CN202246643U - Coupling-type photo-bioreactor - Google Patents
Coupling-type photo-bioreactor Download PDFInfo
- Publication number
- CN202246643U CN202246643U CN 201120319661 CN201120319661U CN202246643U CN 202246643 U CN202246643 U CN 202246643U CN 201120319661 CN201120319661 CN 201120319661 CN 201120319661 U CN201120319661 U CN 201120319661U CN 202246643 U CN202246643 U CN 202246643U
- Authority
- CN
- China
- Prior art keywords
- bioreactor
- photobioreactor
- low level
- dull
- order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241000195493 Cryptophyta Species 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims 1
- 239000004926 polymethyl methacrylate Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000009423 ventilation Methods 0.000 abstract description 15
- 230000000886 photobiology Effects 0.000 abstract description 3
- 239000011521 glass Substances 0.000 description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 9
- 229920005372 Plexiglas® Polymers 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000003292 glue Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 240000002900 Arthrospira platensis Species 0.000 description 8
- 235000016425 Arthrospira platensis Nutrition 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229940082787 spirulina Drugs 0.000 description 8
- 150000004676 glycans Chemical class 0.000 description 7
- 239000005017 polysaccharide Substances 0.000 description 7
- 229920001282 polysaccharide Polymers 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000013341 scale-up Methods 0.000 description 5
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 5
- 241001466077 Salina Species 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 235000012680 lutein Nutrition 0.000 description 4
- 239000001656 lutein Substances 0.000 description 4
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 description 4
- 229960005375 lutein Drugs 0.000 description 4
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 4
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 241000168517 Haematococcus lacustris Species 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 108010053210 Phycocyanin Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 3
- 235000013734 beta-carotene Nutrition 0.000 description 3
- 239000011648 beta-carotene Substances 0.000 description 3
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 3
- 229960002747 betacarotene Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- MBMBGCFOFBJSGT-KUBAVDMBSA-N docosahexaenoic acid Natural products CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 3
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000195628 Chlorophyta Species 0.000 description 2
- 241000224472 Eustigmatophyceae Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 2
- 230000002019 anti-mutation Effects 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 235000013793 astaxanthin Nutrition 0.000 description 2
- 239000001168 astaxanthin Substances 0.000 description 2
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 description 2
- 229940022405 astaxanthin Drugs 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 2
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- JKQXZKUSFCKOGQ-JLGXGRJMSA-N (3R,3'R)-beta,beta-carotene-3,3'-diol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-JLGXGRJMSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- NNMALANKTSRILL-LXENMSTPSA-N 3-[(2z,5e)-2-[[3-(2-carboxyethyl)-5-[(z)-[(3e,4r)-3-ethylidene-4-methyl-5-oxopyrrolidin-2-ylidene]methyl]-4-methyl-1h-pyrrol-2-yl]methylidene]-5-[(4-ethyl-3-methyl-5-oxopyrrol-2-yl)methylidene]-4-methylpyrrol-3-yl]propanoic acid Chemical compound O=C1C(CC)=C(C)C(\C=C\2C(=C(CCC(O)=O)C(=C/C3=C(C(C)=C(\C=C/4\C(\[C@@H](C)C(=O)N\4)=C\C)N3)CCC(O)=O)/N/2)C)=N1 NNMALANKTSRILL-LXENMSTPSA-N 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 241001495180 Arthrospira Species 0.000 description 1
- 241001467606 Bacillariophyceae Species 0.000 description 1
- 241000206761 Bacillariophyta Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 241000195633 Dunaliella salina Species 0.000 description 1
- 241000195480 Fucus Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 241000040932 Muriellopsis Species 0.000 description 1
- 241001250129 Nannochloropsis gaditana Species 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 241000324045 Scenedesmus sp. 'almeriensis' Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- JKQXZKUSFCKOGQ-LQFQNGICSA-N Z-zeaxanthin Natural products C([C@H](O)CC=1C)C(C)(C)C=1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-LQFQNGICSA-N 0.000 description 1
- QOPRSMDTRDMBNK-RNUUUQFGSA-N Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C QOPRSMDTRDMBNK-RNUUUQFGSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 1
- JKQXZKUSFCKOGQ-LOFNIBRQSA-N all-trans-Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C JKQXZKUSFCKOGQ-LOFNIBRQSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000003471 anti-radiation Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 244000000007 bacterial human pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 150000001746 carotenes Chemical class 0.000 description 1
- 235000005473 carotenes Nutrition 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940090949 docosahexaenoic acid Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- VZCCETWTMQHEPK-UHFFFAOYSA-N gamma-Linolensaeure Natural products CCCCCC=CCC=CCC=CCCCCC(O)=O VZCCETWTMQHEPK-UHFFFAOYSA-N 0.000 description 1
- 235000020664 gamma-linolenic acid Nutrition 0.000 description 1
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 1
- 229960002733 gamolenic acid Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000000258 photobiological effect Effects 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 108010027322 single cell proteins Proteins 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 235000010930 zeaxanthin Nutrition 0.000 description 1
- 239000001775 zeaxanthin Substances 0.000 description 1
- 229940043269 zeaxanthin Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/02—Photobioreactors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/04—Flat or tray type, drawers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Clinical Laboratory Science (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本实用新型公开一种耦合式光生物反应器,包括低位平板光生物、高位平板光生物反应器、中位光生物反应器及外循环管,其中:所述低位平板光生物和所述高位平板光生物反应器的内侧通过所述中位光生物反应器连通;所述低位平板光生物和所述高位平板光生物反应器的外侧通过所述外循环管道连通;所述高位平板光生物反应器设有通气管路,所述通气管路连接高压气源。本实用新型结合平板光生物反应器和垂直管式光生物反应器各自的优势,可实现高附加值微藻的低成本高密度培养。
The utility model discloses a coupled photobioreactor, which comprises a low-position flat photobioreactor, a high-position flat photobioreactor, a middle-position photobioreactor and an external circulation tube, wherein: the low-position flat photobiology and the high-position flat plate The inside of the photobioreactor is communicated through the middle photobioreactor; the outside of the low flat photobioreactor and the high flat photobioreactor are connected through the external circulation pipeline; the high flat photobioreactor A ventilation pipeline is provided, and the ventilation pipeline is connected with a high-pressure gas source. The utility model combines the respective advantages of a flat photobioreactor and a vertical tube photobioreactor, and can realize low-cost and high-density cultivation of microalgae with high added value.
