微电网。A braking energy recovery type DC traction power supply system, including a traction substation for providing DC power to electric locomotives, the traction substation is provided with more than one transformer connected to the AC bus, and the output side of each transformer corresponds to A rectifier is connected, and the output sides of all rectifiers are connected to the DC bus of the traction substation where they are located. The positive and negative poles of the DC bus are respectively connected to the catenary and rails, and the positive and negative poles of the electric locomotive are respectively corresponding to Connecting catenary and steel rails, an electric vehicle charging and discharging system is arranged on the DC bus, and the electric vehicle charging and discharging system is connected with the DC bus of the traction substation, thereby forming a DC ring microgrid in a power supply partition.
所述的电动汽车充放电系统包括有并联接在牵引变电站的直流母线上的电动汽车充放电直流母线,连接在电动汽车充放电直流母线上的1个以上的双向直流-直流充放电机。The electric vehicle charging and discharging system includes an electric vehicle charging and discharging DC bus parallel connected to the DC bus of the traction substation, and more than one bidirectional DC-DC charging and discharging motor connected to the electric vehicle charging and discharging DC bus.
所述的每个双向直流-直流充放电机的输出端连接电动汽车动力电池。The output end of each bidirectional DC-DC charging and discharging motor is connected to the power battery of the electric vehicle.
所述的每个双向直流-直流充放电机的连接电动汽车动力电池的输出端还并联超级电容器。The output end of each bidirectional DC-DC charging and discharging motor connected to the power battery of the electric vehicle is also connected in parallel with a supercapacitor.
本实用新型的一种制动能量回收式直流牵引供电系统,具有如下优点:A braking energy recovery type DC traction power supply system of the present utility model has the following advantages:
充分利用现有直流牵引供电系统,基于换电为主的电动汽车充放电系统实现了能量的双向传输:在电力机车牵引运行时,由传统直流牵引供电系统和电动汽车动力电池提供能量,可以减小直流母线电压的降落;在电力机车制动运行时,利用换电为主的电动汽车充放电系统为电动汽车动力电池充电,可以减小直流母线电压的升高;在直流牵引供电系统低负荷和空载运行时,利用换电为主的电动汽车充放电系统为电动汽车动力电池充电,可以提高交流侧主变电站的功率因数;在交流电网故障时,如果换电为主的电动汽车充放电系统容量足够大,利用电动汽车动力电池通过电动汽车充放电系统为直流牵引供电系统供电,可以提高直流牵引供电系统的可靠性;换电为主的电动汽车充放电系统利用了现有直流牵引供电系统,从而可以减少电动汽车充电系统的建设成本;另外,系统还具有"削峰填谷"的作用,可以提高整个系统的经济性。Making full use of the existing DC traction power supply system, the electric vehicle charging and discharging system based on battery swapping realizes the two-way transmission of energy: when the electric locomotive is running, the energy is provided by the traditional DC traction power supply system and the power battery of the electric vehicle, which can reduce the The drop of the DC bus voltage is small; when the electric locomotive is running under braking, the electric vehicle charging and discharging system based on battery swapping is used to charge the power battery of the electric vehicle, which can reduce the increase of the DC bus voltage; when the DC traction power supply system is under low load And when running at no-load, using the electric vehicle charging and discharging system mainly for battery replacement to charge the power battery of the electric vehicle can improve the power factor of the main substation on the AC side; The system capacity is large enough, and the use of electric vehicle power batteries to supply power to the DC traction power supply system through the electric vehicle charging and discharging system can improve the reliability of the DC traction power supply system; the electric vehicle charging and discharging system mainly uses the existing DC traction power supply system, which can reduce the construction cost of the electric vehicle charging system; in addition, the system also has the function of "shaving peaks and filling valleys", which can improve the economy of the entire system.
附图说明Description of drawings
图1是现有的直流牵引供电系统的结构示意图;Figure 1 is a schematic structural diagram of an existing DC traction power supply system;
图2是本实用新型的双边供电的制动能量回收式直流牵引供电系统的结构示意图;Fig. 2 is a schematic structural diagram of the braking energy recovery type DC traction power supply system of the utility model;
图3是本实用新型的单边供电的制动能量回收式直流牵引供电系统的结构示意图。Fig. 3 is a schematic structural diagram of a braking energy recovery DC traction power supply system of the present invention.
