CN202328574U - Air supply system of central air conditioner with two cooling coils - Google Patents
Air supply system of central air conditioner with two cooling coils Download PDFInfo
- Publication number
- CN202328574U CN202328574U CN2011202638432U CN201120263843U CN202328574U CN 202328574 U CN202328574 U CN 202328574U CN 2011202638432 U CN2011202638432 U CN 2011202638432U CN 201120263843 U CN201120263843 U CN 201120263843U CN 202328574 U CN202328574 U CN 202328574U
- Authority
- CN
- China
- Prior art keywords
- air
- temperature
- chilled water
- cooling coil
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 86
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 87
- 238000004378 air conditioning Methods 0.000 claims abstract description 54
- 230000000694 effects Effects 0.000 claims abstract description 10
- 239000003507 refrigerant Substances 0.000 claims description 103
- 238000001704 evaporation Methods 0.000 claims description 24
- 230000008020 evaporation Effects 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 230000033228 biological regulation Effects 0.000 claims description 3
- 238000005057 refrigeration Methods 0.000 abstract description 14
- 239000002699 waste material Substances 0.000 description 15
- 238000005265 energy consumption Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 5
- 238000007791 dehumidification Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
本实用新型提供了一种双冷却盘管中央空调供风系统,它包括相互独立的回风冷却盘管和新风冷却盘管;回风冷却盘管安装在回风冷却盘管热交换室内,回风冷却盘管热交换室安装在回风循环管道中,回风冷却盘管利用流经其盘管内的第一温度冷冻水,冷却流经回风循环管道的回风;新风冷却盘管安装在新风冷却盘管热交换室内,新风冷却盘管热交换室安装在新风管道中,新风冷却盘管利用流经其盘管内的第二温度冷冻水,对从新风管道流入的新鲜空气进行除湿和冷却;所述第二温度冷冻水的温度,低于所述第一温度冷冻水的温度;回风循环管道的风量,大于新风管道的风量。本实用新型提高了系统的制冷系数,达到节能的效果。
The utility model provides a central air-conditioning air supply system with double cooling coils, which includes mutually independent return air cooling coils and fresh air cooling coils; the return air cooling coils are installed in the return air cooling coil heat exchange chamber, The heat exchange chamber of the air cooling coil is installed in the return air circulation pipe, and the return air cooling coil uses the first-temperature chilled water flowing through the coil to cool the return air flowing through the return air circulation pipe; the fresh air cooling coil is installed in the Fresh air cooling coil heat exchange room, the fresh air cooling coil heat exchange room is installed in the fresh air pipe, the fresh air cooling coil uses the second temperature chilled water flowing through its coil to dehumidify and cool the fresh air flowing in from the fresh air pipe ; The temperature of the frozen water at the second temperature is lower than the temperature of the frozen water at the first temperature; the air volume of the return air circulation pipeline is greater than the air volume of the fresh air pipeline. The utility model improves the refrigeration coefficient of the system and achieves the effect of energy saving.
Description
技术领域 technical field
本实用新型涉及双冷却盘管中央空调供风系统。 The utility model relates to a central air-conditioning air supply system with double cooling coils.
背景技术 Background technique
随着社会的不断进步与科学技术的不断发展,现在人们越来越关心我们赖以生存的地球,世界上大多数国家也充分认识到了环境对我们人类发展的重要性。各国都在采取积极有效的措施改善环境,减少污染。这其中最为重要也是最为紧迫的问题就是能源问题,要从根本上解决能源问题,除了寻找新的能源,节能是关键的也是目前最直接有效的重要措施。 With the continuous progress of society and the continuous development of science and technology, people are now more and more concerned about the earth on which we live, and most countries in the world have fully realized the importance of the environment to our human development. All countries are taking active and effective measures to improve the environment and reduce pollution. Among them, the most important and urgent problem is the energy problem. In order to solve the energy problem fundamentally, besides finding new energy sources, energy saving is the key and the most direct and effective important measure at present.
在我国能源消费主体中,建筑能耗占了很大的比重。统计结果表明,建筑能耗在我国能源消费中的比例已经达到27.6%。在发达国家,建筑能耗一般占总能耗的30~40%。因此,随着国民经济的发展和人民生活水平的提高,我国的建筑能耗必然会持续上升,建筑节能工作任重道远。 Among the main energy consumers in my country, building energy consumption accounts for a large proportion. Statistics show that the proportion of building energy consumption in my country's energy consumption has reached 27.6%. In developed countries, building energy consumption generally accounts for 30-40% of total energy consumption. Therefore, with the development of the national economy and the improvement of people's living standards, my country's building energy consumption will inevitably continue to rise, and building energy conservation has a long way to go.
