CN202734303U - High-temperature heat storage and exchange device applied to solar heat power generation - Google Patents
High-temperature heat storage and exchange device applied to solar heat power generation Download PDFInfo
- Publication number
- CN202734303U CN202734303U CN 201220464374 CN201220464374U CN202734303U CN 202734303 U CN202734303 U CN 202734303U CN 201220464374 CN201220464374 CN 201220464374 CN 201220464374 U CN201220464374 U CN 201220464374U CN 202734303 U CN202734303 U CN 202734303U
- Authority
- CN
- China
- Prior art keywords
- heat storage
- pipe
- phase change
- change heat
- temperature phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005338 heat storage Methods 0.000 title claims abstract description 173
- 238000010248 power generation Methods 0.000 title claims abstract description 19
- 239000011232 storage material Substances 0.000 claims abstract description 41
- 238000009826 distribution Methods 0.000 claims abstract description 17
- 239000012774 insulation material Substances 0.000 claims abstract description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 20
- 239000010959 steel Substances 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 229910052593 corundum Inorganic materials 0.000 claims description 11
- 239000010431 corundum Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 10
- 229910052573 porcelain Inorganic materials 0.000 claims description 10
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 4
- 239000010962 carbon steel Substances 0.000 claims description 4
- 239000012071 phase Substances 0.000 description 19
- 239000012530 fluid Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012782 phase change material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012611 container material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Building Environments (AREA)
Abstract
一种应用于太阳能热发电的高温储热换热装置,其包括进气管(1)、进气分配管(2)、储热室箱体(5)、储热室门(6)、出气分配管(3)、出气管(4)、高温相变储热管(7)、高温相变储热管支撑(8)、保温材料、相变储热材料(9);储热室箱体(5)内外置有保温材料;储热室门(6)的一端与储热室箱体(5)的外壁铰接,储热室门(6)关闭时,储热室门(6)与储热室箱体围成密封的储热空间;储热室箱体(5)的一端设有进气管(1),进气分配管(2)、储热室箱体(5)的另一端设有出气分配管(3)、出气管(4);高温相变储热管(7)由高温相变储热管支撑(8)固定,高温相变储热管(7)内封装有相变储热材料(9)。它具有结构简单、换热效率高且安全可靠的特点。
A high-temperature heat storage and heat exchange device applied to solar thermal power generation, which includes an air intake pipe (1), an air intake distribution pipe (2), a heat storage chamber box (5), a heat storage chamber door (6), an air outlet Piping (3), outlet pipe (4), high temperature phase change heat storage pipe (7), high temperature phase change heat storage pipe support (8), insulation material, phase change heat storage material (9); heat storage chamber box (5) There are insulation materials inside and outside; one end of the heat storage room door (6) is hinged with the outer wall of the heat storage room box (5). When the heat storage room door (6) is closed, the heat storage room door (6) and the heat storage room box The body forms a sealed heat storage space; one end of the heat storage chamber (5) is provided with an air intake pipe (1), the air intake distribution pipe (2), and the other end of the heat storage chamber (5) is provided with an air outlet Piping (3), outlet pipe (4); high-temperature phase-change heat storage tube (7) is supported by high-temperature phase-change heat storage tube (8) and fixed, and high-temperature phase-change heat storage tube (7) is encapsulated with phase-change heat storage material (9) . It has the characteristics of simple structure, high heat exchange efficiency, safety and reliability.
