CN203290875U - Bifocal binocular optical coherence tomography (OCT) real-time imaging system on basis of ring cavity frequency sweep - Google Patents
Bifocal binocular optical coherence tomography (OCT) real-time imaging system on basis of ring cavity frequency sweep Download PDFInfo
- Publication number
- CN203290875U CN203290875U CN2013202536870U CN201320253687U CN203290875U CN 203290875 U CN203290875 U CN 203290875U CN 2013202536870 U CN2013202536870 U CN 2013202536870U CN 201320253687 U CN201320253687 U CN 201320253687U CN 203290875 U CN203290875 U CN 203290875U
- Authority
- CN
- China
- Prior art keywords
- optical
- polarization
- light
- input
- outfan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title abstract description 27
- 238000012014 optical coherence tomography Methods 0.000 title description 23
- 230000010287 polarization Effects 0.000 claims abstract description 144
- 230000003287 optical effect Effects 0.000 claims abstract description 78
- 239000000835 fiber Substances 0.000 claims description 172
- 239000013307 optical fiber Substances 0.000 claims description 69
- 239000004065 semiconductor Substances 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 5
- 230000000630 rising effect Effects 0.000 claims 4
- 230000000306 recurrent effect Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000010408 sweeping Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 8
- 210000001508 eye Anatomy 0.000 description 35
- 238000005516 engineering process Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 210000001525 retina Anatomy 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 210000004087 cornea Anatomy 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004323 axial length Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 210000002159 anterior chamber Anatomy 0.000 description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 210000000554 iris Anatomy 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000000695 crystalline len Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 201000010041 presbyopia Diseases 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
本实用新型公开了一种基于环腔扫频的双焦点全眼OCT实时成像系统,该系统基于环腔扫频OCT系统,通过调节输入样品臂的低相干光偏振态,并在样品臂的环腔中设置半波片,从而实现两种线偏振态光在奇偶次光循环过程中的偏振态切换;并在样品臂中设置偏振分光器,构建P通道光和S通道光的两种初始零光程参考面以及不同的光聚焦位置;最终利用不同载频量来区分不同环腔级次的P通道光和S通道光,从而只采用单一高带宽平衡光电探测器就能实现全眼的OCT图像的无混淆高精度拼接。由于本系统是通过光循环的方法产生多个零光程参考面,因而能够实现全眼的实时成像,另外由于采用双焦点的样品臂设计,因而可以实现全眼范围内的高灵敏度成像。
The utility model discloses a dual-focus full-eye OCT real-time imaging system based on ring cavity frequency sweeping. The system is based on the ring cavity frequency sweep OCT system. A half-wave plate is set in the cavity to realize the polarization state switching of the two linearly polarized light during odd and even light cycles; and a polarization beam splitter is set in the sample arm to construct two initial zeros of the P-channel light and the S-channel light. The optical path reference plane and different light focusing positions; finally, different carrier frequencies are used to distinguish the P-channel light and S-channel light of different ring cavity orders, so that only a single high-bandwidth balanced photodetector can realize OCT of the whole eye Alias-free high-precision stitching of images. Since the system generates multiple reference planes with zero optical path through the method of light circulation, real-time imaging of the whole eye can be realized. In addition, due to the dual-focus sample arm design, high-sensitivity imaging in the whole eye range can be realized.
Description
技术领域 technical field
本实用新型涉及光学相干层析成像(OCT)技术,尤其涉及一种基于环腔扫频的双焦点全眼OCT实时成像系统。 The utility model relates to optical coherence tomography (OCT) technology, in particular to a dual-focus whole-eye OCT real-time imaging system based on ring cavity frequency sweep. the
背景技术 Background technique
调节是人眼为了看清近距离物体改变眼睛屈光状态的一种能力,它能使近距离物体在视网膜清晰成像。影响屈光状态的因素有很多,包括角膜系统、晶体系统、眼轴等。其中眼轴是影响眼睛屈光状态的重要因素之一。眼轴长度被定义为角膜前表面到视网膜前表面的距离。眼轴长度的变大将直接导致眼球的近视化。因而已引起越来越多研究小组的关注。 Accommodation is the ability of the human eye to change the refractive state of the eye in order to see close objects clearly, and it can make close objects clearly imaged on the retina. There are many factors that affect the refractive state, including the corneal system, lens system, and eye axis. The eye axis is one of the important factors affecting the refractive state of the eye. Axial length was defined as the distance from the anterior surface of the cornea to the anterior surface of the retina. The enlargement of the axial length of the eye will directly lead to the myopia of the eyeball. Therefore, it has attracted the attention of more and more research groups. the