在建筑能耗中,中央空调系统能耗一般占到40~60%的比例。而在中央空调系统的能耗中,大约50~60%用电负荷消耗于冷水机组制冷,大约25~30%用电负荷消耗于冷冻水泵与冷却水泵的输配上,大约15~20%用电负荷消耗于各种风机的输配电耗上。由于缺乏先进的控制技术手段和装备,目前的中央空调系统大多仍沿用传统的人工管理方式和简易开关控制设备,不能实现空调冷媒流量跟随末端负荷的变化而动态调节,在部分负荷运行时造成大量的能源浪费,使我国建筑用能效率低下,单位建筑面积能耗比同等气候条件的发达国家高出2~3倍。所以中央空调系统的节能问题,是建筑节能的一个重要方面,对中央空调系统节能优化分析研究具有极其重要的意义。 In building energy consumption, central air-conditioning system energy consumption generally accounts for 40-60% of the proportion. In the energy consumption of the central air-conditioning system, about 50-60% of the electricity load is consumed by chillers for cooling, about 25-30% of the electricity load is consumed by the transmission and distribution of chilled water pumps and cooling water pumps, and about 15-20% is used by The electrical load is consumed by the transmission and distribution of various fans. Due to the lack of advanced control technology and equipment, most of the current central air-conditioning systems still use the traditional manual management method and simple switch control equipment, which cannot realize the dynamic adjustment of the air-conditioning refrigerant flow following the change of the end load, causing a large number of problems during part-load operation. The waste of energy has made my country's building energy efficiency low, and the energy consumption per unit building area is 2 to 3 times higher than that of developed countries with the same climate conditions. Therefore, the energy saving of the central air-conditioning system is an important aspect of building energy saving, and it is of great significance to analyze and study the energy-saving optimization of the central air-conditioning system.
目前,大中型中央空调系统一般采用间接制冷方式,传热过程由室内空气循环、冷冻水循环、制冷剂循环、冷却水循环、室外空气循环等五个循环构成。冷却盘管是室内空气和冷冻水发生热交换的设备,是中央空调系统的重要组成部分。 At present, large and medium-sized central air-conditioning systems generally adopt indirect refrigeration. The heat transfer process consists of five cycles: indoor air cycle, chilled water cycle, refrigerant cycle, cooling water cycle, and outdoor air cycle. The cooling coil is a device for heat exchange between indoor air and chilled water, and is an important part of the central air conditioning system.
传统意义上的中央空调空调间供风系统都只是由一套冷却盘管构成的,这样一套冷却盘管承担了两种任务:冷却空调间回风所带的各种电器设备产生的显式负荷;除去新进新鲜空气的显热和潜热,也即新鲜空气的除湿和冷却。其中前一部分的风量是较大的,占整个风量的70~80%。通常我们所用的7℃冷冻水只是用作新鲜空气的除湿,15℃冷冻水已经足够完成冷却空调间回风的任务。在现有的中央空调系统中,7℃冷冻水不仅用于新鲜空气的除湿,也用于空调间回风的冷却,这意味着大量的冷冻水冷量被浪费掉。 In the traditional sense, the air supply system of the central air-conditioning room is only composed of a set of cooling coils. Such a set of cooling coils undertakes two tasks: cooling the explicit air generated by various electrical equipment brought by the return air of the air conditioning room. Load; remove the sensible and latent heat of the fresh air, that is, the dehumidification and cooling of the fresh air. Among them, the air volume of the former part is relatively large, accounting for 70-80% of the entire air volume. Usually the 7°C chilled water we use is only used for dehumidification of fresh air, and the 15°C chilled water is enough to complete the task of cooling the return air in the air-conditioning room. In the existing central air-conditioning system, 7°C chilled water is not only used for the dehumidification of fresh air, but also for the cooling of the return air in the air-conditioning room, which means that a large amount of chilled water cooling capacity is wasted.
理想制冷剂循环称为逆卡诺循环,即假设低温热源(即被冷却物体)的温度为T 0 ,高温热源(即环境介质)的温度为T K ,则制冷工质(氟利昂等)在吸热过程中为T 0 ,在放热过程中为T K ,就是说在吸热和放热过程中工质与低温热源及高温热源之间没有温差,即传热是在等温下进行的,压缩和膨胀过程是在没有热荷损失情况下进行的。 The ideal refrigerant cycle is called the reverse Carnot cycle, that is, assuming that the temperature of the low-temperature heat source (that is, the object to be cooled) is T 0 , and the temperature of the high-temperature heat source (that is, the ambient medium) is T K , then the refrigerant (Freon, etc.) absorbs T 0 in the thermal process, T K in the exothermic process, that is to say, there is no temperature difference between the working fluid and the low-temperature heat source and high-temperature heat source in the heat-absorbing and exothermic process, that is, the heat transfer is carried out under isothermal conditions, and the compression And the expansion process is carried out without heat loss.
制冷工质从被冷却的低温热源吸取的热量Q 0 : The heat Q 0 absorbed by the refrigerant from the cooled low-temperature heat source:
制冷工质向高温热源放出的热量Q K : The heat Q K released by the refrigerant to the high-temperature heat source:
其中S 1 =S 2 、S 3 =S 4 ,是等熵压缩(外界对系统做功)、等熵膨胀(系统恢复原来状态)过程中的熵值。 Among them, S 1 = S 2 , S 3 = S 4 , are the entropy values in the process of isentropic compression (work done on the system by the outside world) and isentropic expansion (system returns to its original state).
由能量守恒可知,制冷工质循环所消耗的功W 0 ,等于压缩消耗的功减去膨胀所获得的功。 From energy conservation, it can be seen that the work W 0 consumed by the refrigerant cycle is equal to the work consumed by compression minus the work obtained by expansion.