Description
技术领域 technical field
本实用新型涉及光生物反应器,特别涉及一种耦合式光生物反应器。The utility model relates to a photobioreactor, in particular to a coupled photobioreactor.
背景技术 Background technique
微藻是一类系统发生各异、个体较小、通常为单细胞或群体的、能进行光合作用的水生(或陆生、气生、共生)低等植物,是自然界起源最早、分布最广、种类和数量最多的生物质资源。微藻具有独特的生物学特性,被广泛应用在生物制药、营养品、保健品、污水处理、天然食品加工、生物饵料、生物肥料和可再生能源生产等方面,具有重要的经济和社会价值。Microalgae are a kind of aquatic (or terrestrial, aerial, symbiotic) lower plants with different phylogenies, small individuals, usually single cells or groups, and capable of photosynthesis. They are the earliest and most widely distributed plants in nature. , the largest variety and quantity of biomass resources. Microalgae have unique biological characteristics and are widely used in biopharmaceuticals, nutritional products, health products, sewage treatment, natural food processing, biological bait, biological fertilizer and renewable energy production, and have important economic and social value.
许多微藻富含高附加值的生物活性物质,如蛋白质、多糖、维生素、β-胡萝卜素、多不高饱和脂肪酸(EPA、DHA、AA)、叶黄素等,成为人类未来开发的重要生物资源之一。(1)蛋白质,部分蓝藻(螺旋藻)和绿藻(小球藻)的蛋白质含量高,且氨基酸组成合理,含有人体必需的8种氨基酸,可作为单细胞蛋白的重要来源;(2)多糖,微藻多糖广泛存在于微藻细胞内,具有抗肿瘤、抗病毒、抗辐射损伤、抗突变、抗衰老、抗凝血、降血脂及调节机体免疫能力等广泛的生理功能,目前研究较多的微藻多糖有:节旋藻(螺旋藻)多糖、小球藻多糖、紫球藻多糖等;(3)色素,主要有类胡萝卜素(胡萝卜素类、叶黄素类)和藻胆素(藻红胆素、藻蓝胆素)。β-胡萝卜素是维生素A合成的前体,有抗氧化、抗突变、抗衰老、预防癌症、增加免疫力等作用,盐生杜氏藻(Dunaliella salina)中β-胡萝卜素含量占干重的10%以上。叶黄素类色素及富含藻株主要有:堇菜黄素(Eustigmatophyceae)、虾青素(Haematococcuspluvialis)、玉米黄素(Nannochloropsis gaditana)、叶黄素(Scenedesmus almeriensis、Muriellopsis sp.)、岩藻黄素(Bacillariophyceae)等。藻蓝胆素(螺旋藻)可用作光敏剂,用于癌症的光动态治疗,高纯度的藻蓝蛋白可以作为生物大分子的荧光分子探针;(4)多不高饱和脂肪酸(PUFA),具有独特的生理功能,有预防和治疗心血管疾病、癌症,调节中枢神经、视觉系统的功能,可提高人体的免疫机能调节能力,防止记忆力减退。某些微藻种类富含PUFA,如柯氏隐甲藻(二十二碳六烯酸)、硅藻和真眼点藻(二十碳五烯酸)、螺旋藻(γ-亚麻酸)、缺刻缘绿藻(花生四烯酸)等。Many microalgae are rich in high value-added biologically active substances, such as proteins, polysaccharides, vitamins, β-carotene, polyunsaturated fatty acids (EPA, DHA, AA), lutein, etc., and become important biological substances for human future development. one of the resources. (1) Protein, some blue-green algae (spirulina) and green algae (chlorella) have high protein content and reasonable amino acid composition, containing 8 kinds of amino acids necessary for human body, which can be used as an important source of single-cell protein; (2) polysaccharides , Microalgae polysaccharides widely exist in microalgae cells, and have a wide range of physiological functions such as anti-tumor, anti-virus, anti-radiation damage, anti-mutation, anti-aging, anti-coagulation, lowering blood lipids, and regulating the body's immunity. Currently, there are many studies The microalgae polysaccharides include: Arthrospira (spirulina) polysaccharides, chlorella polysaccharides, Porphyridum polysaccharides, etc.; (3) pigments, mainly carotenoids (carotene, lutein) and phycobilin (Phycoerythrin, Phycocyanin). β-carotene is the precursor of vitamin A synthesis. It has anti-oxidation, anti-mutation, anti-aging, cancer prevention, and increased immunity. The content of β-carotene in Dunaliella salina accounts for 10% of the dry weight. %above. Lutein pigments and rich algae strains mainly include: Eustigmatophyceae (Eustigmatophyceae), astaxanthin (Haematococcus pluvialis), zeaxanthin (Nannochloropsis gaditana), lutein (Scenedesmus almeriensis, Muriellopsis sp.), fucus Flavin (Bacillariophyceae) etc. Phycocyanin (Spirulina) can be used as a photosensitizer for photodynamic therapy of cancer, and high-purity phycocyanin can be used as a fluorescent molecular probe for biological macromolecules; (4) polyunsaturated fatty acids (PUFA) , has unique physiological functions, prevents and treats cardiovascular diseases, cancer, regulates central nervous system and visual system functions, improves the body's immune function regulation ability, and prevents memory loss. Certain species of microalgae are rich in PUFAs, such as Cryptidinium cuspii (docosahexaenoic acid), diatoms and euophthora (eicosapentaenoic acid), spirulina (gamma-linolenic acid), Notch Edge green algae (arachidonic acid) and so on.