光学相干层析成像(optical coherence tomography,OCT)是一种基于低相干干涉的非侵入、非接触型医学成像手段。该技术非常适合用于定量检测眼睛改变屈光状态前后各个系统表面形态,系统厚度和位置的动态变化。自1994年,Izatt等人首次将OCT技术应用于角膜和眼前段成像后,现今已成为测量和分析眼前段组织和结构的理想工具,可用于诊断角膜、虹膜、房角等组织的异常病变,特别有助于青光眼、白内障等常见眼病的诊断和研究,该技术也被广泛应用于调节及老视发病机制的研究。然而,由于时域系统不能对整个全眼(包括角膜,虹膜,前房、晶状体和视网膜)进行一次性的动态成像,因而无法满足更高速全眼成像的应用需求。 Optical coherence tomography (OCT) is a non-invasive, non-contact medical imaging method based on low-coherence interference. This technique is very suitable for quantitatively detecting the dynamic changes of the surface morphology, system thickness and position of each system before and after the eye changes the refractive state. Since 1994, Izatt et al. first applied OCT technology to cornea and anterior segment imaging, and now it has become an ideal tool for measuring and analyzing anterior segment tissue and structure, and can be used to diagnose abnormal lesions of cornea, iris, anterior chamber angle and other tissues. It is especially helpful for the diagnosis and research of glaucoma, cataract and other common eye diseases. This technology is also widely used in the research of regulation and the pathogenesis of presbyopia. However, since the time-domain system cannot perform one-time dynamic imaging of the entire eye (including the cornea, iris, anterior chamber, lens, and retina), it cannot meet the application requirements of higher-speed whole-eye imaging. the
近年来,越来越多的研究小组运用新型的傅立叶域OCT技术(包括谱域OCT和扫频OCT)实施全眼成像。传统的傅立叶域OCT受限于成像深度(通常约为6-7mm),因而无法满足全眼成像的需求(轴向尺度约为37mm)。因而为了实现全眼的快速光学相干层析成像,多个研究小组提出了多种改良方案。Cuixia Dai等人提出采用双CCD探测器以及双参考臂的方式实施全眼成像,然而该方案需要采用两个CCD,因而系统成本过高;Marco Ruggeri等人提出采用在参考臂中设置高速扫描振镜,通过扫描多个不同位置的参考镜,实现全眼范围内多零光程参考面的分时成像。由于该系统采用扫描振镜实现多零光程参考面的切换以及干涉信号的分时采集,因而其系统瓶颈主要在于 扫描振镜切换参考镜的速度(其平均时间约为200μs),因而并不适用于更高速的全眼成像应用。此外,由于扫描振镜在切换多参考镜的过程中可能会引入额外的光程误差,因此其对眼轴长度的测量的精确度也将受到影响;Hyuu-Woo Jeong等人提出了采用光开光的方式并结合偏振敏感型OCT技术实现全眼前节和视网膜的分时分步成像,该技术相对于采用扫描振镜的技术方案,大大提高了切换速度,理论上能够达到1MHz的切换频率,但仍然无法满足整个全眼结构更高速的实时成像需求。且该系统受限于光谱分辨率,无法成像眼前节的晶状体部分。美国麻省理工大学的Fujimoto小组采用一种基于垂直空腔表面发射的扫频光源,该光源具有良好的瞬时线宽,能够对整个全眼结构进行快速成像。然而该扫频光源仍处于实验室研究阶段,且过大的相干长度可能也会引入更大的自相关噪声,从而影响全眼的成像质量,并且该系统是通过牺牲系统的横向分辨率来实现全眼成像的。 In recent years, more and more research groups have implemented whole-eye imaging using novel Fourier-domain OCT techniques (including spectral-domain OCT and frequency-swept OCT). Traditional Fourier domain OCT is limited by the imaging depth (usually about 6-7mm), so it cannot meet the needs of whole-eye imaging (the axial scale is about 37mm). Therefore, in order to realize fast optical coherence tomography of the whole eye, several research groups have proposed various improved schemes. Cuixia Dai et al. proposed to use dual CCD detectors and dual reference arms to implement whole-eye imaging. However, this solution requires two CCDs, so the system cost is too high; Marco Ruggeri et al. proposed to use high-speed scanning vibration in the reference arm Mirror, by scanning multiple reference mirrors at different positions, time-sharing imaging of multiple zero-path reference planes within the entire eye range is realized. Since the system uses scanning galvanometers to realize the switching of multiple zero-path reference planes and the time-sharing acquisition of interference signals, the bottleneck of the system is mainly the speed at which the scanning galvanometers switch reference mirrors (the average time is about 200 μs), so it does not For higher speed whole-eye imaging applications. In addition, since the scanning galvanometer may introduce additional optical path errors in the process of switching multiple reference mirrors, the accuracy of its measurement of the axial length of the eye will also be affected; Hyuu-Woo Jeong et al. Combining with polarization-sensitive OCT technology to achieve time- and step-by-step imaging of the entire anterior segment and retina, this technology greatly improves the switching speed compared with the technical solution using scanning galvanometers, and can theoretically reach a switching frequency of 1MHz, but It still cannot meet the higher-speed real-time imaging requirements of the whole eye structure. Moreover, the system is limited in spectral resolution and cannot image the lens portion of the anterior segment. The Fujimoto group of the Massachusetts Institute of Technology in the United States adopted a swept-frequency light source based on vertical cavity surface emission, which has good instantaneous linewidth and can quickly image the entire eye structure. However, the swept source is still in the laboratory research stage, and the excessive coherence length may also introduce greater autocorrelation noise, thereby affecting the imaging quality of the whole eye, and the system is realized by sacrificing the lateral resolution of the system Whole-eye imaging. the
发明内容 Contents of the invention
本实用新型针对现有技术的不足,提供一种基于环腔扫频的双焦点全眼OCT实时成像系统。本实用新型目的是通过如下技术方案实现的: Aiming at the deficiencies of the prior art, the utility model provides a bifocal whole-eye OCT real-time imaging system based on ring cavity frequency sweep. The purpose of this utility model is achieved through the following technical solutions:
本实用新型提出一种基于环腔扫频的双焦点全眼OCT实时成像系统:包括扫频光源,第一单模光纤耦合器,第二单模光纤耦合器,第三单模光纤耦合器,第四单模光纤耦合器,保偏光纤耦合器,第一光纤适配器,第二光纤适配器,偏振态切换器,第一声光频移器,第二声光频移器,第一半导体光放大器,第二半导体光放大器,第一光程延迟线,第二光程延迟线,第一偏振分光器,第二偏振分光器,第三偏振分光器,保偏光纤环行器,单模光纤环行器,第一光纤准直器,第二光纤准直器,第三光纤准直器,偏振分光棱镜,直角棱镜,第一反射镜,第二反射镜,扫描振镜,第一透镜,第二透镜,第三透镜,待测全眼,第一偏振控制器,第二偏振控制器,第三偏振控制器,马赫曾德干涉仪型标定单元,高带宽平衡光电探测器,高速数据采集卡和计算机。 The utility model proposes a dual-focus full-eye OCT real-time imaging system based on ring cavity frequency sweep: including a frequency sweep light source, a first single-mode fiber coupler, a second single-mode fiber coupler, a third single-mode fiber coupler, Fourth single-mode fiber coupler, polarization maintaining fiber coupler, first fiber adapter, second fiber adapter, polarization switcher, first acousto-optic frequency shifter, second acousto-optic frequency shifter, first semiconductor optical amplifier , the second semiconductor optical amplifier, the first optical delay line, the second optical delay line, the first polarization beam splitter, the second polarization beam splitter, the third polarization beam splitter, polarization maintaining fiber circulator, single mode fiber circulator , the first fiber collimator, the second fiber collimator, the third fiber collimator, the polarization beam splitter, the rectangular prism, the first mirror, the second mirror, the scanning mirror, the first lens, the second lens , the third lens, the whole eye to be tested, the first polarization controller, the second polarization controller, the third polarization controller, Mach-Zehnder interferometer type calibration unit, high-bandwidth balanced photodetector, high-speed data acquisition card and computer . the
