CN203163728U - Multi-spectral light field camera - Google Patents
Multi-spectral light field camera Download PDFInfo
- Publication number
- CN203163728U CN203163728U CN 201320169173 CN201320169173U CN203163728U CN 203163728 U CN203163728 U CN 203163728U CN 201320169173 CN201320169173 CN 201320169173 CN 201320169173 U CN201320169173 U CN 201320169173U CN 203163728 U CN203163728 U CN 203163728U
- Authority
- CN
- China
- Prior art keywords
- lens
- spectral
- detector
- imaging
- light field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 30
- 230000003287 optical effect Effects 0.000 claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 2
- 238000003491 array Methods 0.000 claims 3
- 230000003595 spectral effect Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 7
- 238000000701 chemical imaging Methods 0.000 abstract description 5
- 210000001747 pupil Anatomy 0.000 abstract description 4
- 230000011218 segmentation Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及光谱成像技术领域,特别是一种多光谱光场相机。The utility model relates to the technical field of spectral imaging, in particular to a multi-spectral light field camera.
背景技术Background technique
多光谱成像技术从20世纪70年代初开始发展,并随着对地观测、空间探测、军事、民事的需求而发展。自美国加州理工学院喷气推进实验室提出成像光谱仪的概念之后,当代多光谱遥感技术得到了迅速的发展。2000年,张淳民、相里斌和赵葆常等提出了时空混合调制偏振干涉成像光谱技术,提出了基于Savart偏光镜的稳态偏振干涉成像光谱仪和稳态大视场偏振干涉成像光谱仪相关技术,并进行了理论研究,以及实验装置到样机的研制工作,除了能获知目标的二维空间信息、一维光谱信息外,还能获得目标的偏振信息。Multispectral imaging technology has been developed since the early 1970s, and has developed with the needs of earth observation, space exploration, military and civil affairs. Since the concept of the imaging spectrometer was proposed by the Jet Propulsion Laboratory of the California Institute of Technology, contemporary multispectral remote sensing technology has developed rapidly. In 2000, Zhang Chunmin, Xiang Libin and Zhao Baochang proposed the space-time mixed modulation polarization interference imaging spectroscopy technology, proposed the steady state polarization interference imaging spectrometer based on Savart polarizer and the steady state large field of view polarization interference imaging spectrometer related technologies, and carried out Through theoretical research, as well as the development of experimental devices and prototypes, in addition to the two-dimensional spatial information and one-dimensional spectral information of the target, the polarization information of the target can also be obtained.
Gershun在1936年提出光场的概念,将其定义为光辐射在空间各个位置向各个方向的传播;20世纪六七十年代,Okoshi、Dudnikov等学者对IP技术进行了不断的改进,微透镜阵列在成像方面的作用也得以凸显;1995年,Berthon在光瞳面放置彩色滤光片,并在焦面上放置微透镜阵列,成功获得了彩色图像;1996年,Marc Levoy、Pat Hanrahan等人引入了四维光场理论;2005年,Ng,Levoy等人提出了光场照相机的一个典型代表—plenoptic照相机;之后,Ren Ng、Marc Levoy等人提出了新的想法,在相机光瞳面直接放置各种光学滤光片,使得一次曝光后,可以同时实现光谱、偏振状态和光强度的调制。Gershun proposed the concept of light field in 1936, and defined it as the propagation of light radiation in all directions in various positions in space; in the 1960s and 1970s, scholars such as Okoshi and Dudnikov continuously improved IP technology, microlens array The role in imaging has also been highlighted; in 1995, Berthon placed a color filter on the pupil plane, and placed a microlens array on the focal plane, and successfully obtained a color image; in 1996, Marc Levoy, Pat Hanrahan and others introduced In 2005, Ng, Levoy et al. proposed a typical representative of light field camera—plenoptic camera; after that, Ren Ng, Marc Levoy et al. put forward a new idea, placing each camera directly on the pupil plane of the camera An optical filter allows the modulation of spectrum, polarization state and light intensity to be achieved simultaneously after one exposure.