微藻具有如此重要的开发利用价值,但其产业化进程却较缓慢。目前市面上可供选择微藻生物产品种类非常贫乏,主要集中在螺旋藻、盐藻、雨生红球藻、柯氏隐甲藻和小球藻等藻株生产的产品中,突破微藻的低成本高密度培养技术,是将微藻生物产品推向市场的关键。微藻可通过类似于微生物发酵的方式,在透明的培养装置——光生物反应器中进行规模化培养,因此一种高效的光生物反应器是快速实现微藻规模化培养的关键设备。Microalgae has such important development and utilization value, but its industrialization process is relatively slow. At present, there are very few types of microalgae biological products available on the market, mainly concentrated in products produced by algae strains such as Spirulina, salina, Haematococcus pluvialis, Cryptidium cusvii and Chlorella, breaking through the production of microalgae. Low-cost high-density culture technology is the key to bringing microalgae biological products to the market. Microalgae can be cultivated on a large scale in a transparent culture device called a photobioreactor in a manner similar to microbial fermentation. Therefore, an efficient photobioreactor is the key equipment for quickly realizing large-scale cultivation of microalgae.
用于微藻培养的光生物反应器主要有敞开式和封闭式两种类型。敞开式光生物反应器具有结构简单、容易放大和成本低等优点,已普遍应用于商业化微藻大规模培养中。但它也存在诸多缺点,如比表面积小、光能和CO2利用率低、易污染、环境条件(温度、光照、pH等)控制能力差等,目前仅有少数几种微藻(小球藻、盐藻、螺旋藻等)能够采用敞开式光生物反应器进行培养,而对于培养条件要求温和、种群竞争能力较弱的微藻,则只能采用封闭式光生物反应器培养。与敞开式光生物反应器相比,封闭式光生物反应器具有以下优点:(1)不易受到灰尘、昆虫及杂菌等污染,能实现纯种培养;(2)培养条件易于控制(温度、pH);(3)培养密度高,且易收获;(4)适合于绝大多数微藻的光自养培养;(5)有较高比表面积;(6)光能和CO2利用率较高等优点,但封闭式光生物反应器的这些优越性是以提高投资和操作成本为代价的。There are mainly two types of photobioreactors for microalgae cultivation: open and closed. The open photobioreactor has the advantages of simple structure, easy scale-up and low cost, and has been widely used in large-scale commercial microalgae cultivation. But it also has many disadvantages, such as small specific surface area, low utilization rate of light energy and CO2 , easy pollution, poor control ability of environmental conditions (temperature, light, pH, etc.), etc., currently only a few kinds of microalgae (microalgae Algae, salina, spirulina, etc.) can be cultivated in open photobioreactors, while microalgae that require mild culture conditions and weak population competition can only be cultivated in closed photobioreactors. Compared with the open photobioreactor, the closed photobioreactor has the following advantages: (1) it is not easy to be polluted by dust, insects and miscellaneous bacteria, etc., and can realize purebred cultivation; (2) the cultivation conditions are easy to control (temperature, pH); (3) The culture density is high and easy to harvest; (4) It is suitable for the photoautotrophic culture of most microalgae; (5) It has a high specific surface area; (6) The utilization rate of light energy and CO 2 is low High advantages, but these advantages of closed photobioreactors are at the expense of increased investment and operating costs.
