CN203155488U - Full-automatic fluorescent powder coating equipment - Google Patents
Full-automatic fluorescent powder coating equipment Download PDFInfo
- Publication number
- CN203155488U CN203155488U CN 201320070572 CN201320070572U CN203155488U CN 203155488 U CN203155488 U CN 203155488U CN 201320070572 CN201320070572 CN 201320070572 CN 201320070572 U CN201320070572 U CN 201320070572U CN 203155488 U CN203155488 U CN 203155488U
- Authority
- CN
- China
- Prior art keywords
- phosphor
- coating
- nozzle
- control
- control module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 194
- 239000011248 coating agent Substances 0.000 title claims abstract description 180
- 239000000843 powder Substances 0.000 title claims abstract description 59
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 259
- 230000033001 locomotion Effects 0.000 claims abstract description 39
- 238000003756 stirring Methods 0.000 claims abstract description 39
- 238000011068 loading method Methods 0.000 claims abstract description 23
- 239000003292 glue Substances 0.000 claims description 73
- 238000000034 method Methods 0.000 claims description 51
- 230000007547 defect Effects 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 27
- 238000005507 spraying Methods 0.000 claims description 21
- 238000000889 atomisation Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 abstract description 7
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000012937 correction Methods 0.000 description 15
- 239000007921 spray Substances 0.000 description 12
- 230000011218 segmentation Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000003708 edge detection Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000009499 grossing Methods 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- -1 foreign matter Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229940098458 powder spray Drugs 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Coating Apparatus (AREA)
Abstract
本实用新型涉及一种全自动荧光粉涂覆设备,该设备包括下位机系统和上位机系统,下位机系统包括荧光粉喷头、xyz轴运动控制平台、全自动上/下料装置和机器视觉装置;上位机系统包括涂覆控制模块、运动控制模块和机器视觉控制模块;其特征在于,下位机系统还包括喷头恒温控制装置、真空搅拌除泡装置和激光测厚装置;上位机系统还包括除泡控制模块;涂覆控制模块分别连接荧光粉喷头和喷头恒温控制装置,除泡控制模块连接真空搅拌除泡装置,机器视觉控制模块分别连接激光测厚装置和机器视觉装置,运动控制模块分别连接xyz轴运动控制平台和全自动上/下料装置。本实用新型大大提高荧光粉涂覆设备对大功率白光LED芯片或芯片模组的荧光粉涂覆精度,从而有效提高白光LED封装的热阻分散性、色品一致性、出光效率等封装质量。
The utility model relates to a fully automatic fluorescent powder coating equipment. The equipment includes a lower computer system and an upper computer system. The lower computer system includes a fluorescent powder nozzle, an xyz axis motion control platform, a fully automatic loading/unloading device and a machine vision device. The upper computer system includes a coating control module, a motion control module and a machine vision control module; it is characterized in that the lower computer system also includes a nozzle constant temperature control device, a vacuum stirring and defoaming device and a laser thickness measuring device; Bubble control module; the coating control module is respectively connected to the phosphor nozzle and the nozzle constant temperature control device, the defoaming control module is connected to the vacuum stirring and defoaming device, the machine vision control module is respectively connected to the laser thickness measuring device and the machine vision device, and the motion control module is connected to the Xyz axis motion control platform and fully automatic loading/unloading device. The utility model greatly improves the phosphor coating accuracy of the phosphor coating equipment on high-power white LED chips or chip modules, thereby effectively improving the thermal resistance dispersion, chromaticity consistency, light output efficiency and other packaging quality of white LED packaging.
Description
技术领域 technical field
本实用新型涉及荧光粉涂覆技术领域,具体涉及一种全自动荧光粉涂覆设备。 The utility model relates to the technical field of fluorescent powder coating, in particular to a fully automatic fluorescent powder coating equipment.
背景技术 Background technique
白光LED是一种新型半导体全固态照明光源。与传统照明技术相比,这种新型光源具有高效节能、长寿命、小体积、易维护、绿色环保、使用安全、耐候性好等领先优势,被公认为是未来照明光源之首选。 White LED is a new type of semiconductor all-solid-state lighting source. Compared with traditional lighting technology, this new type of light source has leading advantages such as high efficiency and energy saving, long life, small size, easy maintenance, green environmental protection, safe use, and good weather resistance. It is recognized as the first choice for future lighting sources.
白光LED封装是推动国际半导体照明和显示迅速发展的关键工艺,而荧光粉涂敷是目前国际上实现蓝光LED向白光LED转换的主流技术,核心工艺和装备一直被国外垄断,直接制约我国LED新兴战略产业的持续性发展。目前国产的传统的荧光粉涂覆设备普遍存在涂覆的厚度不均,产能低,适应性窄等缺点。因此,自主研制出一种产能高、涂覆精度高,同时又能够适应日新月异的大功率白光LED模组封装工艺发展的荧光粉涂覆设备,摆脱国外的技术垄断,已成为我国LED封装产业链发展的必由之路。本专利提出了一种新型的LED荧光粉涂覆的工艺与设备,基于现有荧光粉涂覆设备(例如:腾盛SD950在线式喷射点胶机,安达TF-550B涂覆机等),包括荧光粉喷头、xyz轴运动控制平台、全自动上/下料装置和机器视觉装置等现有结构的基础上,增加了真空搅拌除泡装置用于简化现有涂覆工艺,有效清除荧光粉胶混合后含有的微小气泡;增加了喷头恒温控制装置用于对荧光粉喷头进行恒温控制,达到降低和稳定所述荧光粉喷头内的荧光粉胶粘度的目的;增加了激光测厚装置使用激光三角测量法用于测量涂覆荧光粉层的厚度分布;并且提出了一套荧光粉涂覆学习算法用于提高LED荧光粉涂覆精度。这些实用新型能有效提高白光LED封装的热阻分散性、色品一致性、出光效率等封装质量,将相关控制器设计方法和检测算法理论应用于全自动荧光粉涂敷设备的自主研制,促进我国LED封测产业的技术创新。 White LED packaging is a key process to promote the rapid development of international semiconductor lighting and display, while phosphor coating is currently the mainstream technology for realizing the conversion from blue LED to white LED in the world. The core technology and equipment have been monopolized by foreign countries, which directly restricts the emerging LED industry in my country. Sustained development of strategic industries. At present, the traditional phosphor coating equipment made in China generally has the disadvantages of uneven coating thickness, low production capacity, and narrow adaptability. Therefore, independently developed a phosphor coating equipment with high production capacity, high coating precision, and can adapt to the ever-changing development of high-power white LED module packaging technology, getting rid of foreign technology monopoly, has become my country's LED packaging industry chain The only way to develop. This patent proposes a new type of LED phosphor coating process and equipment, based on existing phosphor coating equipment (for example: Tengsheng SD950 online jet dispensing machine, Anda TF-550B coating machine, etc.), including On the basis of existing structures such as phosphor nozzle, xyz axis motion control platform, automatic loading/unloading device and machine vision device, a vacuum stirring and defoaming device is added to simplify the existing coating process and effectively remove phosphor glue The tiny air bubbles contained after mixing; the constant temperature control device of the nozzle is added to control the constant temperature of the phosphor nozzle to achieve the purpose of reducing and stabilizing the viscosity of the phosphor powder in the phosphor nozzle; the laser thickness measuring device is added to use laser The triangulation method is used to measure the thickness distribution of the coated phosphor layer; and a set of phosphor coating learning algorithms is proposed to improve the accuracy of LED phosphor coating. These utility models can effectively improve the packaging quality of white LED packaging such as thermal resistance dispersion, chromaticity consistency, and light output efficiency, and apply related controller design methods and detection algorithm theories to the independent development of automatic phosphor coating equipment to promote Technological innovation of my country's LED packaging and testing industry.
