CN202267481U - Miniature horizontal stabilized platform - Google Patents
Miniature horizontal stabilized platform Download PDFInfo
- Publication number
- CN202267481U CN202267481U CN2011202492801U CN201120249280U CN202267481U CN 202267481 U CN202267481 U CN 202267481U CN 2011202492801 U CN2011202492801 U CN 2011202492801U CN 201120249280 U CN201120249280 U CN 201120249280U CN 202267481 U CN202267481 U CN 202267481U
- Authority
- CN
- China
- Prior art keywords
- chip microcomputer
- pitch
- axis
- frame
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Gyroscopes (AREA)
Abstract
本实用新型涉及一种小型水平稳定平台,其包括基座,基座上设有俯仰框架、横滚框架和感知上述框架俯仰和横滚运动的陀螺传感器,倾角传感器能感应得到俯仰和横滚两组数据,并将数据交给单片机处理,由单片机还原成角度值并结合陀螺传感器获得的载体俯仰和横滚角速度,换算成平台的俯仰和横滚补偿脉冲输出,进而驱动相应的驱动装置将被稳定平台调节在水平平面上。与现有技术相比,本实用新型的结构简单,成本较低,而且通过倾角传感器还实现了零点漂移误差的补偿,使平台的精度较高、稳定性更好。
The utility model relates to a small horizontally stable platform, which comprises a base, on which a pitch frame, a roll frame and a gyro sensor for sensing the pitch and roll motion of the frame are arranged, and the inclination sensor can sense both pitch and roll. Group the data and send the data to the single-chip microcomputer for processing. The single-chip microcomputer restores the angle value and combines the pitch and roll angular velocity of the carrier obtained by the gyro sensor to convert it into the pitch and roll compensation pulse output of the platform, and then drives the corresponding drive device. The stable platform is adjusted on a horizontal plane. Compared with the prior art, the utility model has simple structure and low cost, and realizes the compensation of the zero point drift error through the inclination sensor, so that the precision of the platform is higher and the stability is better.
Description
技术领域 technical field
本实用新型涉及一种稳定平台,具体是一种小型水平稳定平台。The utility model relates to a stable platform, in particular to a small horizontal stable platform.
背景技术 Background technique
稳定平台自诞生以来一直是国内外各相关领域研究机构的重点关注对象,目前,稳定平台在科学、军事、商业等多个领域已得到了广泛应用。在这些应用中,稳定平台的基本功能均相类似,即使系统的目标平台与载体或底座的角运动干扰相隔离,在惯性空间保持相对的稳定性,并能根据控制指令要求,使被稳定对象在有干扰力矩作用的情况下沿着一定规律运动。稳定平台是用来使被稳定对象相对于方位保持稳定的装置,它的主要特征是广泛使用陀螺作为角运动敏感元件,采用的技术手段归于惯性技术研究的范畴。其特有的功能是隔离载体运动,不断测量平台姿态和位置的变化,精确保持载体动态姿态基准。如专利号为ZL94218035.6(授权公告号为CN2204069Y)的中国实用新型专利公开了一种陀螺稳定平台二轴天线装置,它利用陀螺稳定平台上旋转的飞轮所形成的陀螺力矩与干扰力矩方向相反,达到维持天线装置原水平姿态。但是,陀螺具有不可避免的零点漂移的缺陷,而该装置并没有给出消除漂移的具体解决方案,导致装置的精度较低,平台的稳定性较差。Since its birth, the stable platform has been the focus of research institutions in various related fields at home and abroad. At present, the stable platform has been widely used in many fields such as science, military, and business. In these applications, the basic functions of the stabilized platform are similar. Even if the target platform of the system is isolated from the angular motion interference of the carrier or base, it maintains relative stability in the inertial space and can make the stabilized object It moves along a certain law under the action of disturbance torque. The stabilized platform is a device used to keep the stabilized object stable relative to its orientation. Its main feature is the extensive use of gyroscopes as angular motion sensitive elements, and the technical means used belong to the category of inertial technology research. Its unique function is to isolate the movement of the carrier, continuously measure the change of the attitude and position of the platform, and accurately maintain the dynamic attitude reference of the carrier. For example, the Chinese utility model patent whose patent number is ZL94218035.6 (authorized announcement number is CN2204069Y) discloses a two-axis antenna device for a gyro-stabilized platform, which uses the gyro torque formed by the flywheel rotating on the gyro-stabilized platform to be in the opposite direction to the disturbance torque. , to maintain the original horizontal posture of the antenna device. However, the gyroscope has the defect of inevitable zero point drift, and this device does not provide a specific solution to eliminate the drift, resulting in low precision of the device and poor stability of the platform.