然而现有的多光谱相机多采用分时探测的方法,利用旋转滤光片、调节液晶调制器或声光调制器,在一段时间内顺次采集多个谱段的图像信息,这种方法的缺点是仪器在工作过程中需要外界介入调节内部的运动部件以改变其工作谱段,其延时性导致无法实时探测,也无法对运动目标进行动态视频探测,并且仪器的机械结构复杂,可靠性和稳定性较低。However, the existing multi-spectral cameras mostly adopt the method of time-sharing detection, using rotating filters, adjusting liquid crystal modulators or acousto-optic modulators, and sequentially collecting image information of multiple spectral segments within a period of time. The disadvantage is that the instrument needs external intervention to adjust the internal moving parts to change its working spectrum during the working process. Its delay makes it impossible to detect in real time, and it is impossible to perform dynamic video detection on moving targets, and the mechanical structure of the instrument is complex and reliable. and lower stability.
实用新型内容Utility model content
本实用新型的目的在于提供一种能够对探测目标进行实时多光谱探测以及多光谱视频探测的多光谱光场相机。The purpose of the utility model is to provide a multi-spectral light field camera capable of real-time multi-spectral detection and multi-spectral video detection of detection targets.
实现本实用新型目的的技术解决方案为:一种多光谱光场相机,包括沿光路方向顺次设置的滤光片阵列、成像主透镜、微透镜阵列、组合副透镜、探测器和信号处理系统,其中组合副透镜包括沿光路方向顺次设置的第一透镜和第二透镜,组合副透镜将微透镜阵列的后焦面二次转移到探测器的靶面上;所述滤光片阵列位于成像主透镜的孔径光阑处,微透镜阵列位于成像主透镜的像面上,微透镜阵列的后焦面与第一透镜的前焦面重合,探测器位于第二透镜的后焦面上,信号处理系统与探测器相连;所有光学元件相对于基底同轴等高,即相对于光学平台或仪器底座同轴等高。所述滤光片阵列1由M×N片共平面的不同波段的滤光片构成,所有滤光片的尺寸均相同,M、N均为正整数。The technical solution to realize the purpose of this utility model is: a multi-spectral light field camera, including a filter array, an imaging main lens, a microlens array, a combined secondary lens, a detector and a signal processing system arranged in sequence along the optical path direction , wherein the combination sub-lens includes a first lens and a second lens arranged in sequence along the optical path direction, the combination sub-lens transfers the rear focal plane of the microlens array to the target surface of the detector twice; the filter array is located at At the aperture stop of the imaging main lens, the microlens array is located on the image plane of the imaging main lens, the back focal plane of the microlens array coincides with the front focal plane of the first lens, and the detector is located on the back focal plane of the second lens, The signal processing system is connected to the detector; all optical elements are coaxially and equally high relative to the substrate, ie relative to the optical table or the instrument base. The filter array 1 is composed of M×N coplanar filters of different wavelength bands, all the filters have the same size, and M and N are both positive integers.
本实用新型与现有技术相比,其显著优点:Compared with the prior art, the utility model has significant advantages:
(1)可获取全视野范围内每一像素的多光谱信息;(1) The multi-spectral information of each pixel in the full field of view can be obtained;
(2)可同时获取多个波段的光谱图像,实现动态多光谱成像;(2) Spectral images of multiple bands can be acquired at the same time to realize dynamic multi-spectral imaging;
(3)内部无运动部件,系统结构稳固。(3) There are no moving parts inside, and the system structure is stable.
下面结合附图对本实用新型作进一步详细描述。Below in conjunction with accompanying drawing, the utility model is described in further detail.
附图说明Description of drawings
图1是本实用新型多光谱光场相机的光路结构示意图。Fig. 1 is a schematic diagram of the optical path structure of the multi-spectral light field camera of the present invention.
图2是本实用新型多光谱光场相机的光谱提取示意图。Fig. 2 is a schematic diagram of spectrum extraction of the multispectral light field camera of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例进一步说明本实用新型。Further illustrate the utility model below in conjunction with accompanying drawing and specific embodiment.