扫频光源通过第一单模光纤耦合器分别与马赫曾德干涉仪型标定单元的输入端以及第二单模光纤耦合器的输入端相连接,马赫曾德干涉仪型标定单元的电路输出端与高速数据采集卡的其中一个输入信号通道相连接;第二单模光纤耦合器的两个输出端分别与第一偏振控制器的输入端以及第三单模光纤耦合器的其中一个输入端相连接;第一偏振控制器连接第一光纤适配器的 输入端,第一光纤适配器的输出端与保偏光纤耦合器的其中一个输入端相连接;保偏光纤耦合器的其中一个输出端连接偏振态切换器的输入端,偏振态切换器的输出端连接第一声光频移器的输入端,第一声光频移器的输出端连接第一半导体光放大器的输入端,第一半导体光放大器的输出端与保偏光纤耦合器的另一输入端相连接,构成具有奇偶次光循环状态下不同偏振态切换的增益补偿型光程失配循环腔。保偏光纤耦合器的另一输出端连接第一偏振分光器的输入端;第一偏振分光器的其中一个输出端与第一光程延迟线的输入端相连接,另一输出端与第二偏振分光器的其中一个输入端相连接,第一光程延迟线的输出端与第二偏振分光器的另一输入端相连接,第二偏振分光器的输出端连接保偏光纤环行器的输入端。保偏光纤环行器的第一输出端连接第三偏振分光器的输入端,第三偏振分光器的两个输出端分别连接第一光纤准直器和第二光纤准直器;保偏光纤环行器的第二输出端连接第二光纤适配器的输入端,第二光纤适配器的输出端连接第四单模光纤耦合器的其中一个输入端;第三单模光纤耦合器的其中一个输出端连接第二声光频移器的输入端,第二声光频移器的输出端连接第二半导体光放大器的输入端,第二半导体光放大器的输出端连接第二偏振控制器的输入端,第二偏振控制器的输出端连接第二光程延迟线的输入端,第二光程延迟线的输出端与第三单模光纤耦合器的另一输入端相连接,构成参考臂增益补偿型光程失配循环腔,第三单模光纤耦合器的另一输出端连接单模光纤环行器的输入端,单模光纤环行器的第一输出端连接第三光纤准直器的输入端,单模光纤环行器的第二输出端连接第三偏振控制器的输入端,第三偏振控制器的输出端连接第四单模光纤耦合器的另一输入端;第四单模光纤耦合器的两个输出端分别连接高带宽平衡光电探测器的两个输入端,该高带宽平衡光电探测器的电路输出端与高速数据采集卡的另一个输入信号通道相连接;高速数据采集卡的输出端与计算机相连接。扫频光源的触发信号输出端与高速数据采集卡触发信号输入端相连接。 The frequency-sweeping light source is respectively connected to the input end of the Mach-Zehnder interferometer type calibration unit and the input end of the second single-mode fiber coupler through the first single-mode fiber coupler, and the circuit output end of the Mach-Zehnder interferometer type calibration unit It is connected with one of the input signal channels of the high-speed data acquisition card; the two output ends of the second single-mode fiber coupler are respectively connected to the input end of the first polarization controller and one of the input ends of the third single-mode fiber coupler connection; the first polarization controller is connected to the input end of the first optical fiber adapter, and the output end of the first optical fiber adapter is connected to one of the input ends of the polarization-maintaining fiber coupler; one of the output ends of the polarization-maintaining fiber coupler is connected to the polarization state The input end of the switcher, the output end of the polarization state switcher is connected to the input end of the first acousto-optic frequency shifter, the output end of the first acousto-optic frequency shifter is connected to the input end of the first semiconductor optical amplifier, and the first semiconductor optical amplifier The output end of the polarization-maintaining fiber coupler is connected to the other input end of the polarization-maintaining fiber coupler to form a gain-compensated optical path mismatch recirculation cavity capable of switching different polarization states under even and odd optical recirculation states. The other output end of the polarization maintaining fiber coupler is connected to the input end of the first polarization beam splitter; one of the output ends of the first polarization beam splitter is connected to the input end of the first optical path delay line, and the other output end is connected to the second One of the input ends of the polarization beam splitter is connected, the output end of the first optical path delay line is connected to the other input end of the second polarization beam splitter, and the output end of the second polarization beam splitter is connected to the input of the polarization maintaining fiber circulator end. The first output end of the polarization maintaining fiber circulator is connected to the input end of the third polarization beam splitter, and the two output ends of the third polarization beam splitter are respectively connected to the first fiber collimator and the second fiber collimator; the polarization maintaining fiber circulator The second output end of the device is connected to the input end of the second fiber optic adapter, and the output end of the second fiber optic adapter is connected to one of the input ends of the fourth single-mode fiber coupler; one of the output ends of the third single-mode fiber coupler is connected to the first The input end of the second acousto-optic frequency shifter, the output end of the second acousto-optic frequency shifter is connected to the input end of the second semiconductor optical amplifier, the output end of the second semiconductor optical amplifier is connected to the input end of the second polarization controller, and the second The output end of the polarization controller is connected to the input end of the second optical path delay line, and the output end of the second optical path delay line is connected to the other input end of the third single-mode fiber coupler to form a reference arm gain-compensated