制冷系数ε K :消耗单位功所获得的制冷量的值。则逆卡诺循环制冷系数ε K 为: Refrigeration coefficient ε K : the value of the refrigeration capacity obtained by consuming unit work. Then the refrigeration coefficient ε K of the reverse Carnot cycle is:
逆卡诺循环中,制冷工质只与两个热源交换热量,由上式可见,逆卡诺循环的制冷系数与工质的性质无关,只取决于低温热源(即被冷却物体)的温度T 0 和高温热源(即环境介质)的温度T K 。降低T K ,提高T 0 ,均可提高制冷系数。 In the reverse Carnot cycle, the refrigerant only exchanges heat with two heat sources. It can be seen from the above formula that the refrigeration coefficient of the reverse Carnot cycle has nothing to do with the nature of the refrigerant, but only depends on the temperature T of the low-temperature heat source (that is, the object to be cooled). 0 and the temperature T K of the high-temperature heat source (ie, the ambient medium). Decreasing T K and increasing T 0 can increase the refrigeration coefficient.
理想的制冷剂循环应为逆卡诺循环。虽然逆卡诺循环实际上是无法实现的,但它可以用来评估实际制冷剂循环的制冷效率。 The ideal refrigerant cycle should be the reverse Carnot cycle. Although the reverse Carnot cycle is practically impossible, it can be used to evaluate the cooling efficiency of a real refrigerant cycle.
一般情况下,对中央空调的制冷剂循环系统而言,低温热源(即被冷却物体)为冷冻水,高温热源(即环境介质)为冷却水;根据上述分析,降低冷却水温度或提高冷冻水温度,均可提高中央空调制冷剂循环系统实际的制冷系数。 Generally speaking, for the refrigerant circulation system of central air conditioning, the low-temperature heat source (that is, the object to be cooled) is chilled water, and the high-temperature heat source (that is, the environmental medium) is cooling water; temperature, can increase the actual refrigeration coefficient of the central air-conditioning refrigerant circulation system.
本实用新型将通过提高冷冻水温度(T 0 )来提高制冷效率。 The utility model will increase the cooling efficiency by increasing the freezing water temperature ( T 0 ).
发明内容 Contents of the invention
本实用新型所要解决的技术问题在于提供一种双冷却盘管中央空调供风系统,以克服现有中央空调供风系统浪费大量冷冻水冷量的缺点,提供一种有效利用冷冻水冷量的供风系统,为中央空调节能提供设计方案。为此,本实用新型采用以下技术方案: The technical problem to be solved by the utility model is to provide a double cooling coil central air-conditioning air supply system to overcome the shortcomings of the existing central air-conditioning air supply system that wastes a large amount of chilled water cooling capacity, and to provide an air supply system that effectively utilizes the chilled water cooling capacity. System, providing design solutions for central air-conditioning energy saving. For this reason, the utility model adopts the following technical solutions:
所述双冷却盘管中央空调供风系统包括两套相互独立的冷却盘管:回风冷却盘管和新风冷却盘管;其中,所述回风冷却盘管安装在回风冷却盘管热交换室内,回风冷却盘管热交换室安装在回风循环管道中,回风冷却盘管利用流经其盘管内的第一温度冷冻水,冷却流经回风循环管道的回风;所述新风冷却盘管安装在新风冷却盘管热交换室内,新风冷却盘管热交换室安装在新风管道中,新风冷却盘管利用流经其盘管内的第二温度冷冻水,对从新风管道流入的新鲜空气进行除湿和冷却;所述第二温度冷冻水的温度,低于所述第一温度冷冻水的温度;所述回风循环管道的风量,大于所述新风管道的风量。 The central air-conditioning air supply system with double cooling coils includes two independent cooling coils: the return air cooling coil and the fresh air cooling coil; Indoors, the return air cooling coil heat exchange chamber is installed in the return air circulation pipe, and the return air cooling coil uses the first-temperature chilled water flowing through its coil to cool the return air flowing through the return air circulation pipe; the fresh air The cooling coil is installed in the heat exchange chamber of the fresh air cooling coil, and the heat exchange chamber of the fresh air cooling coil is installed in the fresh air pipe. The air is dehumidified and cooled; the temperature of the chilled water at the second temperature is lower than that of the chilled water at the first temperature; the air volume of the return air circulation pipeline is greater than the air volume of the fresh air pipeline.
在采用上述技术方案的基础上,本实用新型还可采用或组合采用以下进一步的技术方案: On the basis of adopting the above-mentioned technical solution, the utility model can also adopt or adopt the following further technical solutions in combination:
所述第一温度冷冻水的温度为11~17℃,所述第二温度冷冻水的温度为4~10℃;所述第一温度冷冻水的最佳温度为15℃,所述第二温度冷冻水的最佳温度为7℃;所述第一温度冷冻水与第二温度冷冻水分别通过各自的冷冻水循环泵进行输送;所述冷冻水循环泵为变频泵,可以通过变频方式调节冷冻水循环流量。 The temperature of the chilled water at the first temperature is 11-17°C, the temperature of the chilled water at the second temperature is 4-10°C; the optimal temperature of the chilled water at the first temperature is 15°C, and the second temperature The optimal temperature of the chilled water is 7°C; the chilled water at the first temperature and the chilled water at the second temperature are transported by respective chilled water circulating pumps; the chilled water circulating pump is a variable frequency pump, which can adjust the chilled water circulating flow through frequency conversion .