实用新型内容 Utility model content
本实用新型的目的在于提供一种全自动荧光粉涂覆设备,在现有荧光粉涂覆设备(例如:腾盛SD950在线式喷射点胶机,安达TF-550B涂覆机等)的基础上,增加了真空搅拌除泡装置用于简化现有涂覆工艺,有效清除荧光粉胶混合后含有的微小气泡;增加了喷头恒温控制装置用于对荧光粉喷头进行恒温控制,达到降低和稳定所述荧光粉喷头内的荧光粉胶粘度的目的;增加了激光测厚装置使用激光三角测量法用于测量涂覆荧光粉层的厚度分布;并且提出了一套荧光粉涂覆学习算法用于提高LED荧光粉涂覆精度。能有效提高荧光粉涂覆量和涂覆厚度的一致性,提高白光LED的光源品质和成品率。本实用新型的目的通过如下技术方案实现。 The purpose of this utility model is to provide a fully automatic fluorescent powder coating equipment, on the basis of the existing fluorescent powder coating equipment (for example: Tengsheng SD950 online jet dispensing machine, Anda TF-550B coating machine, etc.) , a vacuum stirring and defoaming device is added to simplify the existing coating process, and the tiny air bubbles contained in the mixed phosphor powder and glue are effectively removed; a constant temperature control device for the nozzle is added to control the temperature of the phosphor nozzle to achieve reduction and stability. The purpose of the phosphor adhesive viscosity in the phosphor nozzle is described; the laser thickness measuring device is added to use laser triangulation to measure the thickness distribution of the coated phosphor layer; and a set of phosphor coating learning algorithms is proposed for Improve the coating accuracy of LED phosphor powder. It can effectively improve the consistency of phosphor powder coating amount and coating thickness, and improve the light source quality and yield of white light LEDs. The purpose of this utility model is achieved through the following technical solutions.
一种全自动荧光粉涂覆设备,用于完成LED芯片上的荧光粉涂覆工序,该设备包括下位机系统和上位机系统,下位机系统包括荧光粉喷头、xyz轴运动控制平台、全自动上/下料装置和机器视觉装置;上位机系统包括涂覆控制模块、运动控制模块和机器视觉控制模块;其特征在于,下位机系统还包括喷头恒温控制装置、真空搅拌除泡装置和激光测厚装置;上位机系统还包括除泡控制模块;涂覆控制模块分别连接荧光粉喷头和喷头恒温控制装置,除泡控制模块连接真空搅拌除泡装置,机器视觉控制模块分别连接激光测厚装置和机器视觉装置,运动控制模块分别连接xyz轴运动控制平台和全自动上/下料装置。 A fully automatic phosphor powder coating equipment, used to complete the phosphor powder coating process on LED chips, the equipment includes a lower computer system and an upper computer system, the lower computer system includes a fluorescent powder nozzle, an xyz axis motion control platform, a fully automatic Loading/unloading device and machine vision device; the upper computer system includes a coating control module, a motion control module and a machine vision control module; it is characterized in that the lower computer system also includes a nozzle constant temperature control device, a vacuum stirring and defoaming device and a laser measuring device. Thickness device; the upper computer system also includes a defoaming control module; the coating control module is connected to the phosphor nozzle and the constant temperature control device of the nozzle, the defoaming control module is connected to the vacuum stirring and defoaming device, and the machine vision control module is connected to the laser thickness measuring device and The machine vision device and the motion control module are respectively connected to the xyz axis motion control platform and the automatic loading/unloading device. the
上述的全自动荧光粉涂覆设备中,所述荧光粉喷头可使用点胶喷头、雾化喷头或压电喷头荧光粉喷头,用于喷涂荧光粉胶; In the above-mentioned automatic phosphor coating equipment, the phosphor nozzle can use a dispensing nozzle, an atomizing nozzle or a piezoelectric nozzle phosphor nozzle for spraying phosphor glue;
所述喷头恒温控制装置包括发热丝和热敏电阻,发热丝和热敏电阻安装在所述荧光粉喷头的内部或外部,用于对所述荧光粉喷头进行恒温控制; The nozzle constant temperature control device includes a heating wire and a thermistor, and the heating wire and the thermistor are installed inside or outside the phosphor nozzle for constant temperature control of the phosphor nozzle;
所述真空搅拌除泡装置包括:荧光粉胶容器,用于存储待涂覆的荧光粉胶;电动搅拌棒,用于搅拌荧光粉胶;空气阀门,用于抽出荧光粉胶容器内的空气,通过空气阀门把装有待涂覆荧光粉胶的荧光粉胶容器内部的空气抽出,形成真空环境,在真空环境下电动搅拌棒不断的搅拌,把装置内荧光粉胶的气泡从装置的底部搅拌到荧光粉胶表面最终消除; The vacuum stirring and defoaming device includes: a phosphor glue container for storing the phosphor glue to be coated; an electric stirring rod for stirring the phosphor glue; an air valve for extracting the air in the phosphor glue container, The air in the phosphor glue container to be coated with phosphor glue is drawn out through the air valve to form a vacuum environment. In the vacuum environment, the electric stirring rod is continuously stirred to stir the bubbles of the phosphor glue in the device from the bottom of the device to Phosphor glue surface is finally eliminated;
所述激光测厚装置包括:激光发射器,用于发射测量激光;传感器感光面,用于接收被测表面反射回来的测量激光;透镜,用于汇聚激光发射器所发射出来的测量激光;所述激光测厚装置,使用激光三角测量法,用于测量涂覆后的荧光粉层的厚度分布; The laser thickness measuring device includes: a laser emitter for emitting measuring laser light; a photosensitive surface of the sensor for receiving the measuring laser light reflected back from the measured surface; a lens for converging the measuring laser light emitted by the laser emitter; The laser thickness measuring device is used to measure the thickness distribution of the coated phosphor layer by using laser triangulation;
所述机器视觉装置包括图像传感器,图像传感器采用CMOS传感器或者CCD传感器;视觉处理及控制模块基于FPGA、CPLD、DSP、DSP+FPFA或者DSP+CPLD;接口模块采用基于总线的方式,包括IEEE 1394a、USB或以太网,用于LED支架的机器视觉定位和涂覆后荧光粉层的缺陷检测; The machine vision device includes an image sensor, and the image sensor adopts a CMOS sensor or a CCD sensor; the visual processing and control module is based on FPGA, CPLD, DSP, DSP+FPFA or DSP+CPLD; the interface module adopts a bus-based mode, including IEEE 1394a, USB or Ethernet for machine vision positioning of LED brackets and defect detection of phosphor layers after coating;
喷头xyz轴运动控制平台采用步进电机、伺服电机或直线电机,用于控制所述荧光粉喷头在xyz轴方向上高速高精度移动; The xyz axis motion control platform of the nozzle adopts stepper motor, servo motor or linear motor, which is used to control the high-speed and high-precision movement of the phosphor nozzle in the direction of xyz axis;
所述全自动上下料装置包括上料盒、下料盒,用于分别存放待涂覆的LED支架和已完成涂覆的LED支架;机械传送装置,用于实现料盒到涂覆工作区域的支架运送工作,包括涂覆前在上料盒中把LED支架送入待涂覆区域,和涂覆后把已经涂覆好的LED支架运送到下料盒中,机械传送装置采用机械手臂或者传送带实现。 The fully automatic loading and unloading device includes a loading box and an unloading box, which are used to respectively store the LED brackets to be coated and the LED brackets that have been coated; Bracket delivery work, including sending the LED bracket into the area to be coated in the upper box before coating, and transporting the coated LED bracket to the lower box after coating. The mechanical transfer device adopts a mechanical arm or a conveyor belt accomplish.