optical path Mismatch circulating cavity, the other output end of the third single-mode fiber coupler is connected to the input end of the single-mode fiber circulator, the first output end of the single-mode fiber circulator is connected to the input end of the third fiber collimator, single-mode The second output end of the fiber circulator is connected to the input end of the third polarization controller, and the output end of the third polarization controller is connected to the other input end of the fourth single-mode fiber coupler; two of the fourth single-mode fiber coupler The output ends are respectively connected to the two input ends of the high-bandwidth balanced photodetector, and the circuit output end of the high-bandwidth balanced photodetector is connected to another input signal channel of the high-speed data acquisition card; the output end of the high-speed data acquisition card is connected to the computer connected. The trigger signal output end of the frequency-sweeping light source is connected with the trigger signal input end of the high-speed data acquisition card. the
扫频光源发出的低相干光进入第一单模光纤耦合器后,一部分光进入马赫曾德干涉仪型标定单元,另一部分光通过第二单模光纤耦合器分成两路,其中一路光通过第一偏振控制器和第一光纤适配器后进入保偏光纤耦合器,另一路光进入第三单模光纤耦合器;进入保偏光纤耦合器的光分出一部分光进入第一偏振分光器,通过第一偏振分光器的光分成两路,一路通过第一光 程延迟线进入第二偏振分光器,另一路直接进入第二偏振分光器,从第二偏振分光器出射的光进入保偏光纤环行器的输入端,进入保偏光纤环行器的光通过第一输出端进入第三偏振分光器的输入端,从第三偏振分光器出射的光分别进入第一光纤准直器和第二光纤准直器的输入端;从第一光纤准直器出射的光通过偏振分光棱镜、扫描振镜和第一透镜后射入待测全眼,从第二光纤准直器出射的光通过直角棱镜、第一反射镜、第二透镜、偏振分光棱镜、扫描振镜和第一透镜后射入待测全眼,由于两路光的光学机构设计不同,所以两路光分别聚焦于眼睛的全眼前节和视网膜区域。从待测全眼反射回来的光,由于其偏振态可能受到眼睛生物组织的改变,所以可能同时通过两个准直镜反射回第三偏振分光器,因此为了防止假像的产生,以及提高探测效率,两路光学机构的光程差需要严格匹配。从第三偏振分光器反射回来的光再次通过保偏光纤环行器的第一输出端、保偏光纤环行器的第二输出端以及第二光纤适配器射入第四单模光纤耦合器的其中一个输入端;从保偏光纤耦合器输出的另一部分光通过偏振态切换器、第一声光频移器以及第一半导体光放大器后第二次进入保偏光纤耦合器,第二次进入保偏光纤耦合器的光同样被分成两部分,分别沿着上述路径到达第四单模光纤耦合器和第三次进入保偏光纤耦合器,以此类推,第N-1次进入保偏光纤耦合器的光也沿上述路径到达第四单模光纤耦合器和第N次进入保偏光纤耦合器。同样的进入第三单模光纤耦合器的光也分出一部分光进入单模光纤环行器的输入端,进入单模光纤环行器的光通过第一输出端进入第三光纤准直器后射入第三透镜和第二反射镜,反射回来的光在依次经过单模光纤环行器的第一输出端、第二输出端和第三偏振控制器后,进入第四单模光纤耦合器。从第三单模光纤耦合器输出的另一部分光通过第二声光频移器、第二半导体光放大器、第二偏振控制器和第二光程延迟线后第二次进入第三单模光纤耦合器,第二次进入第三单模光纤耦合器的光同样被分成两部分,分别沿着上述路径到达第四单模光纤耦合器和第三次进入第三单模光纤耦合器,以此类推,第N-1进入第三单模光纤耦合器的光也沿上述路径到达第四单模光纤耦合器和第N次进入第三单模光纤耦合器。上述所有进入第四单模光纤耦合器的光发生干涉,干涉信号经高带宽平衡光电探测器探测,两路单元所测得的干涉信号被高速数据采集卡同步采集,采集到的信号传输到计算机的内存中进行数据处理,高速数据采集卡的输出端与计算机相连接。 After the low-coherence light emitted by the frequency-sweeping light source enters the first single-mode fiber coupler, part of the light enters the Mach-Zehnder interferometer type calibration unit, and the other part of the light passes through the second single-mode fiber coupler and is divided into two paths, one of which passes through the first A polarization controller and the first fiber adapter enter the polarization maintaining fiber coupler, and the other light enters the third single-mode fiber coupler; the light entering the polarization maintaining fiber coupler splits a part of the light into the first polarization splitter, and passes through the second The light from one polarization beam splitter is divided into two paths, one path enters the second polarization beam splitter through the delay line of the first optical path, and the other path directly enters the second polarization beam splitter, and the light emitted from the second polarization beam splitter enters the polarization maintaining fiber circulator The light entering the polarization maintaining fiber circulator enters the input end of the third polarization beam splitter through the first output end, and the light exiting from the third polarization beam splitter enters the first fiber collimator and the second fiber collimator respectively The input end of the device; the light emitted from the first fiber collimator passes through the polarization beam splitter prism, the scanning galvanometer and the first lens and then enters the whole eye to be tested, and the light emitted from the second fiber collimator passes through the right-angle prism, the first lens A mirror, a second lens, a polarization splitter prism, a scanning galvanometer and the first lens are injected into the whole eye to be tested. Since the optical mechanisms of the two paths of light are designed differently, the two paths of light are respectively focused on the anterior segment of the eye and the anterior segment of the eye. retinal area. The light reflected from the whole eye to be tested may be reflected back to the third polarization beam splitter through two collimating mirrors at the same time because its polarization state may be changed by the biological tissue of the eye. Therefore, in order to prevent the generation of false images and improve the detection For efficiency, the optical path difference of the two optical mechanisms needs to be strictly matched. The light reflected from the third polarization beam splitter enters one of the fourth single-mode fiber couplers through the first output end of the polarization-maintaining fiber circulator, the second output end of the polarization-maintaining fiber circulator and the second fiber adapter Input end; another part of the light output from the polarization maintaining fiber coupler passes through the polarization state switcher, the first acousto-optic frequency shifter and the first semiconductor optical amplifier, and then enters the polarization maintaining fiber coupler for the second time, and