Description
技术领域 technical field
本实用新型涉及一种能量的存储与释放装置,尤其涉及一种应用于太阳能热发电的高温储热换热装置。 The utility model relates to an energy storage and release device, in particular to a high-temperature heat storage and heat exchange device applied to solar thermal power generation. the
背景技术 Background technique
太阳能是一种清洁、高效和永不衰竭的新能源,具有无污染、取用方便的特点,但到达地球表面的太阳辐射,能量密度却很低,而且受地理、昼夜和季节等规律性变化的影响,以及因晴云雨等随机因素的制约,其辐射强度也不断发生变化,具有显著的稀薄性、间断性和不稳定性。在太阳热能发电系统中,太阳能集热器把收集到的太阳辐射能发送至接收器产生热空气或热蒸汽,用传统的电力循环来产生电能,为了保持供电装置稳定不间断地运行,就需要储热装置把太阳能储存起来,在太阳能不足时再释放出来,从而满足生产和生活用能连续和稳定供应的需要,所以太阳能高温储热装置是太阳能热发电的关键技术,它对于提高系统发电效率、提高系统发电稳定性和可靠性具有重要意义。 Solar energy is a clean, efficient and inexhaustible new energy source. It is non-polluting and easy to use. However, the solar radiation reaching the earth's surface has a very low energy density and is subject to regular changes in geography, day and night, and seasons. , and due to the constraints of random factors such as sunny clouds and rain, its radiation intensity is also constantly changing, with significant thinness, discontinuity and instability. In the solar thermal power generation system, the solar collector sends the collected solar radiation energy to the receiver to generate hot air or hot steam, and the traditional power cycle is used to generate electricity. In order to maintain the stable and uninterrupted operation of the power supply device, it is necessary The heat storage device stores the solar energy and releases it when the solar energy is insufficient, so as to meet the needs of continuous and stable supply of production and living energy. Therefore, the solar high-temperature heat storage device is the key technology of solar thermal power generation. It is very important for improving the power generation efficiency of the system , Improving the stability and reliability of system power generation is of great significance. the
用于太阳能热发电的高温储热系统应具有良好的保温效果、高温下抗氧化性、能实现储热及放热循环、操作简单及安全可靠且成本低。高温储热材料则应满足高的储热密度、储热及放热循环完全可逆、良好的热传导性、无高温腐蚀、优良的化学稳定性及安全可靠。目前应用于太阳能热发电的储热材料有水、导热油、耐高温混凝土和熔融盐等。水作为储热材料储能密度不大,水和导热油在高温下蒸汽压很大,使用时需要特殊的压力阀等设备,导热油还容易引发火灾,而且价格较贵;耐高温混凝土作为储热材料,对其内部换热管道要求很高,其成本占整个储热系统成本的45%-55%;熔盐普遍存在导热系数小,储能密度低及工作温度低等缺陷,从而导致储能系统较为庞大及太阳能热发电的蒸汽参数较低。与上述储热材料相比,铝基合金储热材料具有储热密度大、热循环稳定性好、导热系数高、性价比良好、不易燃、无毒等优点,在高温相变储热(>400℃)应用中具有较大的优势,但是铝基合金储热材料在液态时具有强烈的腐蚀性,并且在长期的吸、放热循环过程中,储热材料与储热容器材料间可能会发生多种电化学反应及物理反应,明显腐蚀储热容器材料,或改变储热材料的热物性。此外,相变材料在相变过程往往伴有体积的变化,所以恰当的选择储热容器材料非常重要。因此,针对铝基合金储热材料,选择相应的储热容器材料并设计相应的储热装置,可用于太阳能热发电系统,所以对于铝基合金储热装置的研究有待进一步开展。 The high-temperature heat storage system used for solar thermal power generation should have good heat preservation effect, oxidation resistance at high temperature, can realize heat storage and heat release cycle, simple operation, safety and reliability, and low cost. High-temperature heat storage materials should meet high heat storage density, fully reversible heat storage and heat release cycles, good thermal conductivity, no high-temperature corrosion, excellent chemical stability, and safety and reliability. The heat storage materials currently used in solar thermal power generation include water, heat transfer oil, high temperature resistant concrete and molten salt. The energy storage density of water as a heat storage material is not high, and the vapor pressure of water and heat transfer oil is very high at high temperature, and special pressure valves and other equipment are required when using it. Heat transfer oil is also easy to cause fire and is more expensive; Thermal materials have high requirements for internal heat exchange pipes, and their cost accounts for 45%-55% of the cost of the entire heat storage system; molten salt generally has defects such as low thermal conductivity, low energy storage density, and low operating temperature, which lead to The energy system is relatively large and the steam parameters of solar thermal power generation are relatively low. Compared with the above-mentioned heat storage materials, aluminum-based alloy heat storage materials have the advantages of high heat storage density, good thermal cycle stability, high thermal conductivity, good cost performance, non-flammable, non-toxic, etc. ℃) has a great advantage in the application, but