所述第一温度冷冻水与第二温度冷冻水的冷却降温所需要的制冷量分别来自制冷剂循环管路中并联的第一制冷剂蒸发器与第二制冷剂蒸发器;所述制冷剂循环管路依次连接有制冷剂压缩机、制冷剂冷凝器,然后分成第一制冷剂蒸发器并联支路与第二制冷剂蒸发器并联支路,两条并联支路汇合后连接到制冷剂压缩机的进口端;所述第一制冷剂蒸发器并联支路上依次连接有第一膨胀阀、第一制冷剂蒸发器和第一蒸发压力调节阀;所述第二制冷剂蒸发器并联支路上依次连接有第二膨胀阀、第二制冷剂蒸发器和止回阀;通过所述第一蒸发压力调节阀的调节作用,使第一制冷剂蒸发器的蒸发压力高于第二制冷剂蒸发器的蒸发压力;通过所述止回阀的单向流动作用,防止第一制冷剂蒸发器出口压力较高的气体倒流进入第二制冷剂蒸发器;所述第一膨胀阀、第二膨胀阀,是电子膨胀阀或热力膨胀阀。 The refrigerating capacity required for cooling the chilled water at the first temperature and the chilled water at the second temperature comes from the first refrigerant evaporator and the second refrigerant evaporator connected in parallel in the refrigerant circulation pipeline respectively; The pipeline is connected to the refrigerant compressor and the refrigerant condenser in turn, and then divided into the parallel branch of the first refrigerant evaporator and the parallel branch of the second refrigerant evaporator, and the two parallel branches are connected to the refrigerant compressor after being merged. the inlet end of the first refrigerant evaporator; the parallel branch of the first refrigerant evaporator is sequentially connected with the first expansion valve, the first refrigerant evaporator and the first evaporation pressure regulating valve; the parallel branch of the second refrigerant evaporator is sequentially connected with There is a second expansion valve, a second refrigerant evaporator and a check valve; through the regulation of the first evaporation pressure regulating valve, the evaporation pressure of the first refrigerant evaporator is higher than the evaporation pressure of the second refrigerant evaporator Pressure; through the one-way flow effect of the check valve, the gas with higher outlet pressure of the first refrigerant evaporator is prevented from flowing back into the second refrigerant evaporator; the first expansion valve and the second expansion valve are electronic Expansion valve or thermostatic expansion valve.
所述双冷却盘管中央空调供风系统采用风循环方式调节室内温度;所述风循环方式包括:通过主进风管道风机输送的总冷风,分流到各个空调间的空调间进风口后,流经空调间并从空调间出风口流出,成为回风并汇入主回风管道;由所有汇入主回风管道的回风所组成的总回风通过主回风管道风机输送并抵达主回风管道的末端后进行分流,30%以下的总回风经废弃风管道风阀由废弃风管道排到外界,70%以上的总回风经回风循环管道风阀进入回风循环管道并流经回风冷却盘管热交换室后成为冷回风;从外界经新风管道风阀由新风管道流入的新鲜空气,流经新风冷却盘管热交换室后成为冷新风;由所述冷回风与所述冷新风混合而成的总冷风,进入主进风管道,通过主进风管道风机进行输送。 The air supply system of the central air conditioner with double cooling coils adopts the air circulation mode to adjust the indoor temperature; the air circulation mode includes: the total cold air transported by the fan in the main air inlet duct is diverted to the air inlets of the air conditioners in each air conditioner room, and then flows into the air conditioner room. After passing through the air-conditioning room and flowing out from the air outlet of the air-conditioning room, it becomes the return air and enters the main return air duct; the total return air composed of all the return air entering the main return air duct is transported by the fan of the main return air duct and reaches the main return air duct. The end of the air duct is divided, and less than 30% of the total return air is discharged from the waste air duct to the outside through the damper of the waste air duct, and more than 70% of the total return air enters the return air circulation duct through the damper of the return air circulation duct and flows After passing through the heat exchange chamber of the return air cooling coil, it becomes cold return air; the fresh air flowing in from the fresh air pipe from the outside through the air valve of the fresh air pipe becomes cold fresh air after passing through the heat exchange chamber of the fresh air cooling coil; The total cold air mixed with the cold fresh air enters the main air intake duct and is transported by the fan of the main air intake duct.
所述主进风管道风机与所述主回风管道风机为变频风机,可以通过变频方式调节循环风量。 The main air inlet duct fan and the main return air duct fan are frequency conversion fans, and the circulating air volume can be adjusted by frequency conversion.
因此,大部分的冷冻水都是第一温度冷冻水,第二温度冷冻水只占一小部分。冷冻水温度的提高,意味着冷冻水(温度T 0 )与冷却水(温度T K )的温差减小,也就意味着制冷效率的提高。 Therefore, most of the frozen water is the first temperature frozen water, and the second temperature frozen water only accounts for a small part. An increase in the temperature of the chilled water means that the temperature difference between the chilled water (temperature T 0 ) and the cooling water (temperature T K ) decreases, which means that the cooling efficiency increases.
所述双冷却盘管中央空调供风系统采用变风量方式来调节空调间的温度;所述变风量方式为不调节供风温度,而是通过调节供风量的方式来调节空调间温度;所述调节供风量的方式通过以下方式实现:主进风管道通过空调间进风口、空调间、空调间出风口与主回风管道相连通,在各个空调间进风口分别安装有可独立运行的空调间进风口风阀,通过改变空调间进风口风阀的开度来调节各个空调间的供风量。 The central air-conditioning air supply system with double cooling coils adopts a variable air volume method to adjust the temperature of the air-conditioning room; the variable air volume method does not adjust the air supply temperature, but adjusts the temperature of the air-conditioning room by adjusting the air supply volume; The way to adjust the air supply volume is realized in the following way: the main air inlet pipe is connected with the main return air pipe through the air inlet of the air-conditioning room, the air-conditioning room, and the air outlet of the air-conditioning room. The air inlet damper is used to adjust the air supply volume of each air-conditioning room by changing the opening degree of the air inlet air valve of the air-conditioning room.