实用新型内容 Utility model content
本实用新型所要解决的技术问题是针对上述现有技术,提供一种成本较低、精度高且能有效消除陀螺传感器的零点漂移的小型水平稳定平台。The technical problem to be solved by the utility model is to provide a small horizontal stable platform with low cost, high precision and can effectively eliminate the zero point drift of the gyro sensor for the above-mentioned prior art.
本实用新型解决上述技术问题所采用的技术方案为:该小型水平稳定平台,包括基座,基座上设有俯仰框架、横滚框架和感知上述框架俯仰和横滚运动的陀螺传感器,所述俯仰框架上连接有X轴驱动装置,所述横滚框架上连接有Y轴驱动装置,其特征在于:所述基座上还设有第一单片机、第二单片机、第三单片机和倾角传感器,所述倾角传感器用于测量水平平台在俯仰和横滚两个方向的角度偏差数据,该数据输入到第一单片机进行处理,所述第二单片机接收来自第一单片机的俯仰方向的角度偏差数据,结合所述陀螺传感器获得的载体俯仰角速度,转换成俯仰补偿脉冲输出给所述的X轴驱动装置;所述第三单片机接收来自第一单片机的横滚方向的角度偏差数据,结合所述陀螺传感器获得的载体横滚角速度,转换成横滚补偿脉冲输出给所述的Y轴驱动装置。The technical solution adopted by the utility model to solve the above-mentioned technical problems is: the small horizontal stable platform includes a base, and the base is provided with a pitch frame, a roll frame and a gyro sensor for sensing the pitch and roll motion of the above-mentioned frame. An X-axis drive device is connected to the pitch frame, and a Y-axis drive device is connected to the roll frame, and it is characterized in that: a first single-chip microcomputer, a second single-chip microcomputer, a third single-chip microcomputer and an inclination sensor are also provided on the base, The inclination sensor is used to measure the angular deviation data of the horizontal platform in the two directions of pitch and roll, and the data is input to the first single-chip microcomputer for processing, and the second single-chip microcomputer receives the angular deviation data from the pitch direction of the first single-chip microcomputer, Combining the pitch angular velocity of the carrier obtained by the gyro sensor, converting it into a pitch compensation pulse and outputting it to the X-axis drive device; the third single-chip microcomputer receives the angular deviation data in the roll direction from the first single-chip microcomputer, and combining the gyro sensor The obtained carrier roll angular velocity is converted into a roll compensation pulse and output to the Y-axis driving device.
所述的X轴驱动装置可以采用多种驱动方式,优选的,所述的X轴驱动装置包括X轴电机驱动器和连接在X轴电机驱动器上的X轴步进电机,所述X轴电机驱动器接收并处理来自所述第二单片机的数据,所述X轴步进电机驱动所述的俯仰框架;所述的Y轴驱动装置包括Y轴电机驱动器和连接在Y轴电机驱动器上的Y轴步进电机,所述Y轴步进电机驱动器接收并处理来自所述第三单片机的数据,所述Y轴电机驱动所述的横滚框架。The X-axis driving device can adopt multiple driving modes. Preferably, the X-axis driving device includes an X-axis motor driver and an X-axis stepping motor connected to the X-axis motor driver, and the X-axis motor driver Receive and process the data from the second single-chip microcomputer, the X-axis stepper motor drives the pitch frame; the Y-axis driving device includes a Y-axis motor driver and a Y-axis stepper connected to the Y-axis motor driver The Y-axis stepping motor driver receives and processes data from the third single-chip microcomputer, and the Y-axis motor drives the rolling frame.
进一步优选,所述的倾角传感器安装在所述的俯仰框架上。被稳定平台由俯仰框架围合而成,倾角传感器能直接感知载体的运动,并直接输出倾斜角度信号。Further preferably, the tilt sensor is installed on the pitch frame. The stabilized platform is surrounded by a pitch frame, and the inclination sensor can directly sense the movement of the carrier and directly output the inclination angle signal.