上述的全自动荧光粉涂覆设备中,上位机系统包括: In the above-mentioned automatic phosphor coating equipment, the upper computer system includes:
涂覆控制模块,实现荧光粉胶喷涂量精确控制、荧光粉雾化控制、荧光粉喷头内部荧光粉胶的流速控制,是实现荧光粉胶喷涂量精确控制和荧光粉涂层均匀度控制的关键控制模块,用于控制荧光粉喷头涂覆过程中荧光粉喷涂量,雾化均匀度,喷涂范围和控制喷头恒温控制装置对荧光粉喷头进行加热恒温控制,以降低和稳定喷头内部荧光粉胶的粘度; The coating control module realizes the precise control of phosphor glue spraying amount, phosphor atomization control, and flow rate control of phosphor glue inside the phosphor nozzle, which is the key to realize the precise control of phosphor glue spraying amount and phosphor coating uniformity control The control module is used to control the amount of phosphor powder sprayed during the coating process of the phosphor nozzle, the uniformity of atomization, the spraying range and the constant temperature control device of the nozzle to control the heating and constant temperature of the phosphor nozzle to reduce and stabilize the phosphor glue inside the nozzle. viscosity;
所诉运动控制模块用于控制xyz轴运动控制装置对荧光粉喷头进行xyz轴向的移动,用于对xyz轴运动控制装置和全自动上下料装置的协调控制; The motion control module is used to control the xyz axis motion control device to move the fluorescent powder nozzle in the xyz axis, and is used for coordinated control of the xyz axis motion control device and the automatic loading and unloading device;
控制真空搅拌除泡装置进行除泡工作,用于控制真空搅拌除泡装置对刚混合好的荧光粉胶进行除泡工序; Control the vacuum stirring and defoaming device to perform defoaming work, which is used to control the vacuum stirring and defoaming device to perform the defoaming process on the newly mixed phosphor glue;
机器视觉控制模块控制激光测厚装置和机器视觉装置进行对荧光粉层的厚度测量与缺陷检测工作,用于控制激光测厚装置对已涂覆好的荧光粉层进行激光测厚工作,和控制机器视觉及缺陷检测装置对已喷涂荧光粉层进行缺陷检测工作。 The machine vision control module controls the laser thickness measuring device and the machine vision device to perform thickness measurement and defect detection of the phosphor layer, and is used to control the laser thickness measurement device to perform laser thickness measurement on the coated phosphor layer, and control The machine vision and defect detection device performs defect detection on the sprayed phosphor layer.
使用上述述全自动荧光粉涂覆设备的涂覆工艺,其包括以下步骤: Use the coating process of above-mentioned automatic fluorescent powder coating equipment, it comprises the following steps:
4.1使用真空搅拌除泡装置消除装置内刚混合好的荧光粉胶内部的气泡,与此同时,通过喷头恒温控制装置把荧光粉喷头加热到工作温度; 4.1 Use a vacuum stirring and defoaming device to eliminate the bubbles inside the phosphor glue that has just been mixed in the device, and at the same time, heat the phosphor nozzle to the working temperature through the nozzle constant temperature control device;
4.2待步骤4.1完成后,通过全自动上下料装置把待涂覆LED支架运送到涂覆工作区域上面; 4.2 After step 4.1 is completed, the LED bracket to be coated is transported to the coating work area through a fully automatic loading and unloading device;
4.3待步骤4.2完成后,通过机器视觉模块控制机器视觉装置定位待涂覆的LED支架,得到待涂覆LED支架的在工作台上的位置坐标; 4.3 After step 4.2 is completed, the machine vision module controls the machine vision device to locate the LED bracket to be coated, and obtain the position coordinates of the LED bracket to be coated on the workbench;
4.4待步骤4.3完成后,通过xyz轴运动控制装置把荧光粉喷头移动到待涂覆的LED支架正上方; 4.4 After step 4.3 is completed, move the phosphor spray head directly above the LED bracket to be coated through the xyz axis motion control device;
4.5待步骤4.4完成后,如果是当前待涂敷LED支架类型的首次涂覆,则使用当前待涂敷LED支架类型相对应的初始涂覆控制参数进行当前待涂敷LED支架的首次荧光粉涂覆;如果不是当前待涂敷LED支架类型的首次涂覆,则使用步骤4.7所测得的上一次涂覆完成后LED支架荧光粉涂覆厚度分布参数与当前待涂敷LED支架类型相对应的初始控制参数,使用荧光粉涂覆迭代学习控制算法计算得出本次待涂敷LED支架的涂覆控制参数; 4.5 After step 4.4 is completed, if it is the first coating of the current type of LED bracket to be coated, use the initial coating control parameters corresponding to the current type of LED bracket to be coated to carry out the first phosphor coating of the current LED bracket to be coated If it is not the first coating of the current LED bracket type to be coated, use the LED bracket phosphor coating thickness distribution parameters measured in step 4.7 after the last coating is completed and correspond to the current LED bracket type to be coated. Initial control parameters, using phosphor coating iterative learning control algorithm to calculate the coating control parameters of the LED bracket to be coated this time;
4.6 使用步骤4.5所计算得到的当前涂覆控制参数,控制荧光粉喷头完成当前LED支架的荧光粉涂覆工作; 4.6 Use the current coating control parameters calculated in step 4.5 to control the phosphor nozzle to complete the phosphor coating of the current LED bracket;
4.7待步骤4.6完成后,通过基于激光三角测量法得到荧光粉涂层厚度分布的方法检测出当前所涂覆的LED支架的荧光粉层的厚度分布,用于步骤4.5 的荧光粉涂覆学习控制算法的迭代计算中,计算下一次的涂覆精度; 4.7 After step 4.6 is completed, the thickness distribution of the phosphor layer of the currently coated LED bracket is detected by the method of obtaining the thickness distribution of the phosphor coating based on the laser triangulation method, which is used for the phosphor coating learning control of step 4.5 In the iterative calculation of the algorithm, the next coating accuracy is calculated;
4.8待步骤4.7完成后,通过机器视觉及缺陷检测装置检测出所荧光粉层的涂覆缺陷信息; 4.8 After step 4.7 is completed, detect the coating defect information of the phosphor layer through machine vision and defect detection devices;
4.9判断是否完成涂覆,如果未完成,则转到步骤4.2;如果完成,则结束。 4.9 Judging whether the coating is completed, if not, go to step 4.2; if finished, end.