本实用新型在原有的中央空调单一冷却盘管供风系统基础上,增加了一套独立的冷却盘管风回路,实现了空调间回风冷却与从外界补充的新鲜空气的除湿、冷却的分离,提高了回风冷却盘管冷冻水(第一温度冷冻水)的温度,从而提高了系统的制冷系数,达到节能的效果。为了实现两套风回路的分离,需要生成两种不同温度的冷冻水,即第一温度冷冻水和第二温度冷冻水,本实用新型通过装配蒸发压力调节阀和止回阀,设置不同的蒸发压力来实现一台制冷剂压缩机同时带动两台制冷剂蒸发器产生不同温度冷冻水。同时,通过向空调间输送冷风,采用变风量控制方式,更好的满足用户的需求,也减少了向空调间输送冷冻水的管道,减少了系统的初期投入。 On the basis of the original single cooling coil air supply system of the central air conditioner, the utility model adds a set of independent cooling coil air loops, and realizes the separation of the return air cooling of the air conditioning room and the dehumidification and cooling of the fresh air supplemented from the outside. , Increase the temperature of the chilled water (first temperature chilled water) in the return air cooling coil, thereby increasing the refrigeration coefficient of the system and achieving the effect of energy saving. In order to realize the separation of the two sets of air circuits, it is necessary to generate two kinds of chilled water at different temperatures, that is, the first temperature chilled water and the second temperature chilled water. One refrigerant compressor simultaneously drives two refrigerant evaporators to produce chilled water at different temperatures. At the same time, by sending cold air to the air-conditioning room and adopting the variable air volume control method, the needs of users can be better met, and the pipelines for sending chilled water to the air-conditioning room are reduced, reducing the initial investment of the system.
本实用新型的空调间供风系统尤其适合中央空调制冷时使用,可以实现系统的节能优化,为用户提供更好的服务。 The air supply system of the air-conditioning room of the utility model is especially suitable for use in central air-conditioning refrigeration, can realize energy-saving optimization of the system, and provide users with better services.
附图说明 Description of drawings
图1为本实用新型双冷却盘管中央空调供风系统的结构示意图。 Fig. 1 is a structural schematic diagram of a central air-conditioning air supply system with dual cooling coils of the present invention.
图中标号分别表示如下:1、回风冷却盘管,2、回风冷却盘管热交换室,3、第一温度冷冻水循环管路,4、新风冷却盘管,5、新风冷却盘管热交换室,6、第二温度冷冻水循环管路,7、第一温度冷冻水循环泵,8、第二温度冷冻水循环泵,9、第一制冷剂蒸发器,10、第二制冷剂蒸发器,11、制冷剂循环管路,12、第一制冷剂蒸发器并联支路,13、第二制冷剂蒸发器并联支路,14、第一膨胀阀,15、第二膨胀阀,16、第一蒸发压力调节阀,17、第二蒸发压力调节阀,18、止回阀,19、制冷剂压缩机,20、制冷剂冷凝器,21、主进风管道,22、主进风管道风机,23、主进风管道风速传感器,24、主回风管道,25、主回风管道风机,26、废弃风管道,27、废弃风管道风阀,28、回风循环管道,29、回风循环管道风阀,30、新风管道,31、新风管道风阀,32、新风管道风速传感器,33、空调间,34、空调间进风口,35、空调间进风口风阀,36空调间出风口。 The symbols in the figure are as follows: 1. Return air cooling coil, 2. Return air cooling coil heat exchange chamber, 3. First temperature chilled water circulation pipeline, 4. Fresh air cooling coil, 5. Fresh air cooling coil heat exchange chamber. Exchange chamber, 6. Second temperature chilled water circulation pipeline, 7. First temperature chilled water circulation pump, 8. Second temperature chilled water circulation pump, 9. First refrigerant evaporator, 10. Second refrigerant evaporator, 11 . Refrigerant circulation pipeline, 12. Parallel branch of the first refrigerant evaporator, 13. Parallel branch of the second refrigerant evaporator, 14. First expansion valve, 15. Second expansion valve, 16. First evaporator Pressure regulating valve, 17, second evaporation pressure regulating valve, 18, check valve, 19, refrigerant compressor, 20, refrigerant condenser, 21, main air inlet pipe, 22, main air inlet pipe fan, 23, Main air inlet duct wind speed sensor, 24, main return air duct, 25, main return air duct fan, 26, waste air duct, 27, waste air duct damper, 28, return air circulation duct, 29, return air circulation duct wind Valve, 30, fresh air duct, 31, fresh air duct damper, 32, fresh air duct wind speed sensor, 33, air-conditioning room, 34, air-conditioning room air inlet, 35, air-conditioning room air inlet damper, 36 air-conditioning room air outlet.
具体实施方式 Detailed ways
下面结合附图对本实用新型进一步说明。 Below in conjunction with accompanying drawing, the utility model is further described.