the aluminum-based alloy heat storage material is strongly corrosive in the liquid state, and during the long-term heat absorption and release cycle, the heat storage material and the heat storage container material may occur A variety of electrochemical reactions and physical reactions can obviously corrode the material of the heat storage container, or change the thermophysical properties of the heat storage material. In addition, phase change materials are often accompanied by volume changes during the phase change process, so it is very important to choose the material of the heat storage container properly. Therefore, for aluminum-based alloy heat storage materials, selecting corresponding heat storage container materials and designing corresponding heat storage devices can be used in solar thermal power generation systems, so research on aluminum-based alloy heat storage devices needs to be further developed. the
发明内容 Contents of the invention
本实用新型的目的是提供一种应用于太阳能热发电的高温储热换热装置,它具有结构简单、换热效率高且安全可靠的特点。 The purpose of the utility model is to provide a high-temperature heat storage and heat exchange device applied to solar thermal power generation, which has the characteristics of simple structure, high heat exchange efficiency, safety and reliability. the
为了实现上述目的,本实用新型的技术方案是:一种应用于太阳能热发电的高温储热换热装置,其特征在于它包括进气管1、进气分配管2、储热室箱体5、储热室门6、出气分配管3、出气管4、高温相变储热管7、高温相变储热管支撑8、保温材料、相变储热材料9;储热室箱体5内外置有保温材料;储热室门6的一端与储热室箱体5的外壁铰接,储热室门6关闭时,储热室门6与储热室箱体围成密封的储热空间;储热室箱体5的一端设有进气管1,进气分配管2、储热室箱体5的另一端设有出气分配管3、出气管4。高温相变储热管7由高温相变储热管支撑8固定,高温相变储热管7内封装有相变储热材料9。
In order to achieve the above purpose, the technical solution of the present utility model is: a high-temperature heat storage and heat exchange device applied to solar thermal power generation, which is characterized in that it includes an air intake pipe 1, an air intake distribution pipe 2, a heat
所述的高温相变储热管7材料为陶瓷钢铁复合管,所述的陶瓷钢铁复合管外层是无缝钢管10,内层是刚玉瓷11,下端盖12和上端盖13为内衬刚玉瓷的碳钢钢板,多根规格相同的高温相变储热管7竖直放置并成正方形或正三角形均匀分布,所述的高温相变储热管7内充装相变储热材料9,所述相变储热材料9为铝基合金储热材料。
The material of the high-temperature phase change
本实用新型的有益效果是:采用上述结构,其结构简单易行,即使传热介质为高温高压的流体时,仍能确保储热系统的安全可靠性;相变材料采用铝基合金储热材料,铝基合金储热材料具有合适的相变温度和较高的储热密度,加快了流体与相变储热材料间的换热,缩小了储热容装置的体积,从而提高了系统的储热效率和储热密度,延长储热系统的使用寿命、使储热放热过程稳定高效的进行。 The beneficial effects of the utility model are: adopting the above-mentioned structure, the structure is simple and easy to implement, and even when the heat transfer medium is a high-temperature and high-pressure fluid, the safety and reliability of the heat storage system can still be ensured; the phase change material adopts an aluminum-based alloy heat storage material , the aluminum-based alloy heat storage material has a suitable phase change temperature and high heat storage density, which speeds up the heat exchange between the fluid and the phase change heat storage material, reduces the volume of the heat storage capacity device, and thus improves the storage capacity of the system. Thermal efficiency and heat storage density prolong the service life of the heat storage system and make the heat storage and release process stable and efficient. the
本实用新型的高温相变储热管7材料为陶瓷钢铁复合管,陶瓷钢铁复合管外层是无缝钢管10,内层是刚玉瓷11,下端盖12和上端盖13为内衬刚玉瓷的碳钢钢板,能够充分发挥无缝钢管强度高、韧性好、耐冲击、焊接性能好以及刚玉瓷高强度、耐腐蚀、高耐磨、耐热性好的特点,克服了无缝钢管硬度低、耐磨性差、以及陶瓷韧性差的特点,陶瓷钢铁复合管具有良好的耐蚀、耐磨、耐热性能及机械冲击与热冲击性能、可焊性好等综合性能,特别适用于充装铝基高温相变储热材料,多根规格相同的高温相变储热管7竖直放置并成正方形或正三角形均匀分布,可以加强与热空气或热蒸汽流体的扰流程度,提高与热空气或热蒸汽流体的换热效率,从而提高整个太阳能热发电系统的效率。
The material of the high-temperature phase-change
它主要应用于太阳能热发电系统,工作温度范围在400-700℃。 It is mainly used in solar thermal power generation systems with an operating temperature range of 400-700°C. the
附图说明 Description of drawings
图1 是本实用新型的立体图; Fig. 1 is a perspective view of the utility model;
图 2 是本实用新型的主视图; Fig. 2 is the front view of the utility model;
图 3 是图2沿A-A线的剖视图; Fig. 3 is a sectional view along line A-A of Fig. 2;
图 4 是图2沿B-B线和C-C线的剖视图; Fig. 4 is a sectional view along the B-B line and the C-C line of Fig. 2;
图 5 是高温相变储热管结构示意图; Figure 5 is a schematic diagram of the structure of a high temperature phase change heat storage tube;
图 6 是高温相变储热管支撑结构示意图。 Figure 6 is a schematic diagram of the support structure of the high temperature phase change heat storage tube.