目前科研单位和企业普遍采用传统的光生物反应器(跑道池、平板式、管道式、垂直柱式、悬袋式等)培养高附加值的经济微藻,其在技术上存在诸多缺点:(1)多数科研单位设计的光生物反应器并不具备规模放大的能力,某些实用新型声称可以实现微藻的规模化培养,但它们均缺乏实际应用,经成本核算发现,其构建成本相对较高;(2)利用传统的跑道池光生物反应器培养高附加值的经济微藻,其产量相对较低,且培养的微藻种类有限(小球藻、盐藻、螺旋藻等),在培养过程中可能会滋生人体致病菌,影响产品的质量;(3)传统的封闭式光生物反应器同样存在许多缺点,如管道式光生物反应器的氧解析问题、垂直柱式光生物反应器的串联问题、悬袋式光生物反应器透光膜的选择、平板式光生物反应器光径增大与光衰减之间矛盾的问题等,上述问题限制了传统封闭式光生物反应器在微藻规模化培养中的广泛应用。At present, scientific research institutes and enterprises generally adopt traditional photobioreactors (raceway pool, flat plate type, pipeline type, vertical column type, hanging bag type, etc.) to cultivate high value-added economical microalgae, which have many technical shortcomings: ( 1) The photobioreactors designed by most scientific research units do not have the ability to scale up. Some utility models claim that they can realize the large-scale cultivation of microalgae, but they lack practical applications. After cost accounting, it is found that their construction costs are relatively low. (2) The production of economical microalgae with high added value is relatively low and the types of microalgae are limited (chlorella, salina, spirulina, etc.) During the cultivation process, human pathogenic bacteria may breed and affect the quality of the product; (3) There are also many shortcomings in the traditional closed photobioreactor, such as the oxygen desorption problem of the pipeline photobioreactor, the vertical column photobioreactor The series problem of the device, the selection of the light-transmitting film of the hanging bag photobioreactor, the contradiction between the increase of the optical path and the light attenuation of the flat photobioreactor, etc., the above problems limit the use of traditional closed photobioreactors. Wide application in large-scale cultivation of microalgae.
而据中国国家知识产权局(2011)最新数据统计,目前与微藻规模化培养相关的实用新型已超过90篇,涉及的光生物反应器种类多样,包括:内置光源的发酵罐、平板式光生物反应器、柱式光生物反应器、管道式光生物反应器、袋式光生物反应器、开放式光生物反应器、组合式光生物反应器等。上述光生物反应器在设计上均存在一定程度的缺陷,影响其在微藻规模化培养中的应用。其中管道式光生物反应器氧解析困难、不易清洗、成本高、温度控制较困难。柱式光生物反应器不存在氧解析和混合问题,但其培养体积较小、不易放大(纵向和径向)、比表面积小、且反应器中心光线不易穿透,生产效率低。袋式反应器存在氧解析困难、透明材料难以反复使用等缺点,另外其膜透光性差,外加固结构遮光明显,将其应用在规模化培养中,还需进一步的改进。平板反应器通过缩短光径的方式降低光衰减的影响,会导致培养体积的减少;光径增大,反应器光衰减现象严重,反应器的串联难度大,且投资成本高。内置光源的发酵罐在一定程度上能解决了藻液的光照问题,但它同时带来了一系列潜在的负面影响,如光源被藻液粘附和光源能耗问题等。According to the latest statistics from the State Intellectual Property Office of China (2011), there are currently more than 90 utility models related to the large-scale cultivation of microalgae, involving various types of photobioreactors, including: fermenters with built-in light sources, flat photobioreactors, etc. Bioreactor, column photobioreactor, pipeline photobioreactor, bag photobioreactor, open photobioreactor, combined photobioreactor, etc. The design of the above-mentioned photobioreactors all has defects to a certain extent, which affects its application in the large-scale cultivation of microalgae. Among them, the pipe-type photobioreactor is difficult to decompose oxygen, difficult to clean, high in cost, and difficult in temperature control. The column photobioreactor does not have the problem of oxygen resolution and mixing, but its culture volume is small, it is not easy to expand (vertical and radial), the specific surface area is small, and the light in the center of the reactor is not easy to penetrate, and the production efficiency is low. The bag reactor has disadvantages such as difficult oxygen desorption and repeated use of transparent materials. In addition, its membrane has poor light transmission and the external reinforcement structure has obvious light shading. It needs further improvement to apply it to large-scale cultivation. The plate reactor reduces the influence of light attenuation by shortening the light path, which will lead to a decrease in the culture volume; the light path increases, the light attenuation phenomenon of the reactor is serious, the series connection of the reactor is difficult, and the investment cost is high. The fermenter with a built-in light source can solve the problem of lighting the algae liquid to a certain extent, but it also brings a series of potential negative effects, such as the light source being adhered by the algae liquid and the energy consumption of the light source.
实际上,对于高附加值微藻的培养,封闭式光生物反应器是较为理想的选择。一方面,某些微藻(雨生红球藻)对环境较为敏感,开放式光生物反应器无法满足培养的需要;另一方面,微藻生物产品通常用在保健品、化妆品、功能食品和药品中,上述行业对原材料的要求较高,而开放式光生物反应器易污染细菌、病毒、原生动物和其他杂藻,有些污染物自身对人体具有致病性,有些污染物会产生毒素,这在无形中增加了后期培养物检测和处理的成本。In fact, for the cultivation of high value-added microalgae, closed photobioreactors are an ideal choice. On the one hand, some microalgae (Haematococcus pluvialis) are more sensitive to the environment, and open photobioreactors cannot meet the needs of cultivation; on the other hand, microalgae biological products are usually used in health care products, cosmetics, functional foods and pharmaceuticals. Among them, the above-mentioned industries have high requirements on raw materials, and open photobioreactors are easy to contaminate bacteria, viruses, protozoa and other miscellaneous algae. Some pollutants themselves are pathogenic to the human body, and some pollutants can produce toxins. Invisibly increases the cost of late culture detection and processing.