上述涂覆工艺中,所述迭代学习控制算法包括以下步骤: In the above-mentioned coating process, the iterative learning control algorithm includes the following steps:
5.1 根据待涂敷LED支架类型与设定涂覆厚度,选取当前待涂敷LED支架类型的初始控制参数,包括:荧光粉喷涂时间初始控制参数、荧光粉胶雾化初始控制参数、荧光粉胶流速初始控制参数; 5.1 According to the type of LED bracket to be coated and the set coating thickness, select the initial control parameters of the current type of LED bracket to be coated, including: initial control parameters of phosphor spray time, initial control parameters of phosphor glue atomization, phosphor glue initial flow rate control parameters;
5.2 根据步骤4.7中测出的上一次荧光粉层的厚度分布与步骤5.1中的设定涂覆厚度,计算出上一次荧光粉涂覆的涂覆误差; 5.2 According to the thickness distribution of the last phosphor layer measured in step 4.7 and the set coating thickness in step 5.1, calculate the coating error of the last phosphor coating;
5.3 根据步骤5.2所得到的涂覆误差,使用迭代学习控制算法,计算出当前涂覆控制器的各个控制参数的修正量,包括:荧光粉喷涂时间控制参数修正量、荧光粉胶雾化控制参数修正量、荧光粉胶流速参数修正量; 5.3 According to the coating error obtained in step 5.2, use the iterative learning control algorithm to calculate the correction amount of each control parameter of the current coating controller, including: phosphor powder spraying time control parameter correction amount, phosphor powder glue atomization control parameter Correction amount, phosphor glue flow rate parameter correction amount;
5.4 由步骤5.1与步骤5.3所得到的当前理论控制参数与控制参数修正量,计算得出当前涂覆控制器的真实控制量; 5.4 From the current theoretical control parameters and control parameter corrections obtained in steps 5.1 and 5.3, calculate the actual control value of the current coating controller;
上述涂覆工艺中,所述基于激光三角测量法得到荧光粉涂层厚度分布的方法包括以下步骤: In the above-mentioned coating process, the method for obtaining phosphor coating thickness distribution based on laser triangulation method comprises the following steps:
6.1开启激光测厚装置器,激光发射器照射被测表面,被测表面分别为荧光粉涂覆前的大功率LED芯片表面和荧光粉涂覆后的荧光粉涂覆面; 6.1 Turn on the laser thickness measuring device, and the laser emitter irradiates the surface to be tested, which are the surface of the high-power LED chip before phosphor powder coating and the phosphor powder coated surface after phosphor powder coating;
6.2对步骤6.1所采集的两幅激光光斑图像用平滑滤波器进行滤波; 6.2 Filter the two laser spot images collected in step 6.1 with a smoothing filter;
6.3对步骤6.2滤波后得到的光斑图像进行二值分割;基于图像的灰度直方图,通过迭代计算得到分割阈值; 6.3 Perform binary segmentation on the spot image obtained after filtering in step 6.2; based on the gray histogram of the image, obtain the segmentation threshold through iterative calculation;
6.4求取激光光斑各处的质心位置; 6.4 Calculate the position of the center of mass of the laser spot;
6.5采用激光三角法计算荧光粉涂层厚度分布。 6.5 Calculate the phosphor coating thickness distribution by laser triangulation method. the
与现有技术相比,本实用新型具有如下优点和技术效果:本实用新型的所提出的方法,可以应用于大功率白光LED或LED芯片模组的荧光粉涂覆封装过程中,而且还可以应用在wafer级芯片涂覆中,可以精确控制各种粘度的涂覆用胶的涂覆量以及涂层厚度,并保证涂层厚度的一致性。本实用新型在传统全自动荧光粉涂覆设备的基础上,集成了喷头恒温控制装置、激光测厚装置和荧光粉胶真空搅拌除泡模块在涂覆设备中,从而在简化荧光粉涂覆工艺的同时提高了荧光粉涂覆精度。 Compared with the prior art, the utility model has the following advantages and technical effects: the proposed method of the utility model can be applied to the phosphor coating and packaging process of high-power white LED or LED chip modules, and can also Applied in wafer-level chip coating, it can precisely control the coating amount and coating thickness of coating glue with various viscosities, and ensure the consistency of coating thickness. On the basis of traditional full-automatic fluorescent powder coating equipment, the utility model integrates a spray head constant temperature control device, a laser thickness measuring device and a fluorescent powder glue vacuum stirring and defoaming module in the coating equipment, thereby simplifying the fluorescent powder coating process At the same time, the phosphor coating accuracy is improved.
附图说明 Description of drawings
图1是实施方式中荧光粉涂覆设备示意图。 Figure 1 is a schematic diagram of phosphor coating equipment in the embodiment.
图2是实施方式中荧光粉涂覆设备的系统结构框图。 Figure 2 is a block diagram of the system structure of the phosphor coating equipment in the embodiment.
图3是实施方式中荧光粉涂覆设备工艺流程图。 Fig. 3 is a process flow diagram of phosphor coating equipment in an embodiment.
图4是实施方式中荧光粉喷头恒温控制装置示意图。 Fig. 4 is a schematic diagram of a phosphor spray head constant temperature control device in an embodiment.
图5是实施方式中激光测量厚度分布检测的光路原理图。 Fig. 5 is a schematic diagram of an optical path for laser measurement thickness distribution detection in an embodiment.
图6是实施方式中真空搅拌除泡装置示意图。 Fig. 6 is a schematic diagram of a vacuum stirring and defoaming device in an embodiment.
具体实施方式 Detailed ways
以上内容已经对本实用新型作了充分的说明,为了对本实用新型的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本实用新型的具体实施方式。 The above content has fully explained the utility model. In order to have a clearer understanding of the technical characteristics, purpose and effect of the utility model, the specific implementation of the utility model is now described in detail with reference to the accompanying drawings.