图中:1.进气管,2.进气分配管,3.出气分配管, 4.出气管, 5.储热室箱体,6.储热室门,7.高温相变储热管,8.高温相变储热管支撑,9.相变储热材料,10.无缝钢管,11.刚玉瓷,12.下端盖,13.上端盖。 In the figure: 1. Intake pipe, 2. Intake distribution pipe, 3. Outlet distribution pipe, 4. Outlet pipe, 5. Heat storage chamber box, 6. Heat storage chamber door, 7. High temperature phase change heat storage pipe, 8 .High temperature phase change heat storage tube support, 9. Phase change heat storage material, 10. Seamless steel pipe, 11. Corundum porcelain, 12. Lower end cover, 13. Upper end cover. the
具体实施方式 Detailed ways
下面结合附图和具体实施方式对本实用新型作进一步详细地说明。 Below in conjunction with accompanying drawing and specific embodiment the utility model is described in further detail. the
如图1、图2、图3、图4、图5、图 6所示,一种应用于太阳能热发电的高温储热换热装置,它包括进气管1、进气分配管2、出气分配管3、出气管4、储热室箱体5、储热室门6、高温相变储热管7、高温相变储热管支撑8、保温材料、相变储热材料9;
As shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6, a high-temperature heat storage and heat exchange device applied to solar thermal power generation includes an air intake pipe 1, an air intake distribution pipe 2, and an air outlet pipe.
储热室箱体 5 为立方体,储热室壁面采用耐高温的钢板制成,为了减少热量损失,储热室内外壁均设置有保温材料;储热室门 6 的一端与储热室箱体5 的外壁铰接,储热室门 6 关闭时,储热室门 6 与储热室箱体围成密封的储热空间;储热室箱体 5 的一端设有进气管 1、进气分配管2,储热室箱体 5 的另一端设有出气分配管3、出气管4;
The heat
高温相变储热管7设置在储热室箱体内,多根规格相同的高温相变储热管7竖直排列,并且成正方形或正三角形均匀分布,高温相变储热管7内封装有蓄热材料,高温相变储热管 7 由高温相变储热管支撑 8 固定,高温相变储热管支撑 8 的材料为金属丝;
The high-temperature phase-change
高温相变储热管 7 材料为陶瓷钢铁复合管,陶瓷钢铁复合管外层是无缝钢管10,内层是刚玉瓷11,下端盖12和上端盖13为内衬刚玉瓷的碳钢钢板,该管独特的组织结构能够承受铝基储热材料的腐蚀。
The material of the high-temperature phase-change
保温材料可以采用硅酸铝耐火纤维或硅酸铝耐火纤维与矿渣棉板组合保温材料,保温层的厚度选择取决于储热温度对热损的要求。 The insulation material can be made of aluminum silicate refractory fiber or a combination of aluminum silicate refractory fiber and slag wool board. The thickness of the insulation layer depends on the requirements of the heat storage temperature for heat loss. the
相变储热材料 9 为铝基合金储热材料,储热材料可以通过不同配比将熔化温度控制在 450-570℃之间,可根据需要选择。
The phase change
高温储热换热装置蓄热时,经太阳能集热器加热的高温气体通过进气管及进气分配管使流体均匀地导入储热空间内,热流体将热量传递给高温相变储热管内的相变储热材料,相变储热材料由固态逐渐变为液态,由于铝基合金储热材料具有很大的储能密度,因此整个装置内可以存储大量热能,而且金属导热系数大,在熔化和凝固的过程中具有较快的传热效率,从而使热能不断转化为潜热储存在相变材料内,释放了热量的流体经出气分配管和出气口流出,经过一定时间后,固态相变储热材料完全转化为液态实现热量存储的最大化,停止热流体的进出。当太阳能减弱或者需要利用热能时,使冷流体沿着与热流体同样的路线流动,此时冷流体通过相变储热换热装置的箱体内,相变储热材料由液态逐渐转变为固态释放存储的热量,对冷流体逐渐进行加热,当储热材料放出部分热量后,换热管内壁面的液体逐渐凝固,随着放热量的增加,相变储热材料由液态渐变为固态,待全部转变为固态后,不再释放热量,此时冷流体的温度升高到最高值,储热释热过程可循环重复使用,实现冷、热流体与固液相变储热材料之间的高效换热。 When the high-temperature heat storage and heat exchange device is storing heat, the high-temperature gas heated by the solar collector passes through the intake pipe and the intake distribution pipe so that the fluid is evenly introduced into the heat storage space, and the hot fluid transfers heat to the high-temperature phase-change heat storage tube. Phase-change heat storage materials, phase-change heat storage materials gradually change from solid to liquid. Because aluminum-based alloy heat storage materials have a large energy storage density, a large amount of heat energy can be stored in the entire device, and the thermal conductivity of the metal is large. It has a faster heat transfer efficiency during the solidification process, so that the heat energy is continuously converted into latent heat and stored in the phase change material. The fluid that released the heat flows out through the gas outlet distribution pipe and the gas outlet. After a certain period of time, the solid phase change storage The complete conversion of the thermal material to the liquid state maximizes heat storage, stopping the ingress and egress of thermal fluid. When the solar energy is weakened or heat energy needs to be utilized, the cold