构建一种高效的封闭式光生物反应器培养系统,是推动微藻产业发展的重要途径。封闭式光生物反应器的设计应该遵循以下几个原则:(1)构建成本低;(2)容易放大,清洗方便,控温精确;(3)光照和二氧化碳利用率高;(4)藻液循环状况好,藻细胞在光暗区的转换速度快。本实用新型即按照该原则设计一种新的光生物反应器,通过藻液内外循环实现微藻的低成本高密度培养。Constructing an efficient closed photobioreactor culture system is an important way to promote the development of microalgae industry. The design of a closed photobioreactor should follow the following principles: (1) low construction cost; (2) easy to scale up, easy to clean, and precise temperature control; (3) high utilization of light and carbon dioxide; (4) algae liquid The circulation is good, and the conversion speed of algae cells in the light and dark areas is fast. The utility model designs a new photobioreactor according to this principle, and realizes low-cost and high-density cultivation of microalgae through internal and external circulation of algae liquid.
实用新型内容 Utility model content
针对上述问题,本实用新型的目的在于提供一种耦合式光生物反应器,用以实现高附加值微藻的低成本高密度培养。In view of the above problems, the purpose of this utility model is to provide a coupled photobioreactor to realize low-cost and high-density cultivation of high value-added microalgae.
为实现上述目的,本实用新型提供的技术方案是,一种耦合式光生物反应器,包括低位平板光生物、高位平板光生物反应器、中位光生物反应器及外循环管,其中:所述低位平板光生物和所述高位平板光生物反应器的内侧通过所述中位光生物反应器连通;所述低位平板光生物和所述高位平板光生物反应器的外侧通过所述外循环管道连通;所述高位平板光生物反应器设有通气管路,所述通气管路连接高压气源。In order to achieve the above purpose, the technical solution provided by the utility model is a coupled photobioreactor, including a low flat photobioreactor, a high flat photobioreactor, a middle photobioreactor and an external circulation tube, wherein: The low flat photobiology and the inner side of the high flat photobioreactor communicate through the middle photobioreactor; the low flat photobiological and the outside of the high flat photobioreactor pass through the outer circulation pipeline Connected; the high-level flat photobioreactor is provided with a ventilation pipeline, and the ventilation pipeline is connected to a high-pressure gas source.
较优地,所述低位平板光生物反应器包括前、后主体透明板,低位底槽,左、右异形法兰及低位顶部透明板,其中:所述前、后主体透明板嵌入所述低位底槽的卡槽中,并用密封胶密封;所述左、右异形法兰设置于所述低位底槽的左、右两侧,所述左、右异形法兰的法兰盖上分别开设有多个贯通的管道接口;所述低位顶部透明板粘合于低位平板光生物反应器的上表明并用密封胶密封,且所述低位顶部透明板上开设藻液口,用以连通所述中位光生物反应器。Preferably, the low flat plate photobioreactor includes front and rear main body transparent plates, a lower bottom tank, left and right special-shaped flanges and a lower top transparent plate, wherein: the front and rear main body transparent plates are embedded in the lower in the card slot of the bottom groove, and sealed with sealant; the left and right special-shaped flanges are arranged on the left and right sides of the low bottom groove, and the flange covers of the left and right special-shaped flanges are respectively provided with A plurality of through-pipe interfaces; the lower top transparent plate is bonded to the upper surface of the lower flat photobioreactor and sealed with a sealant, and an algae liquid port is opened on the lower top transparent plate to communicate with the middle Photobioreactor.
较优地,所述管道接口的内侧为螺纹接口,外侧为光滑接口。Preferably, the inner side of the pipe joint is a threaded joint, and the outer side is a smooth joint.
较优地,所述低位平板光生物反应器设置有两组通气管路,其中一组位于低位平板光生物反应器底部,另一组靠近所述低位顶部透明板的下表面。Preferably, the low flat photobioreactor is provided with two sets of ventilation pipelines, one set is located at the bottom of the low flat photobioreactor, and the other is close to the lower surface of the low top transparent plate.
较优地,所述低位平板光生物反应器的内部设置有蛇形冷凝管,所述蛇形冷凝管的进水口和出水口设置在同一法兰盖上。Preferably, a serpentine condenser is arranged inside the low-level flat plate photobioreactor, and the water inlet and outlet of the serpentine condenser are arranged on the same flange cover.
较优地,所述高位平板光生物反应器包括透明容器、高位底槽及高位底部透明板,其中:所述透明容器由若干透明平板粘合而成,且所述透明容器的侧面设置有外循环管接口;所述高位底槽支撑所述透明容器,所述高位底部透明板粘合于所述高位底槽上,且所述高位底槽及所述高位底部透明板上均开设有开设藻液口,用以连通所述中位光生物反应器。Preferably, the elevated flat plate photobioreactor includes a transparent container, an elevated bottom tank, and an elevated bottom transparent plate, wherein: the transparent container is formed by bonding several transparent flat plates, and the side of the transparent container is provided with outer Circulation pipe interface; the high-position bottom tank supports the transparent container, the high-position bottom transparent plate is bonded to the high-position bottom tank, and the high-position bottom tank and the high-position bottom transparent plate are provided with algae The liquid port is used to communicate with the intermediate photobioreactor.