图中in the picture
1:牵引变电站 2:电力机车1: Traction substation 2: Electric locomotive
3:电动汽车充放电系统 4:交流母线3: Electric vehicle charging and discharging system 4: AC bus
11:变压器 12:整流器11: Transformer 12: Rectifier
13:直流母线 14:接触网13: DC bus 14: Catenary
15:钢轨 16:分区所15: Rails 16: Division
31:电动汽车充放电直流母线 32:双向直流-直流充放电机31: Electric vehicle charging and discharging DC bus 32: Bidirectional DC-DC charging and discharging motor
具体实施方式Detailed ways
下面结合实施例和附图对本实用新型的一种制动能量回收式直流牵引供电系统做出详细说明。A braking energy recovery type DC traction power supply system of the present invention will be described in detail below with reference to the embodiments and the accompanying drawings.
如图2所示,本实用新型的一种制动能量回收式直流牵引供电系统,在多个牵引变电站的情况下,即对于双边供电的制动能量回收式直流牵引供电系统,包括有两个以上的用于向电力机车2提供直流电能的牵引变电站1,该牵引变电站1是采用传统的二极管整流直流牵引供电系统。每一个牵引变电站1都设置有一个以上的连接在交流母线4上的变压器11,每一个变压器11的输出侧对应连接一个整流器12,所有整流器12的输出侧均连接在所位于的牵引变电站1的直流母线13上,所述的直流母线13的正负极分别对应连接接触网14和钢轨15,所述的电力机车2的正负极分别对应连接接触网14和钢轨15,每一个牵引变电站1的接触网14上都接有一个分区所16,所述分区所16的两端还分别连接所对应的直流母线13的正极。其中,变压器11可以是双绕组变压器、三绕组变压器或原边采用延边三角形连接的移相±7.5°的三绕组变压器。整流器12可以是六脉波整流器、12脉波整流器或24脉波整流器。图2中虽然给出了两个变压器和两个整流器,但其数目不只限于两个。图2中电力机车2为相邻两个牵引变电站1所共有的负载。本实用新型在相邻的两个牵引变电站1之间的直流母线13上设置有电动汽车充放电系统3,电动汽车充放电系统3与相邻的两个牵引变电站1的直流母线13相连,从而在一个供电分区内形成直流环形微电网。As shown in Figure 2, a braking energy recovery type DC traction power supply system of the present invention, in the case of multiple traction substations, that is, a braking energy recovery type DC traction power supply system for bilateral power supply, includes two The
所述的换电为主的电动汽车充放电系统3包括有连接在相邻的两个牵引变电站1的直流母线13上的电动汽车充放电直流母线31,连接在电动汽车充放电直流母线31上的1个以上的双向直流-直流充放电机32。所述的每个双向直流-直流充放电机32的输出端连接电动汽车动力电池。并且,为改善系统的动态性能,在所述的每个双向直流-直流充放电机32的连接电动汽车动力电池的输出端还并联超级电容器。The electric vehicle charging and
如图3所示,本实用新型的一种制动能量回收式直流牵引供电系统,在一个牵引变电站的情况下,即对于单边供电的制动能量回收式直流牵引供电系统,包括有用于向电力机车2提供直流电能的牵引变电站1,所述的牵引变电站1设置有一个以上的连接在交流母线4上的变压器11,每一个变压器11的输出侧对应连接一个整流器12,所有整流器12的输出侧均连接在牵引变电站1的直流母线13上,所述的直流母线13的正负极分别对应连接接触网14和钢轨15,所述的电力机车2的正负极分别对应连接接触网14和钢轨15。其中,变压器11可以是双绕组变压器、三绕组变压器或原边采用延边三角形连接的移相±7.5°的三绕组变压器。整流器12可以是六脉波整流器、12脉波整流器或24脉波整流器。图3中虽然给出了两个变压器和两个整流器,但其数目不只限于两个。本实用新型在所述的直流母线13上设置有电动汽车充放电系统3,电动汽车充放电系统3与牵引变电站1的直流母线13相连,从而在一个供电分区内形成直流环形微电网。As shown in Figure 3, a braking energy recovery type DC traction power supply system of the present invention, in the case of a traction substation, that is, a braking energy recovery type DC traction power supply system for unilateral power supply, includes The
所述的电动汽车充放电系统3包括有并联接在牵引变电站1的直流母线13上的电动汽车充放电直流母线31,连接在电动汽车充放电直流母线31上的1个以上的双向直流-直流充放电机32。所述的每个双向直流-直流充放电机32的输出端连接电动汽车动力电池。并且,为改善系统的动态性能,在所述的每个双向直流-直流充放电机32的连接电动汽车动力电池的输出端还并联超级电容器(图中未画出)。本实用新型将传统的二极管整流直流牵引供电系统、换电为主的电动汽车充放电系统和电动汽车动力电池通过直流母线在一个供电分区内构成直流环形微电网。The electric vehicle charging and discharging
图3所给出的技术方案,既适用于单边供电的制动能量回收式直流牵引供电系统,也适用于双边供电的制动能量回收式直流牵引供电系统。The technical scheme shown in Fig. 3 is not only applicable to the braking energy recovery type DC traction power supply system with unilateral power supply, but also suitable for the braking energy recovery type DC traction power supply system with bilateral power supply.