本实用新型所述的荧光粉涂覆下位机系统如图1和图2所示,所述的下位机系统包括:荧光粉喷头12,喷头恒温控制装置13,喷头xyz轴运动控制装置14,全自动上下料装置15,真空搅拌除泡装置16,激光测厚装置17,机器视觉及缺陷检测装置18。所述的荧光粉涂覆设备控制模块即:上位机系统11包括:涂覆控制模块19,运动控制模块20,真空搅拌除泡控制模块21,机器视觉控制模块22。
The fluorescent powder coating lower computer system described in the utility model is shown in Fig. 1 and Fig. 2, and the lower computer system includes: fluorescent
其中,荧光粉喷头12可使用点胶喷头、雾化喷头或压电喷头荧光粉喷头,用于喷涂荧光粉胶;
Wherein, the
喷头恒温控制装置13,包括发热丝和热敏电阻,发热丝和热敏电阻安装在所述荧光粉喷头的内部或外部,用于对所述荧光粉喷头进行恒温控制;
The nozzle constant
喷头xyz轴运动控制平台14,可以使用步进电机、伺服电机或直线电机,用于控制所述荧光粉喷头在xyz轴方向上高速高精度移动;
The nozzle xyz axis
全自动上下料装置15,包括上料盒、下料盒,用于分别存放待涂覆的LED支架和已完成涂覆的LED支架;机械传送装置,用于实现料盒到涂覆工作区域的支架运送工作,可以使用机械手臂或者传送带实现;用于涂覆前在上料盒中把LED支架送入待涂覆区域,和涂覆后把已经涂覆好的LED支架运送到下料盒中。
Fully automatic loading and unloading
真空搅拌除泡装置16,包括荧光粉胶容器,用于存储待涂覆的荧光粉胶;电动搅拌棒,用于搅拌荧光粉胶;空气阀门,用于抽出荧光粉胶容器内的空气;通过空气阀门把装有待涂覆荧光粉胶的荧光粉胶容器内部的空气抽出,形成真空环境,在真空环境下电动搅拌棒不断的搅拌,把装置内荧光粉胶的气泡从装置的底部搅拌到荧光粉胶表面最终消除;
Vacuum stirring and
激光测厚装置17,包括激光发射器,用于发射测量激光;传感器感光面,用于接收被测表面反射回来的测量激光;透镜,用于汇聚激光发射器所发射出来的测量激光;所述激光测厚装置,使用激光三角测量法,用于测量涂覆后的荧光粉层的厚度分布;
The laser
机器视觉装置18,包括图像传感器,采用CMOS传感器或者CCD传感器,视觉处理及控制模块基于FPGA、CPLD、DSP、DSP+FPFA或者DSP+CPLD,接口模块采用基于总线的方式,包括IEEE 1394a、USB或以太网,用于LED支架的机器视觉定位和涂覆后荧光粉层的缺陷检测;
The
本实用新型所述的荧光粉涂覆上位机系统11如图2所示,包括:
The phosphor coating
涂覆控制模块19,实现荧光粉胶喷涂量精确控制、荧光粉雾化控制、荧光粉喷头内部荧光粉胶的流速控制,是实现荧光粉胶喷涂量精确控制和荧光粉涂层均匀度控制的关键控制模块。用于控制荧光粉喷头涂覆过程中荧光粉喷涂量,雾化均匀度,喷涂范围的精确控制,和控制喷头恒温控制装置对荧光粉喷头进行加温,以降低喷头内部荧光粉浆的粘度;
The
运动控制模块20,用于控制xyz轴运动控制装置对荧光粉喷头进行xyz轴向的高速高精度移动。用于对xyz轴运动控制装置和全自动上下料装置的高精度协调控制;
The
真空搅拌除泡控制模块21,控制真空搅拌除泡装置进行除泡工作。用于控制真空搅拌除泡装置对刚混合好的荧光粉胶进行除泡工序;
The vacuum stirring and
机器视觉控制模块22,控制激光测厚装置和机器视觉装置进行对荧光粉层的厚度测量与缺陷检测工作。用于控制激光测厚装置对已涂覆好的荧光粉层进行激光测厚工作,和控制机器视觉及缺陷检测装置对已喷涂荧光粉层进行缺陷检测工作。
The machine
如图3所示,全自动荧光粉涂覆工艺,包括以下步骤: As shown in Figure 3, the fully automatic phosphor coating process includes the following steps:
步骤31,使用真空搅拌除泡装置消除装置内刚混合好的荧光粉胶内部的气泡,与此同时,步骤32,通过喷头恒温控制装置把荧光粉喷头加热到工作温度;
步骤33 ,通过全自动上下料装置把待涂覆LED支架运送到涂覆工作区域上面;
步骤34,待步骤33完成后,通过机器视觉模块控制机器视觉装置定位待涂覆的LED支架,得到待涂覆LED支架的在工作台上的位置坐标;
Step 34, after
步骤35,通过xyz轴运动控制装置把荧光粉喷头移动到待涂覆的LED支架正上方;
步骤40,待步骤35完成后,如果是当前待涂敷LED支架类型的首次涂覆,则使用当前待涂敷LED支架类型相对应的初始涂覆控制参数进行当前待涂敷LED支架的首次荧光粉涂覆;如果不是当前待涂敷LED支架类型的首次涂覆,则使用步骤38所测得的上一次涂覆完成后LED支架荧光粉涂覆厚度分布参数与当前待涂敷LED支架类型相对应的初始控制参数,使用荧光粉涂覆迭代学习控制算法计算得出本次待涂敷LED支架的涂覆控制参数。
步骤36,使用步骤40所计算得到的当前涂覆控制参数,控制荧光粉喷头完成当前LED支架的荧光粉涂覆工作;
步骤37,待步骤36完成后,通过基于激光三角测量法得到荧光粉涂层厚度分布的方法检测出当前所涂覆的LED支架的荧光粉层的厚度分布,用于步骤36 的荧光粉涂覆学习控制算法的迭代计算中,计算下一次的涂覆精度。
步骤38,待步骤37完成后,通过机器视觉及缺陷检测装置检测出所荧光粉层的涂覆缺陷信息;
步骤39,判断是否完成涂覆,如果未完成,则转到步骤40;如果完成,则转到步骤41。
步骤41,通过下料机构把涂覆完成的LED支架移动下料架中。
上述迭代学习控制算法包括以下步骤: The above iterative learning control algorithm includes the following steps:
(1)根据待涂敷LED支架类型与设定涂覆厚度,选取当前待涂敷LED支架类型的初始控制参数,包括:荧光粉喷涂时间初始控制参数、荧光粉胶雾化初始控制参数、荧光粉胶流速初始控制参数; (1) According to the type of LED bracket to be coated and the set coating thickness, select the initial control parameters of the current type of LED bracket to be coated, including: initial control parameters of phosphor powder spraying time, initial control parameters of phosphor powder glue atomization, fluorescence Initial control parameters of powder and rubber flow rate;
(2)根据基于激光三角测量法得到的上一次涂覆的荧光粉涂层厚度分布与步骤(1)中的设定涂覆厚度,计算出上一次荧光粉涂覆的涂覆误差; (2) Calculate the coating error of the last phosphor coating according to the phosphor coating thickness distribution of the last coating obtained based on the laser triangulation method and the set coating thickness in step (1);
(3)根据步骤(2)所得到的涂覆误差,使用迭代学习控制算法,计算出当前涂覆控制器的各个控制参数的修正量,包括:荧光粉喷涂时间控制参数修正量、荧光粉胶雾化控制参数修正量、荧光粉胶流速参数修正量; (3) According to the coating error obtained in step (2), use the iterative learning control algorithm to calculate the correction amount of each control parameter of the current coating controller, including: phosphor powder spraying time control parameter correction amount, phosphor powder glue Atomization control parameter correction amount, phosphor glue flow rate parameter correction amount;
(4)由步骤(1)与步骤(3)所得到的当前理论控制参数与控制参数修正量,计算得出当前涂覆控制器的真实控制量; (4) From the current theoretical control parameters and control parameter corrections obtained in steps (1) and (3), calculate the actual control value of the current coating controller;
上述基于激光三角测量法得到荧光粉涂层厚度分布的方法包括以下步骤: The method for obtaining the phosphor coating thickness distribution based on the laser triangulation method includes the following steps:
(1)开启激光测距传感器,照射被测表面,被测表面分别为荧光粉涂覆前的大功率LED芯片表面和荧光粉涂覆后的荧光粉涂覆面; (1) Turn on the laser ranging sensor and irradiate the surface to be measured, which are the surface of the high-power LED chip before phosphor powder coating and the phosphor powder coated surface after phosphor powder coating;
(2)对步骤(1)所采集的两幅激光光斑图像用平滑滤波器进行滤波; (2) Filter the two laser spot images collected in step (1) with a smoothing filter;
(3)对步骤(2)滤波后得到的光斑图像进行二值分割;基于图像的灰度直方图,通过迭代计算得到分割阈值; (3) Binary segmentation is performed on the spot image obtained after filtering in step (2); based on the gray histogram of the image, the segmentation threshold is obtained through iterative calculation;
(4)求取激光光斑各处的质心位置; (4) Calculate the position of the center of mass of the laser spot;
(5)采用激光三角法计算荧光粉涂层厚度分布。 (5) The laser triangulation method is used to calculate the thickness distribution of the phosphor coating.