较优地,所述中位光生物反应器为柱式光生物反应器,其中所述低位顶部透明板、高位底槽及高位底部透明板均开设有多个圆孔。Preferably, the middle-level photobioreactor is a column-type photobioreactor, wherein the low-position top transparent plate, the high-position bottom tank, and the high-position bottom transparent plate are all provided with a plurality of circular holes.
较优地,所述低位顶部透明板为多孔有机玻璃板,其中每一小孔内部为两层阶梯结构。Preferably, the low top transparent plate is a porous organic glass plate, wherein each small hole has a two-layer ladder structure inside.
较优地,所述中位光生物反应器为短光径平板光生物反应器,其中所述低位顶部透明板、高位底槽及高位底部透明板的中间开设方槽。Preferably, the middle photobioreactor is a flat photobioreactor with a short optical path, wherein a square groove is opened in the middle of the low top transparent plate, the high bottom groove and the high bottom transparent plate.
较优地,包括金属支撑架,其底面焊接在所述低位底槽上,上表面焊接在所述高位底槽上。Preferably, it includes a metal support frame, the bottom surface of which is welded to the low bottom groove, and the upper surface is welded to the high bottom groove.
与现有技术相比,本实用新型在综合分析光生物反应器设计原则的基础上,提出一种新型耦合式光生物反应器培养系统,其结合平板光生物反应器和垂直管式光生物反应器各自的优势,实现了高附加值微藻的低成本高密度培养。具体而言,通过优化耦合式光生物反应器的设计方案,可取得以下技术效果:第一,实现光生物反应器的有效控温;第二,实现光生物反应器规模放大;第三,利用气升方式,解决藻液的循环;第四,将短光径光生物反应器(管式、平板式)与平板反应器进行耦合,增大了反应器的有效照光面积,提高藻细胞对光的利用率。Compared with the prior art, the utility model proposes a new coupled photobioreactor cultivation system on the basis of a comprehensive analysis of the design principles of the photobioreactor, which combines a flat photobioreactor and a vertical tube photobioreactor Based on the advantages of each device, the low-cost and high-density cultivation of high value-added microalgae is realized. Specifically, by optimizing the design scheme of the coupled photobioreactor, the following technical effects can be achieved: first, to achieve effective temperature control of the photobioreactor; second, to realize the scale-up of the photobioreactor; third, to use The air-lift method solves the circulation of algae liquid; fourthly, the short-path photobioreactor (tubular type, flat-plate type) is coupled with the flat-plate reactor, which increases the effective illumination area of the reactor and improves the light exposure of algae cells. utilization rate.
附图说明 Description of drawings
图1是本实用新型耦合式光生物反应器的结构示意图;Fig. 1 is the structural representation of the utility model coupled photobioreactor;
图2为图1所示耦合式光生物反应器的藻液循环示意图;Fig. 2 is the schematic diagram of algae fluid circulation of the coupled photobioreactor shown in Fig. 1;
图3A为图1中柱式光生物反应器结构示意图;Fig. 3 A is a schematic structural view of the column photobioreactor in Fig. 1;
图3B为图1中短光径平板光生物反应器结构示意图;Fig. 3B is a schematic diagram of the structure of the short-path flat-panel photobioreactor in Fig. 1;
图4为图1中低位底槽的结构示意图;Fig. 4 is a schematic structural view of the lower bottom tank in Fig. 1;
图5A为图4所示低位底槽主视图;Fig. 5A is a front view of the lower bottom tank shown in Fig. 4;
图5B为图4所示低位底槽俯视图;Fig. 5B is a top view of the lower bottom tank shown in Fig. 4;
图5C为图4所示低位底槽左视图;Fig. 5C is a left view of the lower bottom tank shown in Fig. 4;
图6为图1中法兰盖结构示意图;Fig. 6 is a schematic diagram of the structure of the flange cover in Fig. 1;
图7为耦合式光生物反应器类型二结构示意图;Fig. 7 is a schematic diagram of the structure of the coupled photobioreactor type two;
图8A为高位底槽结构示意图;Fig. 8A is a schematic diagram of the structure of the high bottom tank;
图8B为金属内支撑架结构示意图;Fig. 8B is a structural schematic diagram of the metal inner support frame;
图9为多孔有机玻璃板结构示意图;Fig. 9 is a structural schematic diagram of a porous organic glass plate;
图10耦合式光生物反应器类型一串联模式图;Figure 10 coupled photobioreactor type-serial mode diagram;
图11耦合式光生物反应器类型二串联模式图。Fig. 11 A series mode diagram of Type 2 coupled photobioreactor.
具体实施方式 Detailed ways
本实用新型的关键点是在传统的平板反应器中引入“柱式光生物反应器或短管径平板光生物反应器”,以增加传统的平板反应器的照光面积,提高微藻对光线的利用效率,用以实现高附加值微藻的低成本高密度培养。The key point of the utility model is to introduce a "column photobioreactor or a short-diameter flat photobioreactor" into the traditional flat panel reactor to increase the illuminated area of the traditional flat panel reactor and improve the light exposure of microalgae. Utilization efficiency is used to realize low-cost and high-density cultivation of high value-added microalgae.