本实用新型的一种制动能量回收式直流牵引供电系统,直流接触网与直流牵引变电站的直流输出正极相连,采用架空接触网对电力机车供电,钢轨与直流牵引变电站的直流输出负极相连,用于实现钢轨回流。除了采用接触网供电外,也可以采用第三轨供电。钢轨采用悬浮安装,以减少对地下管线的电流腐蚀。In the braking energy recovery type DC traction power supply system of the present utility model, the DC catenary is connected to the DC output positive pole of the DC traction substation, the overhead catenary is used to supply power to the electric locomotive, and the rail is connected to the DC output negative pole of the DC traction substation. To achieve rail return. In addition to catenary power supply, third rail power supply can also be used. The rails are suspended to reduce galvanic corrosion to underground pipelines.
本实用新型的一种制动能量回收式直流牵引供电系统的工作原理是,当电力机车制动引起直流母线电压升高而达到所限定的电压阈值时,电动汽车充放电系统通过双向直流-直流充放电机32问电动汽车动力电池充电,以避免直流母线电压超过限定值;当电力机车运行导致直流母线电压降低到所限定的电压阈值时,电动汽车动力电池通过双向直流-直流充放电机32向直流母线供电,以避免直流母线电压低于限定值。在电力机车运行低谷和停运期间,通过该供电系统为电动汽车动力电池充电,在满足电动汽车动力电池充电的同时,也解决了直流牵引供电系统在低负荷和空载时,交流侧主变电站功率因数大幅降低的问题。如果换电为主的电动汽车充放电系统容量足够大,则在交流电网故障时,可以由换电为主的电动汽车充放电系统为电力机车供电。The working principle of the braking energy recovery type DC traction power supply system of the utility model is that when the braking of the electric locomotive causes the voltage of the DC bus to increase and reaches the defined voltage threshold, the charging and discharging system of the electric vehicle passes the bidirectional DC-DC The charging and discharging
因此,通过换电为主的电动汽车充放电系统和电动汽车动力电池充放电的协调控制,不仅实现了电力机车制动能量的回收利用,平抑了直流母线电压的波动,而且利用直流牵引供电系统在低负荷和空载时,为电动汽车动力电池充电,解决了直流牵引供电系统交流侧主变电站功率因数大幅降低的问题。如果换电为主的电动汽车充放电系统容量足够大,则在交流电网故障时,可以由换电为主的电动汽车充放电系统为电力机车供电,从而提高了直流牵引供电系统的可靠性。同时也充分利用直流牵引供电系统大大降低了换电为主的电动汽车充电系统的建设成本,对供电系统具有"削峰填谷"的作用,进而提高了整个系统的经济性和综合利用效益。Therefore, through the coordinated control of the electric vehicle charging and discharging system based on battery swapping and the charging and discharging of the electric vehicle power battery, not only the recovery and utilization of the braking energy of the electric locomotive is realized, the fluctuation of the DC bus voltage is stabilized, and the DC traction power supply system is utilized At low load and no load, it charges the power battery of the electric vehicle, which solves the problem that the power factor of the main substation on the AC side of the DC traction power supply system is greatly reduced. If the capacity of the battery-swapping-based electric vehicle charging and discharging system is large enough, when the AC power grid fails, the battery-swapping-based electric vehicle charging and discharging system can supply power to the electric locomotive, thereby improving the reliability of the DC traction power supply system. At the same time, making full use of the DC traction power supply system greatly reduces the construction cost of the electric vehicle charging system mainly for battery replacement, and has the effect of "shaving peaks and filling valleys" for the power supply system, thereby improving the economy and comprehensive utilization benefits of the entire system.