then enters the polarization maintaining fiber coupler for the second time The light of the fiber coupler is also divided into two parts, which respectively arrive at the fourth single-mode fiber coupler along the above path and enter the polarization-maintaining fiber coupler for the third time, and so on, the N-1th time enters the polarization-maintaining fiber coupler The light also reaches the fourth single-mode fiber coupler along the above path and enters the polarization-maintaining fiber coupler for the Nth time. Similarly, the light entering the third single-mode fiber coupler also splits a part of light into the input end of the single-mode fiber circulator, and the light entering the single-mode fiber circulator enters the third fiber collimator through the first output end and then enters the The light reflected by the third lens and the second reflector enters the fourth single-mode fiber coupler after passing through the first output end, the second output end and the third polarization controller of the single-mode fiber circulator in sequence. Another part of the light output from the third single-mode fiber coupler enters the third single-mode fiber for the second time after passing through the second acousto-optic frequency shifter, the second semiconductor optical amplifier, the second polarization controller and the second optical delay line coupler, the light that enters the third single-mode fiber coupler for the second time is also divided into two parts, respectively arrives at the fourth single-mode fiber coupler along the above-mentioned path and enters the third single-mode fiber coupler for the third time, so that By analogy, the light entering the third single-mode fiber coupler for the N-1th time also reaches the fourth single-mode fiber coupler along the above path and enters the third single-mode fiber coupler for the Nth time. All the above-mentioned light entering the fourth single-mode fiber coupler interferes, and the interference signal is detected by a high-bandwidth balanced photodetector. The interference signal measured by the two-way unit is synchronously collected by a high-speed data acquisition card, and the collected signal is transmitted to the computer. Data processing is carried out in the internal memory, and the output terminal of the high-speed data acquisition card is connected with the computer. the
与背景技术相比,本实用新型具有的有益效果是: Compared with background technology, the beneficial effect that the utility model has is:
1.利用具有不同载频量的环腔对不同环腔次数的P通道光和S通道光进行空间编码,因而能够使用单一高带宽平衡探测器实现干涉信号的探测和全眼图像的无混淆拼接。 1. Use ring cavities with different carrier frequencies to spatially encode P-channel light and S-channel light with different ring cavity orders, so that a single high-bandwidth balanced detector can be used to realize interference signal detection and full-eye image stitching without confusion . the
2.区分P通道光和S通道光实现两种不同偏振态光不同的初始零光程位置以及不同的焦点聚焦位置(分别位于全眼前节和视网膜区域),便于全眼结构的高灵敏度探测。 2. Distinguish between P-channel light and S-channel light to realize two different initial zero optical path positions and different focus positions (located in the anterior segment of the whole eye and the retina area respectively) for two different polarization states of light, which is convenient for high-sensitivity detection of the whole eye structure. the
3.利用马赫曾德干涉仪型标定单元采集标定信号,对多个不同环腔级次的信号进行分频段处理,实施等波数间隔的傅里叶变换,便于高轴向分辨率的OCT实时成像。 3. Use the Mach-Zehnder interferometer-type calibration unit to collect calibration signals, process signals of multiple different ring cavity levels in frequency bands, and implement Fourier transform at equal wavenumber intervals to facilitate OCT real-time imaging with high axial resolution . the
附图说明 Description of drawings
图1是本实用新型所述基于环腔扫频的双焦点全眼OCT实时成像系统结构图; Fig. 1 is the structural diagram of the bifocal whole-eye OCT real-time imaging system based on ring cavity frequency sweep described in the utility model;
图2是本实用新型所述偏振态切换器的结构图; Fig. 2 is the structural diagram of the polarization state switcher described in the utility model;
图3是本实用新型所述系统全眼成像的原理图; Fig. 3 is the schematic diagram of whole-eye imaging of the system described in the utility model;
图4是本实用新型所述系统的数据处理流程图。 Fig. 4 is a data processing flowchart of the system described in the utility model. the
具体实施方式 Detailed ways
下面结合附图和实施例子对本实用新型作进一步的说明。 Below in conjunction with accompanying drawing and embodiment example the utility model is described further. the
如图1所示,本系统包括扫频光源1,第一单模光纤耦合器2,第二单模光纤耦合器3,第三单模光纤耦合器10,第四单模光纤耦合器35,保偏光纤耦合器6,第一光纤适配器5,第二光纤适配器33,偏振态切换器7,第一声光频移器8,第二声光频移器11,第一半导体光放大器9,第二半导体光放大器12,第一光程延迟线16,第二光程延迟线14,第一偏振分光器15,第二偏振分光器17,第三偏振分光器19,保偏光纤环行器18,单模光纤环行器29,第一光纤准直器20,第二光纤准直器21,第三光纤准直器30,偏振分光棱镜25,直角棱镜22,第一反射镜23,第二反射镜32,扫描振镜26,第一透镜27,第二透镜24,第三透镜31,待测全眼28,第一偏振控制器4,第二偏振控制器13,第三偏振控制器34,马赫曾德干涉仪型标定单元37,高带宽平衡光电探测器36,高速数据采集卡38,计算机39。
As shown in Figure 1, the system includes a frequency-sweeping