如附图1所示,一种双冷却盘管中央空调供风系统,其工作过程为:制冷剂循环管路11依次连接有制冷剂压缩机19、制冷剂冷凝器20,然后分成第一制冷剂蒸发器并联支路12与第二制冷剂蒸发器并联支路13,两条并联支路汇合后连接到制冷剂压缩机19的进口端;第一制冷剂蒸发器并联支路12依次连接有第一膨胀阀14、第一制冷剂蒸发器9和第一蒸发压力调节阀16,第二制冷剂蒸发器并联支路13依次连接有第二膨胀阀15、第二制冷剂蒸发器10、第二蒸发压力调节阀17和止回阀18。
As shown in Figure 1, a double cooling coil central air-conditioning air supply system, its working process is: the
蒸发压力是制冷剂温度一定的情况下,制冷剂由液态变气态时的最大压力。对于一种制冷剂,在一定压力时,蒸发温度固定不变,也就是说,可以通过改变制冷剂蒸发器下游的蒸发压力产生不同的蒸发温度,以获得不同的制冷效果,产生不同温度的冷冻水,以满足回风冷却盘管1和新风冷却盘管4的用水温度需求。
The evaporation pressure is the maximum pressure when the refrigerant changes from a liquid state to a gas state when the refrigerant temperature is constant. For a refrigerant, at a certain pressure, the evaporation temperature is fixed, that is to say, different evaporation temperatures can be generated by changing the evaporation pressure downstream of the refrigerant evaporator, so as to obtain different refrigeration effects and produce refrigeration at different temperatures. Water to meet the water temperature requirements of the return
与第一温度冷冻水所对应的第一制冷剂蒸发器9的蒸发压力高于与第二温度冷冻水所对应的第二制冷剂蒸发器10的蒸发压力;通过第一蒸发压力调节阀16配置第一制冷剂蒸发器9的蒸发压力为产生15℃冷冻水的蒸发压力,通过第二蒸发压力调节阀17配置第二制冷剂蒸发器10的蒸发压力为产生7℃冷冻水的蒸发压力,通过设置止回阀18防止制冷剂由第一制冷剂蒸发器并联支路12(高压)流向第二制冷剂蒸发器并联支路13(低压),止回阀18后的压力为制冷剂压缩机19的吸气压力。值得一提的是,当我们需要设定第二制冷剂蒸发器10后的蒸发压力与制冷剂压缩机19的吸气压力相等时,第二蒸发压力调节阀17成为可选部件。
The evaporation pressure of the first refrigerant evaporator 9 corresponding to the chilled water at the first temperature is higher than the evaporation pressure of the second
冷却水与制冷剂在制冷剂冷凝器20中发生热交换作用,高温、高压的制冷剂气体在制冷剂冷凝器20中冷凝为低温、高压的制冷剂液体,并释放热量。低温、高压制冷剂液体经第一膨胀阀14和第二膨胀阀15节流后转变为低温、低压的制冷剂液体,并分别在第一制冷剂蒸发器9和第二制冷剂蒸发器10中与第一温度冷冻水和第二温度冷冻水发生热交换作用,制冷剂蒸发吸收热量,转变为低温、低压的制冷剂气体,同时在第一制冷剂蒸发器9中产生15℃第一温度冷冻水,在第二制冷剂蒸发器10中产生7℃第一温度冷冻水。制冷剂压缩机19压缩低温、低压制冷剂气体,使之成为制冷剂冷凝器20可以接受的高温、高压制冷剂气体,制冷剂压缩机19是制冷剂循环的动力源,也是整个制冷剂循环的主要耗能部件,通过改变制冷剂压缩机19的频率,可以产生不同的制冷效果以满足不同制冷负荷下的需求。
The cooling water and the refrigerant exchange heat in the
第一温度冷冻水循环泵7驱动第一温度冷冻水在第一温度冷冻水循环管路3的循环;回风冷却盘管1安装在回风冷却盘管热交换室2内,回风冷却盘管热交换室2安装在回风循环管道28中,回风冷却盘管1利用流经其盘管内的第一温度冷冻水,冷却流经回风循环管道28的回风;在回风冷却盘管热交换室2中,流经回风冷却盘管1中的第一温度冷冻水与由主回风管道24回收并通过废弃风管道26排出一定量废弃风后流经回风循环管道28的回风发生热交换作用,第一温度冷冻水温度升高,流经回风循环管道28的回风得到冷却,成为冷回风。主回风管道24中设置有主回风管道风机25,为空调间总回风的输送提供动力。
The first temperature chilled
第二温度冷冻水循环泵8驱动第二温度冷冻水在第二温度冷冻水循环管路6的循环;新风冷却盘管4安装在新风冷却盘管热交换室5内,新风冷却盘管热交换室5安装在新风管道30中,新风冷却盘管4利用流经其盘管内的第二温度冷冻水,对从新风管道30流入的新鲜空气进行除湿和冷却;在新风冷却盘管热交换室5中,流经新风冷却盘管4中的第二温度冷冻水与从外界经新风管道风阀31由新风管道30流入的新鲜空气发生热交换作用,第二温度冷冻水温度升高,对新进新鲜空气起到冷却与除湿的效果,产生冷新风。
The second temperature chilled
由所述冷回风与所述冷新风混合而成的总冷风,进入主进风管道21,通过主进风管道风机22进行输送。
The total cold air formed by mixing the cold return air and the cold fresh air enters the main
通过主进风管道风机22输送的总冷风,分流到各个空调间33的空调间进风口34后,流经空调间33并从空调间出风口35流出,成为回风并汇入主回风管道24;由所有汇入主回风管道24的回风所组成的总回风通过主回风管道风机25输送并抵达主回风管道24的末端后进行分流,30%以下的总回风经废弃风管道风阀27由废弃风管道26排到外界,70%以上的总回风经回风循环管道风阀29进入回风循环管道28。
The total cold wind delivered by the fan 22 of the main air intake duct is divided into the air-conditioning room air inlets 34 of each air-
主进风管道21通过空调间进风口34、空调间33、空调间出风口36与主回风管道24相连通,在各个空调间进风口34分别安装有独立的空调间进风口风阀35,通过改变空调间进风口风阀35的开度来调节各个空调间33的供风量。
The main
新风管道30中设置有新风管道风速传感器32和可以改变新进新鲜空气量的新风管道风阀31,在新风管道30横截面积A 1 已知的条件下,通过测得的新风速度v 1 (t)可以计算一定时间内(t1~t2)进入的新风量Q 1 ,计算式为:
The
通过调节新风管道风阀31开度,可以改变新进新鲜空气的多少。与此对应,废弃风管道26中设置有废弃风管道风阀27,回风循环管道28中设置有回风循环管道风阀29,通过改变废弃风管道风阀27与回风循环管道风阀29的开度,可以改变废弃风量的多少和回风循环风量的多少;在主进风管道21中设置有主进风管道风速传感器23,在主进风管道21横截面积A 2 已知的条件下,通过测得的进风速度v 2 (t)可以计算一定时间内(t1~t2)进入空调间的总供风量Q 2 ,计算式为:
By adjusting the degree of opening of the
新风比为新风量占总供风量的比重,计算式为: The fresh air ratio is the proportion of the fresh air volume to the total air supply volume, and the calculation formula is:
通过设置废弃风管道风阀27、回风循环管道风阀29与新风管道风阀31的开度,可以实现不同的新风比。举例来说,我们可以设置新风量占总进风量的20%,这时废弃风量占总供风量的20%,回风量占总供风量的80%。这一比例不是固定不变的,可以根据具体的情况进行调节,以取得最好的效果。
Different fresh air ratios can be realized by setting the opening degrees of the
本实用新型的双冷却盘管中央空调供风系统可以实现全局的优化配置。中央空调制冷剂循环使用的节流装置第一膨胀阀16、第二膨胀阀17优选为电子膨胀阀,使用的制冷剂压缩机19为可以实现变频调节的变频压缩机。中央空调第一温度冷冻水循环泵7、第二温度冷冻水循环泵8为变频泵,可以通过改变水泵供电频率改变冷冻水量;所述主进风管道风机22与主回风管道风机25为变频风机,可以通过改变风机供电频率改变主进风管道21供风量。用户负荷改变时,通过改变制冷剂压缩机19、第一温度冷冻水循环泵7、第二温度冷冻水循环泵8、主进风管道风机22与主回风管道风机25的频率,可以避免系统在固定的工作点上工作,频率的降低意味着能耗的减少,在满足用户需求的前提下,达到最好的节能效果。同时,这是一种整体的优化配置,应用智能优化算法确定各个可变频设备的工作频率,避免某一设备能耗降低时其它用电设备能耗提高所带来的影响,使系统的整体能耗最小化。