结合图1,本实用新型多光谱光场相机,包括沿光路方向顺次设置的滤光片阵列1、成像主透镜2、微透镜阵列3、组合副透镜4、探测器5和信号处理系统6,其中组合副透镜4包括沿光路方向顺次设置的第一透镜41和第二透镜42,组合副透镜4将微透镜阵列3的后焦面二次转移到探测器5的靶面上;所述滤光片阵列1位于成像主透镜2的孔径光阑处,微透镜阵列3位于成像主透镜2的像面上,微透镜阵列3的后焦面与第一透镜41的前焦面重合,探测器5位于第二透镜42的后焦面上,信号处理系统6与探测器5相连;所有光学元件相对于基底同轴等高,即相对于光学平台或仪器底座同轴等高。In conjunction with Fig. 1, the multi-spectral light field camera of the present invention includes a filter array 1, an imaging main lens 2, a microlens array 3, a combination
本实用新型多光谱光场相机,所述滤光片阵列1由M×N片共平面的不同波段的滤光片构成,所有滤光片的尺寸均相同,M、N均为正整数。In the multi-spectral light field camera of the utility model, the filter array 1 is composed of M×N coplanar filters of different bands, all the filters have the same size, and M and N are both positive integers.
本实用新型多光谱光场相机的成像方法,包括以下步骤:The imaging method of the utility model multispectral light field camera comprises the following steps:
步骤一:来自目标各点的入射光经滤光片阵列1,形成携带不同波段信息的光束并穿过成像主透镜2,在成像主透镜2像面处的微透镜阵列3上成像,形成携带不同波段信息的像点,各个像点在微透镜阵列3后焦面的空间上分开;Step 1: The incident light from each point of the target passes through the filter array 1 to form light beams carrying information in different bands and passes through the imaging main lens 2, and then forms an image on the microlens array 3 at the image surface of the imaging main lens 2, forming a light beam carrying Image points of different band information, each image point is separated in the space of the rear focal plane of the microlens array 3;
步骤二:微透镜阵列3后焦面的各点光线射入第一透镜41,穿过第一透镜41后以平行光的形式进入第二透镜42,并在第二透镜42后焦面处的探测器5靶面上得到携带有不同波段信息的目标图像,并将携带有不同波段信息的目标图像转化为电信号进入信号处理系统6;Step 2: the light rays at each point of the rear focal plane of the microlens array 3 enter the first lens 41, enter the second lens 42 in the form of parallel light after passing through the first lens 41, and enter the second lens 42 at the rear focal plane of the second lens 42. Obtain target images carrying information of different bands on the target surface of the
步骤三:信号处理系统6将收到的电信号转换为目标各点的不同波段光谱数据,对得到的不同波段光谱数据进行计算,提取得到不同波段光谱图像,从而获得多光谱视频,具体过程为:目标各点的入射光经滤光片阵列1后入射到成像主透镜2上,经过成像主透镜2在微透镜阵列3的一个微透镜上形成像点,再经过组合副透镜4成像在探测器5的靶面上,形成一个像素单元;成像主透镜2的光瞳面对微透镜阵列3所成的像经过组合副透镜4,成像在探测器5的靶面上,探测器5接收的图像是目标像与微透镜阵列3成像的叠加,把微透镜阵列3中的任意一个微透镜在探测器5的靶面上所成的像作为一个单元,则每个单元内部又可分为M×N个子单元,每个子单元对应一个波段,将每个单元中对应位置的子单元以原有相对位置关系组成该波段的光谱图像。Step 3: The signal processing system 6 converts the received electrical signal into different band spectral data of each point of the target, calculates the obtained different band spectral data, and extracts different band spectral images to obtain multi-spectral video. The specific process is : The incident light at each point of the target is incident on the imaging main lens 2 after passing through the filter array 1, and forms an image point on a microlens of the microlens array 3 through the imaging main lens 2, and then forms an image point through the combined
实施例1Example 1
以2×2滤光片阵列1为例,对本实用新型做进一步详细描述。Taking the 2×2 filter array 1 as an example, the present invention will be further described in detail.