本实用新型的一种制动能量回收式直流牵引供电系统中的电动汽车充放电系统的充放电控制指令可以由控制中心通过通讯系统给定,也可以根据直流母线电压给定。The charging and discharging control command of the electric vehicle charging and discharging system in the braking energy recovery type DC traction power supply system of the utility model can be given by the control center through the communication system, or can be given according to the DC bus voltage.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320460327 CN203352263U (en) | 2013-07-29 | 2013-07-29 | Braking energy recovery-type direct current traction power supply system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320460327 CN203352263U (en) | 2013-07-29 | 2013-07-29 | Braking energy recovery-type direct current traction power supply system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203352263U true CN203352263U (en) | 2013-12-18 |
Family
ID=49752114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201320460327 Expired - Lifetime CN203352263U (en) | 2013-07-29 | 2013-07-29 | Braking energy recovery-type direct current traction power supply system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203352263U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103434420A (en) * | 2013-07-29 | 2013-12-11 | 华北电力大学(保定) | Braking energy recovery type DC (Direct Current) traction power supply system basing on electric automobile charging |
CN111146823A (en) * | 2019-12-18 | 2020-05-12 | 北京交通大学 | HVDC Traction Power Supply System for Urban Rail Transit |
CN115528699A (en) * | 2022-09-26 | 2022-12-27 | 北京市地铁运营有限公司供电分公司 | A Metro Power Supply System Combining with SVG Devices to Optimize the Architecture of DC Substations |
-
2013
- 2013-07-29 CN CN 201320460327 patent/CN203352263U/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103434420A (en) * | 2013-07-29 | 2013-12-11 | 华北电力大学(保定) | Braking energy recovery type DC (Direct Current) traction power supply system basing on electric automobile charging |
CN111146823A (en) * | 2019-12-18 | 2020-05-12 | 北京交通大学 | HVDC Traction Power Supply System for Urban Rail Transit |
CN115528699A (en) * | 2022-09-26 | 2022-12-27 | 北京市地铁运营有限公司供电分公司 | A Metro Power Supply System Combining with SVG Devices to Optimize the Architecture of DC Substations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103434420B (en) | Based on the Brake energy recovery formula DC traction power-supply system of charging electric vehicle | |
CN103434421B (en) | A kind of mixing inter-act DC traction power-supply system based on new forms of energy | |
Brenna et al. | The evolution of railway power supply systems toward smart microgrids: The concept of the energy hub and integration of distributed energy resources | |
CN103407383B (en) | Bidirectional interactive type DC (direct-current) traction power supply system base on new energy | |
CN103448573B (en) | A kind of inter-act electrified railway HVDC tractive power supply system | |
CN203358382U (en) | Bidirectional-interaction electrified railway high-voltage direct-current traction power supply system based on new energy | |
CN103481787B (en) | The motor train unit traction system of contact system, power bag and closed-center system hybrid power supply | |
CN111775782B (en) | An electrified railway traction emergency guarantee power supply system and control method | |
CN102111077B (en) | Charging power supply system | |
CN103419680B (en) | A kind of DC traction power-supply system based on distributed power source | |
CN109606208B (en) | Off-grid railway traction power supply system and regulation and control method | |
CN108988447A (en) | A kind of method of supplying power to and charging unit for super capacitor energy-storage type tramcar | |
CN205632170U (en) | Low pressure contravariant repayment formula traction power supply system who contains energy storage | |
CN103840450A (en) | Electric energy regulation device and method for electrified railways | |
CN203372078U (en) | Motor train unit traction system achieving hybrid power supply of overhead line system, power pack and energy storage device | |
CN109936135B (en) | A kind of in-phase energy storage power supply device for electrified railway and its control method | |
Shen et al. | Management and utilization of urban rail transit regenerative braking energy based on the bypass DC loop | |
CN111740438A (en) | An urban rail transit regenerative braking energy management and control system and its control method | |
CN107472037A (en) | A kind of tractive power supply system for bullet train and its vehicle-mounted store electric system | |
KR101437349B1 (en) | Charging power feeding system for ev charging infra based on multi function energy storage system of railway traction system | |
CN203358379U (en) | Braking energy recycling type direct-current tractive power supply system comprising distributed power | |
CN203352263U (en) | Braking energy recovery-type direct current traction power supply system | |
CN204145012U (en) | The complete charging device in a kind of ground for super capacitor energy-storage type tramcar | |
CN205846737U (en) | An electric vehicle energy storage service station using regenerative braking energy of trains | |
CN203358381U (en) | Two-way interactive direct-current traction power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20131218 Effective date of abandoning: 20160217 |
|
C25 | Abandonment of patent right or utility model to avoid double patenting |