以下实施例为一种耦合式光生物反应器,以下对该耦合式光生物反应器的结构、功能及工作原理进行描述。The following embodiment is a coupled photobioreactor, and the structure, function and working principle of the coupled photobioreactor will be described below.
所述耦合式光生物反应器包括金属支撑架、低位平板光生物反应器、高位平板光生物反应器、外循环管、柱式光生物反应器/短光径平板光生物反应器,以下以柱式光生物反应器为例,对主要部件结构、功能及工作原理描述如下:The coupled photobioreactor includes a metal support frame, a low flat photobioreactor, a high flat photobioreactor, an external circulation tube, a column photobioreactor/short light path flat photobioreactor, and the column Taking a photobioreactor as an example, the structure, function and working principle of the main components are described as follows:
所述金属支撑架的主要作用是支撑和固定高位平板光生物反应器,它的底面和上表面分别焊接在低位高位平板光生物反应器和高位平板光生物反应器的底槽上,金属支撑架的材质为具有一定刚性的金属方管或圆管。The main function of the metal support frame is to support and fix the high-position flat photobioreactor. The material is a metal square tube or round tube with certain rigidity.
所述低位平板光生物反应器是由前后透明板、低位底槽、蛇形冷凝管、通气管、异形法兰、多孔有机玻璃板(或其它开口透明板)等结构组成。其中低位底槽(图4)主要用于光生物反应器底部的加固,所述低位底槽须由具有一定刚性且不易生锈的金属材料,或者由塑料模具制成(低位底槽的精细结构如图5A-5C所示)。前、后主体透明板嵌入图4所示低位底槽的卡槽中,并用玻璃胶密封,防止培养液渗出;透明板可由普通玻璃、有机玻璃、钢化玻璃和硼硅玻璃等制成。异型法兰安装或焊接在低位底槽的左、右两侧面,所述异型法兰的作用主要有:(1)方便反应器的清洗;(2)法兰盖(图6)可焊接金属接口,方便冷凝管、通气管、外导流管的连接。蛇形冷凝管安装在低位平板光生物反应器内部,用于藻液的冷却;蛇形冷凝管的进水口和出水口设置在相同法兰盖上,可通过螺纹接口进行拆卸和安装;蛇形冷凝管的材质为传热快的金属管(如不锈钢管、紫铜管和铝管)。低位平板光生物反应器共两组通气管路,其中:一组位于低位平板反应器底部,用于平板反应器藻液的混合和二氧化碳的补充;另一组靠近多孔有机玻璃板下表面。多孔有机玻璃板(图9)通过玻璃胶固定在低位平板光生物反应器上表面,每一小孔内部为两层阶梯结构,防止柱式光生物反应器滑落至平板光生物反应器中。The low flat plate photobioreactor is composed of front and rear transparent plates, a low bottom tank, a serpentine condenser, a ventilation pipe, special-shaped flanges, porous organic glass plates (or other transparent plates with openings) and other structures. Wherein the lower bottom groove (Fig. 4) is mainly used for the reinforcement of the bottom of the photobioreactor, and the lower bottom groove must be made of a metal material with certain rigidity and not easy to rust, or made of a plastic mold (the fine structure of the lower bottom groove as shown in Figures 5A-5C). The transparent plates of the front and rear main bodies are embedded in the card slots of the low bottom groove shown in Figure 4, and sealed with glass glue to prevent the culture solution from seeping out; the transparent plates can be made of ordinary glass, plexiglass, tempered glass and borosilicate glass. The special-shaped flange is installed or welded on the left and right sides of the low bottom tank. The functions of the special-shaped flange are: (1) to facilitate the cleaning of the reactor; (2) the flange cover (Figure 6) can weld the metal interface , to facilitate the connection of condensation pipe, ventilation pipe and external diversion pipe. The serpentine condenser tube is installed inside the low-level flat plate photobioreactor for cooling the algae liquid; the water inlet and outlet of the serpentine condenser tube are set on the same flange cover, which can be disassembled and installed through the threaded interface; the serpentine condenser tube The material of the condenser tube is a metal tube with fast heat transfer (such as stainless steel tube, copper tube and aluminum tube). There are two sets of ventilation pipelines in the low-level flat-plate photobioreactor, one of which is located at the bottom of the low-level flat-plate reactor, which is used for the mixing of the algae liquid and the supplement of carbon dioxide in the flat-plate reactor; the other is close to the lower surface of the porous organic glass plate. The porous plexiglass plate (Figure 9) is fixed on the upper surface of the low flat photobioreactor by glass glue, and the interior of each small hole is a two-layer ladder structure to prevent the column photobioreactor from slipping into the flat photobioreactor.
所述柱式光生物反应器/短光径平板光生物反应器为本实用新型的核心结构,当微藻由低位平板光生物反应器进入该区域后,可以接受更充足的光照,并进行二氧化碳高效补充,大幅提高了藻细胞的生长速率。对于光诱导型生物活性物质(如虾青素等)的生产,其促进作用更加明显。柱式光生物反应器可由有机玻璃管、普通玻璃管和软性塑料管制成。短光径平板光生物反应器可由普通玻璃、有机玻璃制成。The column-type photobioreactor/short-path flat-panel photobioreactor is the core structure of the utility model. When microalgae enter the area from the low-level flat-panel photobioreactor, they can receive more sufficient light and emit carbon dioxide. High-efficiency supplementation greatly increases the growth rate of algae cells. For the production of light-induced bioactive substances (such as astaxanthin, etc.), its promoting effect is more obvious. Column photobioreactors can be made of plexiglass tubes, ordinary glass tubes and flexible plastic tubes. Short-path flat-panel photobioreactors can be made of ordinary glass and plexiglass.