作为该稳定平台系统实现的关键,所述的第一单片机、第二单片机及第三单片机均采用AVR单片机。AVR单片机是一种高速低能耗的单片机,具有较高的性价比。As the key to the realization of the stable platform system, the first single-chip microcomputer, the second single-chip microcomputer and the third single-chip microcomputer all adopt AVR single-chip microcomputers. AVR single-chip microcomputer is a high-speed and low-power consumption single-chip microcomputer with high cost performance.
与现有技术相比,本实用新型的优点在于:该稳定平台在设有陀螺传感器的基础上还安装了倾角传感器,倾角传感器能感应得到俯仰和横滚两组数据,并将数据交给单片机处理,由单片机还原成角度值并结合陀螺传感器获得的载体俯仰和横滚角速度,换算成平台的俯仰和横滚补偿脉冲输出,进而驱动相应的驱动装置将被稳定平台调节在水平平面上。可见本实用新型的结构简单,成本较低,而且通过倾角传感器还实现了陀螺零点漂移误差的补偿,使平台的精度较高、稳定性更好。Compared with the prior art, the utility model has the advantages that: the stable platform is equipped with an inclination sensor on the basis of a gyro sensor, and the inclination sensor can sense two sets of data of pitch and roll, and deliver the data to the single chip microcomputer Processing, the single-chip microcomputer restores the angle value and combines the carrier pitch and roll angular velocity obtained by the gyro sensor, and converts it into the pitch and roll compensation pulse output of the platform, and then drives the corresponding drive device to adjust the stabilized platform on the horizontal plane. It can be seen that the structure of the utility model is simple, the cost is low, and the compensation of the zero point drift error of the gyro is also realized through the inclination sensor, so that the precision of the platform is higher and the stability is better.
附图说明 Description of drawings
图1为本实用新型实施例平台框架的结构示意图;Fig. 1 is the structural representation of platform frame of the utility model embodiment;
图2为本实用新型实施例的系统框图。Fig. 2 is a system block diagram of the utility model embodiment.
具体实施方式 Detailed ways
以下结合附图实施例对本实用新型作进一步详细描述。The utility model is described in further detail below in conjunction with the accompanying drawings.
如图1所示,载体安装在稳定平面1上,内框架即俯仰框架2可绕X轴旋转,外框架即横滚框架3可绕Y轴旋转,俯仰框架2和横滚框架3安装在基座4上。X轴设为俯仰轴,Y轴设为横滚轴。在双轴两框架结构中,仪器设备放置于相互正交的俯仰框架2和横滚框架3组成的框架系统上,通过伺服稳定控制,克服来自基座4的干扰,实现稳定的效果。这种双轴两框架稳定结构对于小负载、高精度的稳定是十分有效的。As shown in Figure 1, the carrier is installed on a stable plane 1, the inner frame, that is, the
如图2所示,倾角传感器与相应的元件安装于俯仰框架上,陀螺传感器为两个且安装于基座上,分别用于感知载体的俯仰运动和横滚运动。As shown in Figure 2, the inclination sensor and the corresponding components are installed on the pitch frame, and there are two gyro sensors installed on the base, which are used to sense the pitch motion and roll motion of the carrier respectively.
倾角传感器具有分辨率高、体积小、易于集成、工作温度范围宽等优点。倾角传感器本质上是运用惯性原理的一种加速度传感器,主要用于测量极慢速或静止载体的倾角值,而在快速运动的载体上有极大的延迟。The inclination sensor has the advantages of high resolution, small size, easy integration, and wide operating temperature range. The inclination sensor is essentially an acceleration sensor using the principle of inertia. It is mainly used to measure the inclination value of a very slow or stationary carrier, but there is a huge delay on a fast-moving carrier.