结合图1,本实用新型多光谱光场相机,包括沿光路方向顺次设置的滤光片阵列1、成像主透镜2、微透镜阵列3、组合副透镜4、探测器5和信号处理系统6,其中组合副透镜4包括沿光路方向顺次设置的第一透镜41和第二透镜42,组合副透镜4将微透镜阵列3的后焦面二次转移到探测器5的靶面上;所述滤光片阵列1由2×2片共平面的不同波段的滤光片构成,所有滤光片的尺寸均相同,从左上开始,沿着顺时针方向依次是波段为400~450nm的滤光片LA、波段为450~500nm的滤光片LB、波段为500~550nm的滤光片LC、波段为550~600nm的滤光片LD的滤光片;所述滤光片阵列1位于成像主透镜2的孔径光阑处,微透镜阵列3位于成像主透镜2的像面上,微透镜阵列3的后焦面与第一透镜41的前焦面重合,探测器5位于第二透镜42的后焦面上,信号处理系统6与探测器5相连;所有光学元件相对于基底同轴等高,即相对于光学平台或仪器底座同轴等高。In conjunction with Fig. 1, the multi-spectral light field camera of the present invention includes a filter array 1, an imaging main lens 2, a microlens array 3, a combination
所述多光谱光场相机的工作过程为:来自目标各点的入射光经滤光片阵列1,形成携带不同波段信息的光束并穿过成像主透镜2,在成像主透镜2像面处的微透镜阵列3上成像,形成携带不同波段信息的像点,各个像点在微透镜阵列3后焦面的空间上分开;微透镜阵列3后焦面的各点光线射入第一透镜41,穿过第一透镜41后以平行光的形式进入第二透镜42,并在第二透镜42后焦面处的探测器5靶面上得到携带有不同波段信息的目标图像,并将携带有不同波段信息的目标图像转化为电信号进入信号处理系统6;信号处理系统6将收到的电信号转换为目标各点的不同波段光谱数据,对得到的不同波段光谱数据进行计算,提取得到不同波段光谱图像,从而获得多光谱视频。结合图2,本多光谱光场相机对探测器5接收的图像处理如下,以N=2,M=2为例:探测器5接收的图像是目标像与微透镜阵列成像的叠加,若把微透镜阵列3中的任意一个微透镜在探测器5的靶面上所成的像作为一个单元,如图2左图显示了第一单元、第二单元、第三单元、第四单元四个单元,每个单元内部又各自分为A、B、C、D四个子单元:A子单元对应400~450nm波段,B子单元对应450~500nm波段,C子单元对应500~550nm波段,D子单元对应550~600nm波段。因此,通过对子单元的顺序进行以下重新排列,可以得到四个完整的光谱图像:将每个单元中处于第一象限的子单元A以原有相对位置关系组成400~450nm波段的光谱图、第二象限的子单元B组成450~500nm波段的光谱图,第三象限的子单元C组成500~550nm波段的光谱图,第四象限的子单元D组成550~600nm波段的光谱图。The working process of the multi-spectral light field camera is as follows: the incident light from each point of the target passes through the filter array 1 to form light beams carrying information of different bands and passes through the main imaging lens 2. Imaging on the microlens array 3 forms image points carrying information of different wavelength bands, and each image point is separated in the space of the back focal plane of the microlens array 3; the light rays at each point of the back focal plane of the microlens array 3 enter the first lens 41, After passing through the first lens 41, it enters the second lens 42 in the form of parallel light, and on the target surface of the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320169173 CN203163728U (en) | 2013-04-07 | 2013-04-07 | Multi-spectral light field camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320169173 CN203163728U (en) | 2013-04-07 | 2013-04-07 | Multi-spectral light field camera |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203163728U true CN203163728U (en) | 2013-08-28 |
Family
ID=49024906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201320169173 Expired - Fee Related CN203163728U (en) | 2013-04-07 | 2013-04-07 | Multi-spectral light field camera |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203163728U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103234527A (en) * | 2013-04-07 | 2013-08-07 | 南京理工大学 | Multispectral Light Field Camera |
CN104154996A (en) * | 2014-07-10 | 2014-11-19 | 中国科学院西安光学精密机械研究所 | Portable snapshot type array multispectral imager |
CN105974573A (en) * | 2016-06-02 | 2016-09-28 | 苏州大学 | Light field spectrum microscopic imaging method and system based on microlens array |
US9900562B2 (en) | 2014-06-25 | 2018-02-20 | Ramot At Tel-Aviv University Ltd. | System and method for light-field imaging |
WO2018185740A1 (en) * | 2017-04-06 | 2018-10-11 | Yoav Berlatzky | Wavefront sensor and method of using it |
CN111866316A (en) * | 2019-04-26 | 2020-10-30 | 曹毓 | Multifunctional imaging equipment |
-
2013
- 2013-04-07 CN CN 201320169173 patent/CN203163728U/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103234527A (en) * | 2013-04-07 | 2013-08-07 | 南京理工大学 | Multispectral Light Field Camera |