fluid flows along the same route as the hot fluid. At this time, the cold fluid passes through the tank of the phase-change heat storage and heat exchange device, and the phase-change heat storage material gradually changes from liquid to solid state and is released. The stored heat gradually heats the cold fluid. When the heat storage material releases part of the heat, the liquid on the inner wall of the heat exchange tube gradually solidifies. With the increase of the heat release, the phase change heat storage material gradually changes from liquid to solid state. After being in a solid state, no heat will be released. At this time, the temperature of the cold fluid rises to the highest value, and the heat storage and heat release process can be recycled and reused to realize efficient heat exchange between cold and hot fluids and solid-liquid phase change heat storage materials. . the
高温相变储热管的制作工艺较复杂,其制作方法如下: The manufacturing process of high-temperature phase-change heat storage tubes is relatively complicated, and its manufacturing method is as follows:
(1)根据需要设计出合适尺寸的高温相变储热管; (1) Design high-temperature phase change heat storage tubes of appropriate size according to needs;
(2)高温相变储热管筒体材料采用陶瓷钢铁复合管,其外层是无缝钢管,内层是刚玉瓷,上下端盖利用陶瓷-金属复合制作技术原理,即采用胶做粘结剂,通过粘结将耐磨陶瓷片复合在碳钢钢板表面上,形成一个具有优异耐磨性能的表面; (2) The material of the high-temperature phase-change heat storage tube is ceramic steel composite tube, the outer layer is seamless steel pipe, the inner layer is corundum porcelain, and the upper and lower end covers use the principle of ceramic-metal composite manufacturing technology, that is, glue is used as the binder , by bonding the wear-resistant ceramic sheet on the surface of the carbon steel plate to form a surface with excellent wear resistance;
(3)按图 5 所示将储热管筒体、上端盖、下端盖按零件图加工好备用; (3) As shown in Figure 5, process the heat storage tube body, upper end cover, and lower end cover according to the parts diagram for later use;
(4)先将储热管筒体与下端盖焊接在一起; (4) First weld the heat storage tube body and the lower end cover together;
(5)将粉末状的相变储热材料灌入储热管筒体内,考虑体积膨胀,不能完全装满; (5) Pour the powdery phase-change heat storage material into the heat storage tube, considering the volume expansion, it cannot be completely filled;
(6)将上端盖和储热管筒体焊接在一起,对高温相变储热管进行封口备用。 (6) Weld the upper end cover and the heat storage tube body together, and seal the high temperature phase change heat storage tube for later use.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220464374 CN202734303U (en) | 2012-09-13 | 2012-09-13 | High-temperature heat storage and exchange device applied to solar heat power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220464374 CN202734303U (en) | 2012-09-13 | 2012-09-13 | High-temperature heat storage and exchange device applied to solar heat power generation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202734303U true CN202734303U (en) | 2013-02-13 |
Family
ID=47659996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201220464374 Expired - Fee Related CN202734303U (en) | 2012-09-13 | 2012-09-13 | High-temperature heat storage and exchange device applied to solar heat power generation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202734303U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914068A (en) * | 2012-09-13 | 2013-02-06 | 河北科技大学 | High temperature heat storage and exchange device applied to solar thermal power plant |
CN104344757A (en) * | 2013-07-24 | 2015-02-11 | 国电新能源技术研究院 | Novel metal phase change heat accumulation heat exchanger |
CN105890193A (en) * | 2016-06-30 | 2016-08-24 | 赵小峰 | Reinforced heat exchange structure of high-temperature heat storage device and high-temperature heat storage device with reinforced heat exchange structure |