扫频光源1通过第一单模光纤耦合器2分别与马赫曾德干涉仪型标定单元37的输入端以及第二单模光纤耦合器3的输入端相连接,马赫曾德干涉仪 型标定单元37的电路输出端与高速数据采集卡38的其中一个输入信号通道相连接;第二单模光纤耦合器3的两个输出端分别与第一偏振控制器4的输入端以及第三单模光纤耦合器10的其中一个输入端相连接;第一偏振控制器4连接第一光纤适配器5的输入端,第一光纤适配器5的输出端与保偏光纤耦合器6的其中一个输入端相连接;保偏光纤耦合器6的其中一个输出端连接偏振态切换器的7输入端,偏振态切换器7的输出端连接第一声光频移器8的输入端,第一声光频移器8的输出端连接第一半导体光放大器9的输入端,第一半导体光放大器9的输出端与保偏光纤耦合器的6另一输入端相连接,构成具有奇偶次光循环状态下不同偏振态切换的增益补偿型光程失配循环腔。保偏光纤耦合器6的另一输出端连接第一偏振分光器15的输入端;第一偏振分光器15的其中一个输出端与第一光程延迟线16的输入端相连接,另一输出端与第二偏振分光器17的其中一个输入端相连接,第一光程延迟线16的输出端与第二偏振分光器17的另一输入端相连接,第二偏振分光器17的输出端连接保偏光纤环行器18的输入端。保偏光纤环行器18的第一输出端连接第三偏振分光器19的输入端,第三偏振分光器19的两个输出端分别连接第一光纤准直器20和第二光纤准直器21;保偏光纤环行器18的第二输出端连接第二光纤适配器33的输入端,第二光纤适配器33的输出端连接第四单模光纤耦合器35的其中一个输入端;第三单模光纤耦合器10的其中一个输出端连接第二声光频移器11的输入端,第二声光频移器11的输出端连接第二半导体光放大器12的输入端,第二半导体光放大器12的输出端连接第二偏振控制器13的输入端,第二偏振控制器13的输出端连接第二光程延迟线14的输入端,第二光程延迟线14的输出端与第三单模光纤耦合器10的另一输入端相连接,构成参考臂增益补偿型光程失配循环腔,第三单模光纤耦合器10的另一输出端连接单模光纤环行器29的输入端,单模光纤环行器29的第一输出端连接第三光纤准直器30的输入端,单模光纤环行器29的第二输出端连接第三偏振控制器34的输入端,第三偏振控制器34的输出端连接第四单模光纤耦合器35的另一输入端;第四单模光纤耦合器35的两个输出端分别连接高带宽平衡光电探测器36的两个输入端,该高带宽平衡光电探测器36的电路输出端与高速数据采集卡38的另一个输入信号通道相连接;高速数据采集卡38的输出端与计算机39相连接。扫频光源1的触发信号输出端与高速数据采集卡38触发信号输入端相连接。
The frequency-sweeping light source 1 is connected to the input end of the Mach-Zehnder interferometer type calibration unit 37 and the input end of the second single-mode fiber coupler 3 respectively through the first single-mode fiber coupler 2, and the Mach-Zehnder interferometer type calibration unit The circuit output of 37 is connected with one of the input signal channels of high-speed data acquisition card 38; One of the input ends of the coupler 10 is connected; the first polarization controller 4 is connected to the input end of the first optical fiber adapter 5, and the output end of the first optical fiber adapter 5 is connected to one of the input ends of the polarization maintaining fiber coupler 6; One of the output ends of the polarization maintaining fiber coupler 6 is connected to the 7 input ends of the polarization state switcher, and the output end of the polarization state switcher 7 is connected to the input end of the first acousto-optic frequency shifter 8, and the first acousto-optic frequency shifter 8 The output end of the first semiconductor optical amplifier 9 is connected to the input end of the first semiconductor optical amplifier 9, and the output end of the first semiconductor optical amplifier 9 is connected to the other input end of 6 of the polarization-maintaining optical fiber coupler to form a switch between different polarization states with odd and even times of optical circulation. A gain-compensated optical path mismatch loop cavity. The other output of the polarization-maintaining fiber coupler 6 is connected to the input of the first polarization beam splitter 15; one of the output terminals of the first polarization beam splitter 15 is connected to the input of the first optical delay line 16, and the other output end is connected with one of the input ends of the second polarization beam splitter 17, the output end of the first optical delay line 16 is connected with the other input end of the second polarization beam splitter 17, and the output end of the second polarization beam splitter 17 Connect the input end of the polarization maintaining optical fiber circulator 18. The first output end of the polarization maintaining fiber circulator 18 is connected to the input end of the third polarization beam splitter 19, and the two output ends of the third polarization beam splitter 19 are respectively connected to the first fiber collimator 20 and the second fiber collimator 21 The second output end of the polarization-maintaining optical fiber circulator 18 is connected to the input end of the second fiber optic adapter 33, and the output end of the second fiber optic adapter 33 is connected to one of the input ends of the fourth single-mode fiber coupler 35; the third single-mode fiber One of the output ends of the coupler 10 is connected to the input end of the second acousto-optic frequency shifter 11, and the output end of the second acousto-optic frequency shifter 11 is connected to the input end of the second semiconductor optical amplifier 12, and the second semiconductor optical amplifier 12 The output end is connected to the input end of the second polarization controller 13, the output end of the second polarization controller 13 is connected to the input end of the second optical delay line 14, and the output end of the second optical delay line 14 is connected to the third single-mode optical fiber The other input end of the coupler 10 is connected to form a reference arm gain compensation type optical path mismatch loop cavity, and the other output end of the third single-mode optical fiber coupler 10 is connected to the input end of the single-mode optical fiber circulator 29, the single-mode The first output end of the optical fiber circulator 29 is connected to the input end of the third fiber collimator 30, the second output end of the single-mode optical fiber circulator 29 is connected to the input end of the third polarization controller 34, and the third polarization controller 34 The output end is connected to the other input end of the fourth single-mode fiber coupler 35; two output ends of the fourth single-mode fiber coupler 35 are respectively connected to two input ends of the high-bandwidth balanced photodetector 36, and the high-bandwidth balanced photoelectric detector The circuit output end of the detector 36 is connected with another input signal channel of the high-speed data acquisition card 38 ; the output end of the high-speed data acquisition card 38 is connected with the computer 39 . The trigger signal output end of the sweeping