上述述的激光测距传感器用于发射测量荧光粉涂覆厚度分布的激光光线。 The above-mentioned laser ranging sensor is used to emit laser light for measuring the thickness distribution of phosphor powder coating.
作为实例,一种全自动荧光粉涂覆工艺,如图3所示,包括以下步骤: As an example, a fully automatic phosphor coating process, as shown in Figure 3, includes the following steps:
工序31的实施方法如下:先将环氧树脂胶与荧光粉混合,混合后的胶体比重为1.60-1.80g/cm3,粘度为4000-5500 Pa·s;如图6所示,把混合后的荧光粉胶通入荧光粉胶入口51中,打开阀门V-3,使荧光粉胶进入到真空搅拌除泡装置16中,打开阀门V-1使用气体通道53将荧光粉胶容器54中空气抽出形成真空,打开搅拌电机56使得搅拌棒55转动,进行真空除泡处理,带除泡工序完成后,然后打开荧光粉胶的阀门V-2,除泡后的荧光粉胶从出口通道52中流入荧光粉喷头12里。
The implementation method of
请参阅图3,工序32的实施方法如下:如图4所示,所述通过恒温控制装置13把荧光粉喷头12加热到工作温度,在混合除泡后的荧光粉胶流入荧光粉喷头12里面的荧光粉胶通道中后,由荧光粉涂覆设备控制模块中的涂覆控制模块19使用PID控制(比例积分微分控制)方法控制喷头恒温控制装置13加热荧光粉喷头12,等待荧光粉喷头稳定在设定工作温度T附近时即可。工作温度一般可根据不同的粘度荧光粉胶来设定,这里荧光粉胶的粘度与工作温度大致成反比例关系。
Please refer to FIG. 3 , the implementation method of
请参阅图3,工序33的实施方法如下:全自动上、下料装置15将上料槽9中的待涂覆的LED芯片支架组移动并固定在运动控制装置14的工作台上;在上位机系统11中设定好零点坐标。所述全自动上、下料装置可采用机械手臂抓取或者传送带运送装置运送LED支架,完成上料工作。
Please refer to Fig. 3, the implementation method of
请参阅图3,工序34的实施方法如下:机器视觉及缺陷检测装置18对固定在工作台上的待涂覆LED支架进行机器视觉定位工作,通过对图像的灰度计算,定位出当前待涂覆的LED芯片的精确位置。
Please refer to Fig. 3, the implementation method of operation 34 is as follows: the machine vision and
请参阅图3,工序35的实施方法如下:所述通过xyz轴运动控制装置14把喷头12精确移动到涂覆区域在上位机系统11输入待涂覆LED支架的各种尺寸信息以及各种运动控制涂覆参数,包括LED芯片阵列的分布,LED芯片之间的距离,喷头涂覆路线,喷头移动速度;待LED芯片支架组,放好并固定在运动控制装置的工作台上后,上位机系统11根据输入的参数信息,将荧光粉喷头12高速高精度的移动到待涂覆的LED芯片上方。喷头与LED芯片的垂直距离根据LED芯片的大小而定。
Please refer to FIG. 3 , the implementation method of
请参阅图3,工序36的实施方法如下:通过上位机系统11中的涂覆控制模块19计算得出当前荧光粉喷头的12的控制参数,进行本次涂覆。其具体算法如下:
Please refer to FIG. 3 , the implementation method of the
一种荧光粉涂覆学习控制算法,包括以下内容: A phosphor coating learning control algorithm, including the following:
根据目标的涂覆厚度,由涂覆控制器,计算出当前对涂覆控制装置模块的控制参数,包括:荧光粉喷涂时间理论控制参数、荧光粉胶雾化理论控制参数、荧光粉胶流速理论控制参数的参数向量。其中,喷涂时间控制参数可以由每次荧光粉浆的喷涂量、荧光粉喷头内荧光粉胶的流速、喷嘴直径这些参数计算获得;荧光粉雾化气压控制参数可以由LED芯片大小,荧光粉喷头内荧光粉胶的流速,喷嘴与LED芯片表面的距离这些参数计算获得;荧光粉胶流速控制参数要根据喷涂时间控制参数与荧光粉雾化气压控制参数综合计算得到。 According to the target coating thickness, the coating controller calculates the current control parameters for the coating control device module, including: phosphor powder spraying time theory control parameters, phosphor powder glue atomization theory control parameters, phosphor glue flow rate theory Parameter vector of control parameters. Among them, the spraying time control parameters can be obtained by calculating the amount of phosphor powder sprayed each time, the flow rate of the phosphor glue in the phosphor nozzle, and the diameter of the nozzle; the phosphor atomization air pressure control parameters can be determined by the size of the LED chip, the phosphor nozzle The flow rate of the inner phosphor glue and the distance between the nozzle and the surface of the LED chip are calculated; the flow rate control parameters of the phosphor glue are calculated comprehensively based on the spraying time control parameters and the phosphor atomization air pressure control parameters.
根据上一次所测出的荧光粉层的厚度与目标涂覆厚度,计算出上一次的涂覆误差;根据上一个步骤所得到的涂覆误差,使用迭代学习控制算法,计算出当前涂覆控制装置模块的控制参数的修正量,包括:喷涂时间控制参数修正量、荧光粉雾化控制参数修正量、荧光粉胶流速控制参数修正量; Calculate the last coating error according to the thickness of the phosphor layer measured last time and the target coating thickness; according to the coating error obtained in the previous step, use the iterative learning control algorithm to calculate the current coating control The correction amount of the control parameters of the device module, including: the correction amount of the spraying time control parameter, the correction amount of the phosphor atomization control parameter, and the correction amount of the phosphor glue flow rate control parameter;
上述迭代学习算法可以使用不同的学习算子,目标就是使得荧光粉涂层的厚度精度提高。例如,使用“PID型”迭代学习算法如下: The above iterative learning algorithm can use different learning operators, and the goal is to improve the thickness accuracy of the phosphor coating. For example, using a "PID-type" iterative learning algorithm as follows:
其中,为时间,为理论控制参数向量,包括:喷涂时间控制理论控制参数、荧光粉雾化控制理论控制参数和荧光粉胶流速控制理论控制参数;为当前涂覆控制器的真实控制参数向量;为上一次荧光粉涂层的厚度误差向量;、、为常数增益矩阵。 in, for time, is the theoretical control parameter vector, including: spraying time control theoretical control parameters, phosphor atomization control theoretical control parameters and phosphor glue flow rate control theoretical control parameters; is the real control parameter vector of the current coating controller; is the thickness error vector of the last phosphor coating; , , is a constant gain matrix.