The central air-conditioning air supply system with double cooling coils of the utility model can realize overall optimal configuration. The
上述具体实施方式用来解释说明本实用新型,仅为本实用新型的优选实施例而已,而不是对本实用新型进行限制,在本实用新型的精神和权利要求的保护范围内,对本实用新型作出的任何修改、等同替换、改进等,都落入本实用新型的保护范围。 The above-mentioned specific embodiments are used to explain the utility model, and are only preferred embodiments of the utility model, rather than limiting the utility model. Within the spirit of the utility model and the scope of protection of the claims, the utility model is made Any modification, equivalent replacement, improvement, etc., all fall into the protection scope of the present utility model.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011202638432U CN202328574U (en) | 2011-07-25 | 2011-07-25 | Air supply system of central air conditioner with two cooling coils |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011202638432U CN202328574U (en) | 2011-07-25 | 2011-07-25 | Air supply system of central air conditioner with two cooling coils |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202328574U true CN202328574U (en) | 2012-07-11 |
Family
ID=46440555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011202638432U Expired - Lifetime CN202328574U (en) | 2011-07-25 | 2011-07-25 | Air supply system of central air conditioner with two cooling coils |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202328574U (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102278795A (en) * | 2011-07-25 | 2011-12-14 | 浙江大学 | Central air-conditioning air supply system adopting double cooling coils |
CN103105015A (en) * | 2013-03-07 | 2013-05-15 | 西南科技大学 | Energy-saving type double-evaporator two-stage compression refrigerating equipment used for floor radiant cooling |
CN103267321A (en) * | 2013-05-30 | 2013-08-28 | 深圳中元宏康科技有限公司 | Operating room air purifying system |
CN106440267A (en) * | 2016-12-02 | 2017-02-22 | 青岛海尔空调器有限总公司 | Energy-saving control method for air conditioner |
CN106524355A (en) * | 2016-12-02 | 2017-03-22 | 青岛海尔空调器有限总公司 | Air-conditioner energy-saving control method |
CN106594988A (en) * | 2016-12-02 | 2017-04-26 | 青岛海尔空调器有限总公司 | Energy-saving control method for air conditioner |
CN106594871A (en) * | 2016-12-02 | 2017-04-26 | 青岛海尔空调器有限总公司 | Air conditioner energy-saving control method |
CN106642559A (en) * | 2016-12-02 | 2017-05-10 | 青岛海尔空调器有限总公司 | Energy-saving method for air conditioner |
CN106705358A (en) * | 2016-12-02 | 2017-05-24 | 青岛海尔空调器有限总公司 | Energy-saving control method for air conditioner |
CN106765910A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765915A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765908A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765914A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765563A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN113375293A (en) * | 2021-06-01 | 2021-09-10 | 青岛海尔空调器有限总公司 | Display method and device for air conditioner and air conditioner |
-
2011
- 2011-07-25 CN CN2011202638432U patent/CN202328574U/en not_active Expired - Lifetime
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102278795A (en) * | 2011-07-25 | 2011-12-14 | 浙江大学 | Central air-conditioning air supply system adopting double cooling coils |
CN103105015A (en) * | 2013-03-07 | 2013-05-15 | 西南科技大学 | Energy-saving type double-evaporator two-stage compression refrigerating equipment used for floor radiant cooling |
CN103267321A (en) * | 2013-05-30 | 2013-08-28 | 深圳中元宏康科技有限公司 | Operating room air purifying system |
CN103267321B (en) * | 2013-05-30 | 2016-08-10 | 深圳橙果医疗科技有限公司 | Operating room air cleaning system |
CN106440267A (en) * | 2016-12-02 | 2017-02-22 | 青岛海尔空调器有限总公司 | Energy-saving control method for air conditioner |
CN106524355A (en) * | 2016-12-02 | 2017-03-22 | 青岛海尔空调器有限总公司 | Air-conditioner energy-saving control method |
CN106594988A (en) * | 2016-12-02 | 2017-04-26 | 青岛海尔空调器有限总公司 | Energy-saving control method for air conditioner |
CN106594871A (en) * | 2016-12-02 | 2017-04-26 | 青岛海尔空调器有限总公司 | Air conditioner energy-saving control method |
CN106642559A (en) * | 2016-12-02 | 2017-05-10 | 青岛海尔空调器有限总公司 | Energy-saving method for air conditioner |
CN106705358A (en) * | 2016-12-02 | 2017-05-24 | 青岛海尔空调器有限总公司 | Energy-saving control method for air conditioner |