扫频光源1发出的低相干光进入第一单模光纤耦合器2后,一部分光进入马赫曾德干涉仪型标定单元37,另一部分光通过第二单模光纤耦合器3分成两路,其中一路光通过第一偏振控制器4和第一光纤适配器5后进入保偏光纤耦合器6,另一路光进入第三单模光纤耦合器10;进入保偏光纤耦合器6的光分出一部分光进入第一偏振分光器15,通过第一偏振分光器15的光分成两路,一路通过第一光程延迟线16进入第二偏振分光器17,另一路直接进入第二偏振分光器17,从第二偏振分光器17出射的光进入保偏光纤环行器18的输入端,进入保偏光纤环行器18的光通过第一输出端进入第三偏振分光器19的输入端,从第三偏振分光器19出射的光分别进入第一光纤准直器20和第二光纤准直器21的输入端;从第一光纤准直器出射的光通过偏振分光棱镜25、扫描振镜26和第一透镜27后射入待测全眼28,从第二光纤准直器21出射的光通过直角棱镜22、第一反射镜23、第二透镜24、偏振分光棱镜25、扫描振镜26和第一透镜27后射入待测全眼28,由于两路光的光学机构设计不同,所以两路光分别聚焦于眼睛的全眼前节和视网膜区域。从待测全眼28反射回来的光,由于其偏振态可能受到眼睛生物组织的改变,所以可能同时通过两个准直镜反射回第三偏振分光器,因此为了防止假像的产生,以及提高探测效率,两路光学机构的光程差需要严格匹配。从第三偏振分光器19反射回来的光再次通过保偏光纤环行器18的第一输出端、保偏光纤环行器18的第二输出端以及第二光纤适配器33射入第四单模光纤耦合器35的其中一个输入端;从保偏光纤耦合器6输出的另一部分光通过偏振态切换器7、第一声光频移器8以及第一半导体光放大器9后第二次进入保偏光纤耦合器6,第二次进入保偏光纤耦合器6的光同样被分成两部分,分别沿着上述路径到达第四单模光纤耦合器35和第三次进入保偏光纤耦合器6,以此类推,第N-1次进入保偏光纤耦合器6的光也沿上述路径到达第四单模光纤耦合器35和第N次进入保偏光纤耦合器6。同样的进入第三单模光纤耦合器10的光也分出一部分光进入单模光纤环行器29的输入端,进入单模光纤环行器29的光通过第一输出端进入第三光纤准直器30后射入第三透镜31和第二反射镜32,反射回来的光在依次经过单模光纤环行器29的第一输出端、第二输出端和第三偏振控制器34后,进入第四单模光纤耦合器35。从第三单模光纤耦合器10输出的另一部分光通过第二声光频移器11、第二半导体光放大器12、第二偏振控制器13和第二光程延迟线14后第二次进入第三单模光纤耦合器10, 第二次进入第三单模光纤耦合器的10光同样被分成两部分,分别沿着上述路径到达第四单模光纤耦合器35和第三次进入第三单模光纤耦合器10,以此类推,第N-1进入第三单模光纤耦合器10的光也沿上述路径到达第四单模光纤耦合器35和第N次进入第三单模光纤耦合器10。上述所有进入第四单模光纤耦合器35的光发生干涉,干涉信号经高带宽平衡光电探测器36探测,两路单元所测得的干涉信号被高速数据采集卡38同步采集,采集到的信号传输到计算机39的内存中进行数据处理,高速数据采集卡38的输出端与计算机39相连接。高速数据采集卡38的触发信号由扫频光源1产生,图中实线部分为光纤,点划线部分为电路连接线,加粗的实线部分表示保偏光纤。
After the low-coherence light emitted by the frequency-sweeping
如图2所示为本实用新型所述偏振态切换器的结构图,该偏振态切换器包括第四光纤准直镜40、半波片41、第五光纤准直镜42,样品臂循环腔中的光每次循环都需经过第四光纤准直镜40出射,经过半波片41后再由第五光纤准直镜42耦合回光纤。偏振态的切换通过半波片对S通道光和P通道光的转换来实现。
As shown in Fig. 2, it is the structural diagram of the polarization state switcher described in the utility model, this polarization state switcher comprises the 4th fiber optic collimator mirror 40, half-
如图3所示为本实用新型所述系统全眼成像的原理图;由于在扫频光学相干层析成像系统的样品臂和参考臂中分别设置有不同载频量的增益补偿型光程失配循环腔,因此基于参考光和样品光在光程失配循环腔中的极高速步进,将产生多个零光程参考位置,如图3所示,分别为a、b、c、d,奇偶次光循环针对不同的光偏振态(P光和S光),不同偏振态的光聚焦于全眼的不同位置,并且不同环腔级次的光对应于全眼的不同深度区域。因此,该系统能够实现高灵敏度的全眼OCT实时成像。另外通过调整不同环腔级次光的偏振态、设置不同的环腔光程差、设置不同的初始零光程点以及设置不同通道的光聚焦方式,我们可以实现多种的轴向扫描模式,如图3所示,当N=0,N=2为S通道光,N=1,N=3为P通道光时,可以有4中轴向扫描模式,同样的选择当N=0,N=2为P通道光,N=1,N=3为S通道光时,也可以有4种轴向扫描模式。 As shown in Figure 3, it is the schematic diagram of the whole-eye imaging of the system described in the utility model; since the sample arm and the reference arm of the frequency-sweeping optical coherence tomography system are respectively provided with gain compensation type optical path loss with different carrier frequency Therefore, based on the extremely high-speed stepping of the reference light and the sample light in the optical path mismatching recirculation cavity, multiple zero-path reference positions will be generated, as shown in Figure 3, respectively a, b, c, d , the odd and even light cycles are for different light polarization states (P light and S light), the light of different polarization states is focused on different positions of the whole eye, and the light of different ring cavity orders corresponds to different depth regions of the whole eye. Therefore, the system enables real-time whole-eye OCT imaging with high sensitivity. In addition, by adjusting the polarization states of different ring cavity-level secondary lights, setting different ring cavity optical path differences, setting different initial zero optical path points, and setting light focusing methods for different channels, we can realize a variety of axial scanning modes, As shown in Figure 3, when N=0, N=2 is the S channel light, N=1, N=3 is the P channel light, there can be 4 axial scanning modes, the same selection when N=0, N =2 is P channel light, N=1, N=3 is S channel light, there are also 4 axial scanning modes. the
如图4所示为本实用新型所述系统的数据处理流程图,由于载频量大于环腔的光程失配量,因而在深度域上所采集到的带有全眼结构信息的多个环腔级次干涉信号能够在频率域上完全区分开。且为了避免人为载频对原始干涉信号所携带样品结构信息的影响,并保证整个全眼范围内系统的轴向分辨率接近于理论值。应首先对采集得到的标定干涉光谱信号采用基于该光谱相位 信息的波数空间直接插值的方法得到足够多的等波数间隔分布的OCT成像信号采样点;再对特定环腔级次去除载频量后的干涉光谱信号通过对这些等波数间隔分布的采样点直接进行傅里叶变换恢复出全眼对应于该环腔级次的深度结构信息;最终通过对多个环腔级次的OCT图像进行拼接,从而实现全眼的扫频OCT实时成像。 As shown in Fig. 4, it is the data processing flowchart of the system described in the present invention, because the amount of carrier frequency is greater than the optical path mismatch of the ring cavity, the multiple data with the whole-eye structure information collected in the depth domain The secondary interference signals of the ring cavity can be completely distinguished in the frequency domain. And in order to avoid the influence of artificial carrier frequency on the sample structure information carried by the original interference signal, and ensure that the axial resolution of the system in the entire eye range is close to the theoretical value. Firstly, the collected calibration interference spectrum signal should be directly interpolated in wavenumber space based on the spectral phase information to obtain enough sampling points of the OCT imaging signal distributed at equal wavenumber intervals; The interferometric spectral signal of the whole eye can be restored by directly performing Fourier transform on the sampling points distributed at equal wavenumber intervals to recover the depth structure information of the whole eye corresponding to the order of the ring cavity; finally, by stitching the OCT images of multiple ring cavity orders , so as to realize the real-time imaging of whole-eye frequency-swept OCT. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013202536870U CN203290875U (en) | 2013-05-09 | 2013-05-09 | Bifocal binocular optical coherence tomography (OCT) real-time imaging system on basis of ring cavity frequency sweep |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013202536870U CN203290875U (en) | 2013-05-09 | 2013-05-09 | Bifocal binocular optical coherence tomography (OCT) real-time imaging system on basis of ring cavity frequency sweep |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203290875U true CN203290875U (en) | 2013-11-20 |