由上述步骤所得到的当前理论控制参数与控制参数修正量,计算得出当前涂覆控制器的真实控制参数向量;由此真实控制量,控制荧光粉喷头进行本次涂覆工作。 The actual control parameter vector of the current coating controller is calculated from the current theoretical control parameter and the correction amount of the control parameter obtained in the above steps; based on the actual control amount, the phosphor nozzle is controlled to perform the coating work.
请参阅图3,工序37的实施方法如下:通过激光测厚装置17检测出所荧光粉层的厚度,激光测厚装置17通过运动控制装置14跟随荧光粉喷头运动到LED芯片上方,这时在进行荧光粉涂覆之前先测出激光检测装置17与待涂覆的LED芯片的距离;等待涂覆完成,涂覆完成后,再测量出激光检测装置17与荧光粉层上表面的距离,将所获得的两个距离相减,即可得到荧光粉层的精确厚度。
Please refer to Fig. 3, the implementation method of
请参阅图3,工序38的实施方法如下:通过机器视觉及缺陷检测装置18检查出当前涂覆的荧光粉层的表面缺陷,通过机器视觉及缺陷检测装置18通过运动控制装置14跟随荧光粉喷头运动到LED芯片上方,获取当前荧光粉涂层的高清图像,将图像中的荧光粉涂层部分划分成若干个区域,然后将每个区域所获得的灰度分布图与对应的标准均匀涂覆的荧光粉层进行比较,从而判断出当前的荧光粉涂层是否存在缺陷。
Please refer to FIG. 3 , the implementation method of
上述机器视觉控制模块算法如下: The algorithm of the above machine vision control module is as follows:
如图5所示,从激光器1发出的入射主光线经过会聚透镜42和被测物面法线成θ角,成像主光线和法线成φ角,成像透镜43的焦距为,荧光粉未涂覆前入射主光线入射到大功率LED芯片表面46的A点上,经透镜成像43后像点落在传感器感光面44的C点。荧光粉的涂覆厚度为H,B点为荧光粉涂覆完成后入射主光线在荧光粉涂覆面45上的入射点,D点为B点在传感器感光面上的像点,C点到D点的距离为。由三角关系推导可得:
As shown in Figure 5, the incident chief ray sent from the
以上原理分析的是激光光线上某一点的厚度测量原理,其他点的厚度测量依本原理同样可得其厚度,进而可以得到荧光粉涂层的厚度分布图。 The above principle analyzes the thickness measurement principle of a certain point on the laser beam. The thickness measurement of other points can also obtain the thickness according to this principle, and then the thickness distribution map of the phosphor coating can be obtained.
ROF模型能较好的去除图像噪声并保持图像的边缘信息,具体描述如下: The ROF model can better remove image noise and maintain the edge information of the image. The specific description is as follows:
其中,为原始图像,为含噪图像,是的BV半范,C为实数域,参数为正则化参数。 in, for the original image, is a noisy image, yes The BV seminorm of , C is the field of real numbers, and the parameter is a regularization parameter.
对采集的涂层图像采用上述ROF模型进行去噪预处理后,再进行边缘检测。 The collected coating image is denoised and preprocessed using the ROF model above, and then edge detection is performed.
边缘检测是以局部运算为特征的一种检测方法,包括边缘检测算子结合阈值分割的方法、基于区域增长的边缘检测等。专利算法中主要采用区域增长法求元件的边界矩阵,并基于图像的灰度直方图,通过迭代计算得到最近分割阈值。 Edge detection is a detection method characterized by local operations, including the method of edge detection operator combined with threshold segmentation, edge detection based on region growth, etc. In the patented algorithm, the region growth method is mainly used to obtain the boundary matrix of the component, and based on the gray histogram of the image, the nearest segmentation threshold is obtained through iterative calculation.
下面进一步详述激光测厚与机器视觉及缺陷检测的实施过程: The implementation process of laser thickness measurement, machine vision and defect detection is further detailed below:
(1)开启激光发射器,照射被测表面,被测表面分别为荧光粉涂覆前的大功率LED芯片表面和荧光粉涂覆后的荧光粉涂覆面; (1) Turn on the laser transmitter and irradiate the surface to be tested. The surfaces to be tested are the surface of the high-power LED chip before phosphor powder coating and the phosphor powder coated surface after phosphor powder coating;
(2)用图像采集终端采集荧光粉涂覆前后的两幅激光光斑图像;利用两幅激光光斑图像,采用激光三角测量法计算荧光粉涂层的厚度分布,并根据设定厚度标准,判断是否存在过厚、过薄和厚度不均匀的缺陷; (2) Use the image acquisition terminal to collect two laser spot images before and after phosphor coating; using the two laser spot images, use laser triangulation to calculate the thickness distribution of the phosphor coating, and judge whether it is based on the set thickness standard. There are defects of too thick, too thin and uneven thickness;
(3)关闭激光发射器,调整图像传感器的角度使图像传感器接收面与荧光粉涂覆面平行,再用图像采集终端采集荧光粉涂覆后的荧光粉涂层图像; (3) Turn off the laser transmitter, adjust the angle of the image sensor so that the receiving surface of the image sensor is parallel to the phosphor coating surface, and then use the image acquisition terminal to collect the phosphor coating image after phosphor coating;
(4)对步骤(3)中采集的荧光粉涂层图像进行滤波、边缘检测,再与标准的荧光粉涂层图像模板进行对比,最后根据对比分析来检测荧光粉涂层是否存在涂覆面不规则、沾胶和异物的缺陷。 (4) Perform filtering and edge detection on the phosphor coating image collected in step (3), then compare it with the standard phosphor coating image template, and finally check whether there is any irregularity on the coating surface of the phosphor coating according to the comparative analysis. Defects from rules, glue and foreign objects.
步骤(2)中,所述基于激光三角测量法得到荧光粉涂层厚度分布的方法如下: In step (2), the method for obtaining the phosphor coating thickness distribution based on the laser triangulation method is as follows:
①对所采集的两幅激光光斑图像用平滑滤波器进行滤波; ① Filter the collected two laser spot images with a smoothing filter;
②对步骤①滤波后得到的光斑图像进行二值分割;基于图像的灰度直方图,通过迭代计算得到分割阈值;
② Binary segmentation is performed on the spot image obtained after filtering in
③求取激光光斑各处的质心位置; ③ Calculate the position of the center of mass of the laser spot;
④采用激光三角法计算荧光粉涂层厚度分布。 ④Using laser triangulation method to calculate the thickness distribution of phosphor coating.