该稳定平台的工作原理如下:采用陀螺传感器作为敏感元件,感受载体的俯仰和横滚运动,当载体即基座4摇动时,陀螺传感器可以感知载体空间运动角速度,该角速度经单片机计算得到脉冲,经过电机驱动器放大处理后分别驱动与X、Y轴相连的步进电机校正平台的运动,从而保证平台处于水平状态。由于陀螺传感器具有不可避免的零点漂移的缺陷,单靠陀螺传感器难以达到平台始终处于水平状态的目的。为了消除陀螺传感器的零点漂移对系统的影响,本实施例在俯仰框架2上安装有倾角传感器,根据倾角传感器的信号来修正陀螺传感器的零点漂移,两者结合来达到平台水平的目的。实现该稳定平台系统的关键点是实现对第一单片机AVR0、第二单片机AVR1和第三单片机ARV2的编程,由单片机来实现智能控制,其中第二单片机AVR1控制俯仰运动,第三单片机AVR2控制横滚运动,它们的功能和设计思路相一致,其主要功能是确认和接收第一单片机AVR0传输过来平台倾斜角度值,然后结合陀螺传感器传输过来的载体角速度,驱动俯仰和横滚电机以保持平台水平。The working principle of the stable platform is as follows: the gyro sensor is used as the sensitive element to sense the pitch and roll motion of the carrier. When the carrier, that is, the
该稳定平台的具体工作步骤为:首先,倾角传感器感应得到俯仰和横滚两组数据,并将这两组数据传输给第一单片机AVR0,第一单片机AVR0从倾角传感器获得数据后对该数据进行处理,该数据处理过程就是把获得的这两组数据转换成所需要的对应角度即平台偏离水平位置的角度,并且在获得数据时,为消除抖动,需对所取得的数据进行滤波,为提高平台灵敏性,本设计采用多数据取中平均值法。然后,第一单片机AVR0将处理后的数据通过串口发送到第二单片机AVR1和第三单片机AVR2,然后,AVR1和AVR2结合陀螺传感器检测的载体角速度值,换算为电机转动驱动脉冲,最后,该单片机向X轴驱动装置和Y轴驱动装置发送脉冲,由驱动装置驱动来调节双轴两框架,从而使稳定平台处于水平位置。在本实施例中,X轴驱动装置包括X轴电机驱动器和连接在X轴电机驱动器上的X轴步进电机,X轴电机驱动器接收并处理来自第二单片机AVR1的数据,X轴步进电机驱动俯仰框架;Y轴驱动装置包括Y轴电机驱动器和连接在Y轴电机驱动器上的Y轴步进电机,Y轴步进电机驱动器接收并处理来自第三单片机AVR2的数据,Y轴电机驱动横滚框架。步进电机每接收一个脉冲,电机就转动(前进或后退)一个步长,所以,第二单片机AVR1和第三单片机AVR2在处理时还需要确定电机的转动方向。此外,第二单片机AVR1和第三单片机AVR2还需要计算向电机发送脉冲的数量和频率。其中脉冲的多少由于载体始终是在运动的所以难以确定,因此解决方案是一直发送脉冲直到平台水平为止。发送电平的频率可以由每发送两个脉冲之间的时间间隔的长短来控制。此外,需要计算出发送电平的时间间隔(Delay),该时间间隔可以根据电机齿轮半径、俯仰轴(横滚轴)齿轮半径、步进电机的步长和单片机晶振计算得到的定时器常数(TIMER_DELAY_CONST)结合补偿角度的大小计算得到。The specific working steps of the stable platform are as follows: firstly, the inclination sensor senses two sets of data of pitch and roll, and transmits these two sets of data to the first single-chip microcomputer AVR0, and the first single-chip microcomputer AVR0 obtains the data from the inclination sensor and processes the data Processing, the data processing process is to convert the obtained two sets of data into the required corresponding angle, that is, the angle at which the platform deviates from the horizontal position. Platform sensitivity, this design adopts the method of taking the average value of multiple data. Then, the first single-chip microcomputer AVR0 sends the processed data to the second single-chip microcomputer AVR1 and the third single-chip microcomputer AVR2 through the serial port. Then, AVR1 and AVR2 combine the angular velocity value of the carrier detected by the gyro sensor to convert it into a motor rotation drive pulse. Finally, the single-chip microcomputer Send pulses to the X-axis driving device and the Y-axis driving device, and the driving device drives to adjust the two-axis two frames, so that the stable platform is in a horizontal position. In this embodiment, the X-axis driving device includes an X-axis motor driver and an X-axis stepping motor connected to the X-axis motor driver, and the X-axis motor driver receives and processes data from the second single-chip microcomputer AVR1, and the X-axis stepping motor Drive the pitch frame; the Y-axis driving device includes a Y-axis motor driver and a Y-axis stepping motor connected to the Y-axis motor driver, and the Y-axis stepping motor driver receives and processes data from the third single-chip AVR2, and the Y-axis motor drives the horizontal roll frame. Whenever the stepping motor receives a pulse, the motor rotates (forward or backward) by one step, so the second single-chip AVR1 and the third single-chip AVR2 also need to determine the direction of rotation of the motor during processing. In addition, the second single-chip AVR1 and the third single-chip AVR2 also need to calculate the number and frequency of pulses sent to the motor. The number of pulses is difficult to determine because the carrier is always moving, so the solution is to send pulses until the platform is level. The frequency of the sending level can be controlled by the length of the time interval between sending two pulses. In addition, it is necessary to calculate the time interval (Delay) of the sending level, which can be calculated according to the motor gear radius, the pitch axis (roll axis) gear radius, the step size of the stepping motor and the timer constant ( TIMER_DELAY_CONST) is calculated by combining the size of the compensation angle.