Family
ID=49566924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013202536870U Expired - Fee Related CN203290875U (en) | 2013-05-09 | 2013-05-09 | Bifocal binocular optical coherence tomography (OCT) real-time imaging system on basis of ring cavity frequency sweep |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203290875U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104068825A (en) * | 2014-06-24 | 2014-10-01 | 东北大学 | Short coherence light interference measuring method and device |
CN104655029A (en) * | 2015-02-06 | 2015-05-27 | 浙江大学 | Method and system for measuring thickness of phase-enhanced film |
CN105147238A (en) * | 2015-06-19 | 2015-12-16 | 东北大学 | Eye multi-interface distance measuring method and eye multi-interface distance measuring device |
CN107931850A (en) * | 2017-12-12 | 2018-04-20 | 佛山科学技术学院 | A kind of laser mark printing device based on frequency sweep OCT |
CN110812704A (en) * | 2019-10-31 | 2020-02-21 | 中国医学科学院生物医学工程研究所 | Optical fiber adapter and OCT imaging system for in-vivo tissue photodynamic therapy |
-
2013
- 2013-05-09 CN CN2013202536870U patent/CN203290875U/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104068825A (en) * | 2014-06-24 | 2014-10-01 | 东北大学 | Short coherence light interference measuring method and device |
CN104068825B (en) * | 2014-06-24 | 2015-11-11 | 东北大学 | A kind of short coherent light interference measuring method and device |
CN104655029A (en) * | 2015-02-06 | 2015-05-27 | 浙江大学 | Method and system for measuring thickness of phase-enhanced film |
CN104655029B (en) * | 2015-02-06 | 2017-07-25 | 浙江大学 | A phase-enhanced film thickness measurement method and system |
CN105147238A (en) * | 2015-06-19 | 2015-12-16 | 东北大学 | Eye multi-interface distance measuring method and eye multi-interface distance measuring device |
CN107931850A (en) * | 2017-12-12 | 2018-04-20 | 佛山科学技术学院 | A kind of laser mark printing device based on frequency sweep OCT |
CN107931850B (en) * | 2017-12-12 | 2024-03-26 | 佛山科学技术学院 | Laser marking device based on sweep OCT |
CN110812704A (en) * | 2019-10-31 | 2020-02-21 | 中国医学科学院生物医学工程研究所 | Optical fiber adapter and OCT imaging system for in-vivo tissue photodynamic therapy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103263248B (en) | Bifocal binocular optical coherence tomography (OCT) real-time imaging system and method on basis of ring cavity frequency sweep | |
US8605287B2 (en) | Extended range imaging | |
CN103251382B (en) | A kind of full eye domain optical coherence tomography system and method thereof | |
US9200888B2 (en) | Multi-channel optical coherence tomography | |
US7929148B2 (en) | Optical coherence tomography implementation apparatus and method of use | |
CN103799975B (en) | Adaptive optics OCT retinal imager employing coherence gate wavefront sensor | |
CN102151121B (en) | Method and system for calibrating spectrum based on interference spectrum phase information | |
CN202027563U (en) | Spectrum calibration system based on interference spectrum phase information | |
CN203290875U (en) | Bifocal binocular optical coherence tomography (OCT) real-time imaging system on basis of ring cavity frequency sweep | |
CN105147241A (en) | Method and system based on double-space carrier frequency technology for increasing OCT (optical coherence tomography) imaging depth | |
CN104013383A (en) | Bifocal anterior segment and posterior segment synchronous imaging system and imaging method | |
CN204931633U (en) | Based on the frequency sweep OCT digit phase correction system of static region information | |
CN104296677A (en) | Common-path heterodyne interferometer based on phase shift of low-frequency-difference acousto-optic frequency shifter | |
CN108784644A (en) | A kind of opticianry parameter measurement system | |
US20160045106A1 (en) | Multi-Channel Optical Coherence Tomography | |
JP2010151684A (en) | Polarization sensitive optical image measuring instrument for extracting local double refraction information | |
CN102519375B (en) | Ultra-large range space measuring system and method based on light cycle and spectral domain carrier frequency | |
CN118078203B (en) | Optical coherence tomography device for synchronously measuring cornea and retina of eye | |
CN204909390U (en) | System based on OCT formation of image degree of depth is extended to double space carrier frequency technique | |
CN115553712A (en) | Eye axis measuring device based on polarization beam splitting OCT | |
US20240061226A1 (en) | Multiphase optical coherence microscopy imaging | |
CN215651026U (en) | Biological measuring instrument | |
CN215493160U (en) | Sweep-frequency all-fiber OCT optical imaging system | |
CN203914868U (en) | Bifocus is deutomerite synchronous at the moment | |
CN209915944U (en) | Portable AO-OCT imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131120 Termination date: 20150509 |
|
EXPY | Termination of patent right or utility model |