步骤(4)中,所述涂覆面不规则、沾胶和异物的缺陷的检测方法如下: In step (4), the detection method for the irregularity of the coating surface, glue and foreign matter defects is as follows:
①建立标准的荧光粉涂层模板; ① Establish a standard phosphor coating template;
②对前述步骤(3)所采集的荧光粉涂层图像用ROF模型进行去噪; ②Denoise the phosphor coating image collected in the preceding step (3) with the ROF model;
③把由步骤②去噪后得到的荧光粉涂层图像进行去模糊、增强预处理,并复制一份;
③ Perform deblurring and enhanced preprocessing on the phosphor coating image obtained after denoising in
④把步骤③中的其中一份荧光粉涂层图像,进行边缘检测,对得到的封闭荧光粉涂覆面进行填充处理并计算荧光粉涂覆面的面积,与设定面积标准进行对比,判断是否存在涂覆面过大、过小的缺陷;
④ Perform edge detection on one of the phosphor coating images in
⑤把步骤③中的另一份荧光粉涂层图像与标准的荧光粉涂层模板图像进行模式匹配,判断是否存在涂覆不规则、异物、沾胶的缺陷。
⑤ Perform pattern matching on the other phosphor coating image in
请参阅图3,工序39的实施方法如下:通过上位机系统11判断是否完成当前LED支架涂覆工作。 如完成,则转到工序41;如果没有完成,则转到工序40。
Please refer to Figure 3, the implementation method of
请参阅图3,工序40的实施方法如下:通过激光测厚装置17检测出所荧光粉层的厚度和机器视觉及缺陷检测装置18所检测出的涂覆缺陷信息,作为学习算法的数据使用;上位机系统11再通过这些检测信息,使用一种迭代学习算法,计算出下一次涂覆的控制参数。
Please refer to Fig. 3, the implementation method of
请参阅图3,工序41的实施方法如下:全自动上、下料装置15将运动控制装置14的工作台已涂覆完成的LED支架抓取移动到下料槽8中。
Please refer to Figure 3, the implementation method of
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320070572 CN203155488U (en) | 2013-02-07 | 2013-02-07 | Full-automatic fluorescent powder coating equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320070572 CN203155488U (en) | 2013-02-07 | 2013-02-07 | Full-automatic fluorescent powder coating equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203155488U true CN203155488U (en) | 2013-08-28 |
Family
ID=49016712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201320070572 Expired - Lifetime CN203155488U (en) | 2013-02-07 | 2013-02-07 | Full-automatic fluorescent powder coating equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203155488U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103128041A (en) * | 2013-02-07 | 2013-06-05 | 华南理工大学 | Full automatic fluorescent powder coating process and device |
CN106263296A (en) * | 2016-10-17 | 2017-01-04 | 成都卡美奇鞋业有限公司 | A kind of automatic adhesive spray device |
CN108355917A (en) * | 2018-04-28 | 2018-08-03 | 湖州金辰机械有限公司 | A kind of mud-coated equipment for diesel engine filter core |
CN108405269A (en) * | 2018-05-28 | 2018-08-17 | 河北省机电体化中试基地 | A kind of intelligent glue spreading apparatus and method for different size rubber fastening band |
CN109465131A (en) * | 2019-01-14 | 2019-03-15 | 航天材料及工艺研究所 | A kind of automatic coating unit and method of projectile structure functional coating |
CN110505925A (en) * | 2017-03-30 | 2019-11-26 | 马自达汽车株式会社 | Applying device and coating method |
CN115138536A (en) * | 2022-06-28 | 2022-10-04 | 上海交通大学 | Vacuum treatment method and device for glue-homogenizing bubbles of embedded chip packaging substrate |
-
2013
- 2013-02-07 CN CN 201320070572 patent/CN203155488U/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103128041A (en) * | 2013-02-07 | 2013-06-05 | 华南理工大学 | Full automatic fluorescent powder coating process and device |
CN103128041B (en) * | 2013-02-07 | 2014-09-10 | 华南理工大学 | Full automatic fluorescent powder coating process and device |
CN106263296A (en) * | 2016-10-17 | 2017-01-04 | 成都卡美奇鞋业有限公司 | A kind of automatic adhesive spray device |
CN110505925A (en) * | 2017-03-30 | 2019-11-26 | 马自达汽车株式会社 | Applying device and coating method |
US11161141B2 (en) | 2017-03-30 | 2021-11-02 | Mazda Motor Corporation | Coating device configured to apply a coating agent to an object and detect a shape of the object after the application of the coating agent to the object |
CN108355917A (en) * | 2018-04-28 | 2018-08-03 | 湖州金辰机械有限公司 | A kind of mud-coated equipment for diesel engine filter core |
CN108405269A (en) * | 2018-05-28 | 2018-08-17 | 河北省机电体化中试基地 | A kind of intelligent glue spreading apparatus and method for different size rubber fastening band |
CN109465131A (en) * | 2019-01-14 | 2019-03-15 | 航天材料及工艺研究所 | A kind of automatic coating unit and method of projectile structure functional coating |
CN115138536A (en) * | 2022-06-28 | 2022-10-04 | 上海交通大学 | Vacuum treatment method and device for glue-homogenizing bubbles of embedded chip packaging substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103128041B (en) | Full automatic fluorescent powder coating process and device | |
CN203155488U (en) | Full-automatic fluorescent powder coating equipment | |
CN103143484B (en) | A kind of control method of thickness of coating fluorescent dye | |
CN107607064B (en) | LED phosphor powder coating flatness detection system and method based on point cloud information | |
WO2021248638A1 (en) | System for online real-time monitoring of metal additive manufacturing by multiple monitoring devices | |
CN107806843B (en) | Electron beam fuse additive manufacturing profile measurement device and compensation control method | |
CN109211110A (en) | A kind of flat-type workpiece size detection system and method based on machine vision | |
CN103817052B (en) | Full-automatic LED fluorescent material coating equipment and control method thereof | |
CN113155399B (en) | Synchronous measurement method for three-dimensional continuous distribution of surface pressure and deformation of high-speed aircraft | |
CN109115128B (en) | A three-dimensional shape detection method of weld bead based on surface structured light | |
CN104359404A (en) | Quick visual detection method for plenty of guide holes of small sizes in airplane parts | |
CN101159242A (en) | A welding head positioning accuracy detection system and method thereof | |
CN106885534A (en) | Increasing material manufacturing coaxial powder-feeding nozzle test device and method | |
CN109883336A (en) | Measuring system and measurement method during a kind of sheet fabrication towards ship surface | |
CN204088274U (en) | The wafer core grain automatic alignment apparatus of probe station | |
CN108381910A (en) | The continuous liquid level manufacturing method and apparatus of speed change adjusted based on mask image gray scale | |
CN103123338A (en) | Non-contact type automatic adjusting mechanism of pipeline nondestructive inspection ultrasonic probe | |
CN103837545B (en) | A kind of eyeglass imaging device and method | |
CN116839486A (en) | A visual inspection system based on adaptive lighting | |
CN110927172B (en) | On-line detection device and method for leaking coating of aircraft integral fuel tank sealant | |
CN104502829B (en) | A kind of flip LED chips online test method | |
CN110440721A (en) | A kind of three-dimensional mobile platform movement angle error rapid measurement device and method | |
CN106767437A (en) | The online 3D dimension measuring devices of PCB components and method | |
CN206330549U (en) | The online 3D dimension measuring devices of PCB components | |
CN202485627U (en) | Three-dimensional detection apparatus for integrated circuit pin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20130828 Effective date of abandoning: 20140910 |
|
RGAV | Abandon patent right to avoid regrant |