CN103234527B (en) * | 2013-04-07 | 2015-06-24 | 南京理工大学 | Multispectral light-field camera |
US9900562B2 (en) | 2014-06-25 | 2018-02-20 | Ramot At Tel-Aviv University Ltd. | System and method for light-field imaging |
CN104154996A (en) * | 2014-07-10 | 2014-11-19 | 中国科学院西安光学精密机械研究所 | Portable snapshot type array multispectral imager |
CN105974573A (en) * | 2016-06-02 | 2016-09-28 | 苏州大学 | Light field spectrum microscopic imaging method and system based on microlens array |
CN105974573B (en) * | 2016-06-02 | 2018-06-12 | 苏州大学 | Light field spectrum microscopic imaging method and system based on microlens array |
WO2018185740A1 (en) * | 2017-04-06 | 2018-10-11 | Yoav Berlatzky | Wavefront sensor and method of using it |
US11293806B2 (en) | 2017-04-06 | 2022-04-05 | Pxe Computational Imagimg Ltd | Wavefront sensor and method of using it |
CN111866316A (en) * | 2019-04-26 | 2020-10-30 | 曹毓 | Multifunctional imaging equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103234527B (en) | Multispectral light-field camera | |
CN102944305B (en) | Spectral imaging method and spectrum imaging instrument of snapshot-type high throughput | |
CN103472592B (en) | A snapshot high-throughput polarization imaging method and polarization imager | |
CN203163728U (en) | Multi-spectral light field camera | |
CN103471715B (en) | A common optical path combined light field spectral imaging method and device | |
CN106840398B (en) | A kind of multispectral light-field imaging method | |
US10317205B2 (en) | Depth measurement using a phase grating | |
CN103323113B (en) | Multispectral imager based on light fieldd imaging technique | |
CN109443537B (en) | Spectral imager based on multiple image surfaces | |
CN110505379B (en) | A high-resolution light field imaging method | |
TW202201950A (en) | Polarimetric imaging camera | |
CN105258796A (en) | Co-optical-path miniature multispectral imaging system | |
CN106872037A (en) | Fast illuminated compact optical field imaging full-polarization spectrum detection device and method | |
CN108873321A (en) | Ultra-thin high resolution flat imaging detection system based on interference | |
CN106802184A (en) | The fast compact noise immunity type optical field imaging full-polarization spectrum detection device of illuminated and method | |
CN102680101A (en) | High-light-spectrum full-polarization detection device for interference light field imaging | |
CN112082649A (en) | Video hyperspectral imager based on array slit scanning | |
CN117939262A (en) | Underwater image acquisition system and method based on polarized light field | |
CN111854956A (en) | A multispectral imaging system and image reconstruction method based on microlens array | |
CN106949967A (en) | The fast compact channel modulation type optical field imaging full-polarization spectrum detection device of illuminated and method | |
CN111256820A (en) | Polarization multiplexing-based transient multispectral imaging device and method | |
CN110595624B (en) | A "cross"-shaped four-aperture field of view partially overlapping bionic thermal imaging system | |
CN107084788A (en) | A multi-spectral imaging system | |
CN107091691A (en) | A kind of multispectral 3-D imaging system | |
CN108955640A (en) | Spatial Reconfigurable Remote Sensing Camera Based on Synthetic Aperture Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130828 Termination date: 20140407 |