由于倾角传感器和陀螺传感器的特性,即倾角传感器的滞后性和陀螺零点漂移,本设计利用倾角传感器来修正陀螺的零漂。Due to the characteristics of the inclination sensor and the gyro sensor, that is, the hysteresis of the inclination sensor and the zero drift of the gyro, this design uses the inclination sensor to correct the zero drift of the gyro.
以上所述仅为本实用新型的优选实施方式,应当指出,对于本领域普通技术人员而言,在不脱离本实用新型的原理前提下,可以对本实用新型作出多种改型或改进,这些均被视为本实用新型的保护范围之内。The above descriptions are only the preferred embodiments of the present utility model. It should be pointed out that for those skilled in the art, without departing from the principle of the present utility model, various modifications or improvements can be made to the present utility model. It is considered within the protection scope of the present utility model.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011202492801U CN202267481U (en) | 2011-07-13 | 2011-07-13 | Miniature horizontal stabilized platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011202492801U CN202267481U (en) | 2011-07-13 | 2011-07-13 | Miniature horizontal stabilized platform |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202267481U true CN202267481U (en) | 2012-06-06 |
Family
ID=46158274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011202492801U Expired - Fee Related CN202267481U (en) | 2011-07-13 | 2011-07-13 | Miniature horizontal stabilized platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202267481U (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102722179A (en) * | 2012-06-11 | 2012-10-10 | 湖南正奇信息科技有限公司 | Target tracking platform stabilization control system based on three-dimensional suspension technology |
CN102929295A (en) * | 2012-11-08 | 2013-02-13 | 中国地质大学(武汉) | Automatic leveling control device based on single chip microcomputer (SCM) |
CN103995495A (en) * | 2014-06-11 | 2014-08-20 | 北京航空航天大学 | Multifunctional debugging table hybrid control system for large equipment assembly debugging |
CN104677357A (en) * | 2013-11-27 | 2015-06-03 | 哈尔滨恒誉名翔科技有限公司 | Small stabilized platform based on single chip microcomputer |
CN105371821A (en) * | 2014-08-29 | 2016-03-02 | 同济大学 | Wind-driven generator foundation tilt detection method based on tilt angle sensors |
CN105836151A (en) * | 2015-10-23 | 2016-08-10 | 范云生 | Shipboard aircraft stable taking-off and landing device and control method |
CN106347600A (en) * | 2016-08-31 | 2017-01-25 | 上海鹰觉科技有限公司 | Precise stabilizing platform servo system |
CN106896820A (en) * | 2017-02-27 | 2017-06-27 | 北京星网卫通科技开发有限公司 | Inertially stabilized platform and its control method |
CN107422750A (en) * | 2017-07-13 | 2017-12-01 | 武汉理工大学 | Unmanned boat calibrates erecting bed with automatic horizontal |
CN111525843A (en) * | 2020-04-17 | 2020-08-11 | 北京泓慧国际能源技术发展有限公司 | Levelness control system, equipment and method for flywheel base |
CN113173500A (en) * | 2021-03-31 | 2021-07-27 | 江苏无线电厂有限公司 | Lifting lodging mechanism and control method thereof |
CN113465781A (en) * | 2021-06-30 | 2021-10-01 | 自然资源部第一海洋研究所 | Calibration device for thermohaline measuring instrument, marine survey vessel and calibration method for thermohaline measuring instrument |
-
2011
- 2011-07-13 CN CN2011202492801U patent/CN202267481U/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102722179A (en) * | 2012-06-11 | 2012-10-10 | 湖南正奇信息科技有限公司 | Target tracking platform stabilization control system based on three-dimensional suspension technology |
CN102929295A (en) * | 2012-11-08 | 2013-02-13 | 中国地质大学(武汉) | Automatic leveling control device based on single chip microcomputer (SCM) |
CN102929295B (en) * | 2012-11-08 | 2015-04-15 | 中国地质大学(武汉) | Automatic leveling control device based on single chip microcomputer (SCM)and levelling method |
CN104677357A (en) * | 2013-11-27 | 2015-06-03 | 哈尔滨恒誉名翔科技有限公司 | Small stabilized platform based on single chip microcomputer |
CN103995495A (en) * | 2014-06-11 | 2014-08-20 | 北京航空航天大学 | Multifunctional debugging table hybrid control system for large equipment assembly debugging |