CN106765910A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765915A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765908A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765914A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765563A (en) * | 2016-12-02 | 2017-05-31 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106594988B (en) * | 2016-12-02 | 2019-09-03 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106524355B (en) * | 2016-12-02 | 2019-10-01 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106705358B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765915B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765914B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765563B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106642559B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106594871B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106440267B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN106765908B (en) * | 2016-12-02 | 2019-11-05 | 青岛海尔空调器有限总公司 | Air conditioner energy saving control method |
CN113375293A (en) * | 2021-06-01 | 2021-09-10 | 青岛海尔空调器有限总公司 | Display method and device for air conditioner and air conditioner |
WO2022252655A1 (en) * | 2021-06-01 | 2022-12-08 | 青岛海尔空调器有限总公司 | Display method and apparatus for use in air conditioner, and air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202328574U (en) | Air supply system of central air conditioner with two cooling coils | |
CN102278795B (en) | Central air-conditioning air supply system adopting double cooling coils | |
CN102997499B (en) | A kind of heat pump apparatus of air source simultaneously can producing cold water and hot water | |
CN105318454B (en) | A kind of air-source multiple air conditioner heat pump system and its operation method | |
CN100538208C (en) | A kind of double-temperature refrigerator water/cold wind unit | |
CN106839220B (en) | Direct expansion type evaporative condensing air conditioning system under open tunnel ventilation mode | |
CN103940145A (en) | Multifunctional combined supply type integrated air conditioner unit for data rooms | |
CN106705489A (en) | Variable refrigerant flow system combined with air source heat pump hot water and control method of variable refrigerant flow system | |
CN103032980A (en) | Water chilling unit | |
CN205174615U (en) | Air source multiple air conditioner heat pump system | |
CN101995067B (en) | Air conditioning system combined by indirect evaporation chiller plant and traditional mechanical refrigerating unit | |
CN101270934A (en) | Composite method and device for two-stage compression heat pump air conditioner and refrigerator system | |
CN107255329A (en) | A kind of transition season low power consuming cold supply system based on energy tower | |
CN114576744A (en) | Air conditioning system and control method | |
CN109341138B (en) | Combined air conditioning system of machine room and hot water system and control method thereof | |
CN109340960B (en) | Combined air conditioning system of machine room and control method thereof | |
CN105466075A (en) | Refrigeration and domestic hot water heating flow of heat pump and hot water heating combination system | |
CN201434458Y (en) | Large temperature difference series cascade utilization air-conditioning and refrigeration system | |
CN202648031U (en) | Dual-heat-source, air-injection and enthalpy-increasing heat pump air-conditioner | |
CN109357426B (en) | Combined air conditioning system for machine room and control method thereof | |
CN207162825U (en) | Data center's air-conditioning system | |
CN202928187U (en) | A cold water and hot water air-conditioning unit employing series-flow evaporators | |
CN206556168U (en) | Efficient energy-saving air energy double-machine heat pump air conditioning system | |
CN109357427B (en) | Combined air conditioning system for machine room and hot water system and control method thereof | |
CN201680649U (en) | Soil source heat pump hot water air-conditioning refrigeration and heating hybrid system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20120711 Effective date of abandoning: 20130724 |
|
RGAV | Abandon patent right to avoid regrant |