CN110132040A (en) * | 2019-06-18 | 2019-08-16 | 浙江百立盛新能源科技有限公司 | The controllable mutually separation of one kind and efficient inorganic compounding phase transformation multipotency thermal storage device |
-
2012
- 2012-09-13 CN CN 201220464374 patent/CN202734303U/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914068A (en) * | 2012-09-13 | 2013-02-06 | 河北科技大学 | High temperature heat storage and exchange device applied to solar thermal power plant |
CN104344757A (en) * | 2013-07-24 | 2015-02-11 | 国电新能源技术研究院 | Novel metal phase change heat accumulation heat exchanger |
CN105890193A (en) * | 2016-06-30 | 2016-08-24 | 赵小峰 | Reinforced heat exchange structure of high-temperature heat storage device and high-temperature heat storage device with reinforced heat exchange structure |
CN105890193B (en) * | 2016-06-30 | 2018-10-16 | 赵小峰 | A kind of enhanced heat exchange structure of high-temperature heat storage device and the high-temperature heat storage device with the structure |
CN110132040A (en) * | 2019-06-18 | 2019-08-16 | 浙江百立盛新能源科技有限公司 | The controllable mutually separation of one kind and efficient inorganic compounding phase transformation multipotency thermal storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101738120B (en) | Sensible heat-latent heat compound thermal storage device | |
CN100578133C (en) | A high-temperature heat storage device using concrete and a heat storage method | |
CN105004053B (en) | A kind of high-temperature heat accumulation paddy that fused salt is encapsulated using magnesium grey iron block can utilize device | |
CN101226035A (en) | A solar heat storage device using gas as a heat transfer medium | |
CN203274568U (en) | Fused salt tank | |
CN202304521U (en) | Solid heat storage device | |
CN104713397B (en) | A kind of solid heat reservoir | |
CN102865765B (en) | Single-tank heat-storage system and single-tank heat-storage method | |
CN108150987A (en) | A kind of separate type fuse salt thermal storage electric boiler | |
CN202734303U (en) | High-temperature heat storage and exchange device applied to solar heat power generation | |
WO2014048300A1 (en) | Heat storage-exchange equipment | |
CN105509019A (en) | Ceramic-matrix high-temperature fused-salt phase-change heat-storage type off-peak electricity utilizing and steam generating device | |
CN1504716A (en) | Metal and molten salt energy storage heating device | |
CN102252545A (en) | Fused salt phase change heat storage device applied to solar air conditioner | |
CN207922928U (en) | High temperature heat storage device based on thermal conductivity enhanced molten salt composite phase change material | |
CN106959032A (en) | A kind of high-temperature molten salt phase transformation stores heat-releasing device | |
CN101598513B (en) | High-temperature phase change heat accumulation pipe and heat accumulator | |
CN201875982U (en) | Double-coil pipe pressure-bearing solar water tank | |
CN102914068A (en) | High temperature heat storage and exchange device applied to solar thermal power plant | |
CN113465432A (en) | Sandwich type heat storage device | |
CN203785502U (en) | Solid heat storage system | |
CN202814181U (en) | Heat storing-heat exchanging device | |
CN105486135B (en) | Sensible heat latent heat by heat-transfer fluid of gas is combined thermal storage device | |
CN206131840U (en) | Anticorrosion phase change energy storage ware | |
CN104142079A (en) | Heat storage-heat exchange equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130213 Termination date: 20130913 |