CN105371821A (en) * | 2014-08-29 | 2016-03-02 | 同济大学 | Wind-driven generator foundation tilt detection method based on tilt angle sensors |
CN105371821B (en) * | 2014-08-29 | 2018-05-08 | 同济大学 | A kind of wind driven generator base slant detection method based on obliquity sensor |
CN105836151B (en) * | 2015-10-23 | 2018-01-16 | 范云生 | A kind of ship carries the stable lifting gear of aircraft and control method |
CN105836151A (en) * | 2015-10-23 | 2016-08-10 | 范云生 | Shipboard aircraft stable taking-off and landing device and control method |
CN106347600A (en) * | 2016-08-31 | 2017-01-25 | 上海鹰觉科技有限公司 | Precise stabilizing platform servo system |
CN106896820A (en) * | 2017-02-27 | 2017-06-27 | 北京星网卫通科技开发有限公司 | Inertially stabilized platform and its control method |
CN106896820B (en) * | 2017-02-27 | 2020-05-29 | 北京星网卫通科技开发有限公司 | Inertially stabilized platform |
CN107422750A (en) * | 2017-07-13 | 2017-12-01 | 武汉理工大学 | Unmanned boat calibrates erecting bed with automatic horizontal |
CN111525843A (en) * | 2020-04-17 | 2020-08-11 | 北京泓慧国际能源技术发展有限公司 | Levelness control system, equipment and method for flywheel base |
CN113173500A (en) * | 2021-03-31 | 2021-07-27 | 江苏无线电厂有限公司 | Lifting lodging mechanism and control method thereof |
CN113465781A (en) * | 2021-06-30 | 2021-10-01 | 自然资源部第一海洋研究所 | Calibration device for thermohaline measuring instrument, marine survey vessel and calibration method for thermohaline measuring instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202267481U (en) | Miniature horizontal stabilized platform | |
CN202452059U (en) | Gyroscope stable holder | |
CN104811588B (en) | A kind of boat-carrying based on gyroscope is surely as control method | |
CN103644915B (en) | One directly drives optical fibre gyro stabilized platform structure and control method thereof | |
EP2919064A1 (en) | Stabilizer for a photographing apparatus and a control method for such a stabilizer | |
US20220043328A1 (en) | Control method for gimbal, controller, and gimbal | |
CN104914864B (en) | A kind of mobile device, mobile device control system and control method | |
CN104656684A (en) | Method for controlling tri-axis stabilization tripod head with brushless motors by using single IMU sensors | |
CN202229764U (en) | Triaxial rotary table with dynamic stabilizing function | |
CN108488572A (en) | A kind of active stabilization holder and its control method | |
Feng et al. | Modeling and implementation of two-wheel self-balancing robot equipped with supporting arms | |
CN202548681U (en) | Intelligent self-stabilization image pickup system control unit | |
CN107389968A (en) | A kind of unmanned plane fixed-point implementation method and apparatus based on light stream sensor and acceleration transducer | |
CN102914307A (en) | Three-axis turntable with dynamic stabilization function | |
CN108758301B (en) | Double-stage driving gyro stabilization cradle head and control method thereof | |
CN110803304B (en) | Satellite attitude control system | |
CN104682789A (en) | PID (Proportion Integration Differentiation) controller applied to two-wheeled robots | |
CN106742066A (en) | A kind of legerity type Xing Shang executing agencies isolation mounting | |
CN115562378B (en) | A photoelectric stabilized platform, angular velocity compensation method, and storage medium | |
CN109634302A (en) | A kind of quadrotor system based on optical alignment | |
CN103968848A (en) | Navigation method and navigation system based on inertial sensor | |
CN100587644C (en) | An integrated single-loop controller for stable tracking of camera optical axis | |
CN106918318A (en) | A kind of device and leveling method of three fulcrums leveling theodolite | |
CN108896045B (en) | An accelerometer-free inertial navigation system and navigation method | |
CN104546391A (en) | Gyro stabilizer for tactile sticks and complementary filtering method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120606 Termination date: 20130713 |