所述高位平板光生物反应器是由透明容器、高位底槽、多孔有机玻璃板(或其它开口透明板)、通气管路和外循环管接口组成,其中:透明容器是由若干特定规格的透明平板,通过粘合剂粘合而成,藻液由“柱式光生物反应器/短光径平板光生物反应器”进入透明容器后得到充分混合;通气管路用于加富的压缩空气的鼓入,高压气体在气泡快速上升的过程中产生强大的气升力,带动培养液向上运动,实现藻液的循环;多孔有机玻璃板用于柱式光生物反应器的固定;高位底槽主要用于光生物反应器底部的加固,但其不同于低位平板光生物反应器的低位底槽结构,高位底槽具有若干均匀排列的圆孔,藻液可由圆孔进入透明容器。外循环管接口位于高位平板光生物反应器的侧面,用于外循环管的连接。The elevated plate photobioreactor is composed of a transparent container, an elevated bottom tank, a porous plexiglass plate (or other transparent plates with openings), a ventilation line and an external circulation pipe interface, wherein: the transparent container is made of several specific specifications of transparent The flat plate is bonded by an adhesive, and the algae liquid is fully mixed after entering the transparent container from the "column photobioreactor/short light path flat photobioreactor"; the ventilation line is used for the enriched compressed air Blowing in, the high-pressure gas generates a strong air lift force during the rapid rise of the bubbles, driving the culture medium to move upwards to realize the circulation of the algae liquid; the porous plexiglass plate is used to fix the column photobioreactor; the high bottom tank is mainly used Reinforcement at the bottom of the photobioreactor, but it is different from the low-level bottom tank structure of the low-level flat photobioreactor. The high-level bottom tank has a number of uniformly arranged round holes through which the algal liquid can enter the transparent container. The external circulation pipe interface is located on the side of the high-level flat plate photobioreactor, and is used for the connection of the external circulation pipe.
所述外循环管为一连接高位平板光生物反应器和低位光生物反应器的管道,当藻液通过气升的方式进入高位平板光生物反应器后,可在重力的作用下,由外循环管道返回低位光生物反应器,实现藻液的循环。该循环结构的引入加速了反应器中上层藻液和下层藻液之间的循环,有利于藻细胞生物量的积累。The external circulation pipe is a pipe connecting the high-level flat photobioreactor and the low-level photobioreactor. After the algae liquid enters the high-level flat photobioreactor through air lift, it can be circulated from the outside under the action of gravity. The pipeline returns to the low-level photobioreactor to realize the circulation of the algae liquid. The introduction of the circulation structure accelerates the circulation between the upper layer of algae liquid and the lower layer of algae liquid in the reactor, which is beneficial to the accumulation of algae cell biomass.
为了使本领域的技术人员更好地理解本实用新型的技术方案,下面结合附图和具体实施例对本实用新型作进一步的详细说明。In order to make those skilled in the art better understand the technical solution of the utility model, the utility model will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
参见图1,为本实用新型耦合式光生物反应器的一种较优实施例,其中1代表低位平板光生物反应器,2为柱式光生物反应器,3为高位平板光生物反应器,4为外循环管,5为金属支撑架,11为透明板,12为底槽,13为异形法兰,14为多孔有机玻璃板,31为外循环管连接口,32为通气管接口,各部件的结构、功能已在前述实用新型原理中详述,在此不再重复。Referring to Fig. 1, it is a kind of preferred embodiment of the coupling type photobioreactor of the present invention, wherein 1 represents the low flat photobioreactor, 2 is the column photobioreactor, 3 is the high flat photobioreactor, 4 is an external circulation pipe, 5 is a metal support frame, 11 is a transparent plate, 12 is a bottom groove, 13 is a special-shaped flange, 14 is a porous organic glass plate, 31 is a connection port of an external circulation pipe, and 32 is a ventilation pipe interface. The structure and function of the components have been described in detail in the foregoing utility model principles, and will not be repeated here.
藻液在该系统中的循环方向如图2中箭头所示,低位平板光生物反应器1中的藻液在气升力的作用下,沿箭头方向进入柱式光生物反应器2,由于柱式光生物反应器2的照光面积和光径较小,藻细胞可以接受更加充足的光照,在此进行生物量的快速积累,藻液而后进入高位平板光生物反应器3中进行充分混合,当藻液高度超过外循环管接口高度时,藻液进入外循环管4,然后在重力的作用下返回低位平板光生物反应器1中,完成藻液循环。藻液在低位平板光生物反应器1中可进行降温并进行二氧化碳的补充。The circulation direction of the algae liquid in the system is shown by the arrow in Figure 2. The algae liquid in the low-level
参见图3A和图3B,分别为柱式光生物反应器和短光径平板光生物反应器的结构示意图,在遵循本实用新型设计原理的基础上,上述两种类型(短光径平板式和柱式)光生物反应器均可以实现高附加值微藻的高密度培养。Referring to Fig. 3 A and Fig. 3 B, it is respectively the structural representation of column type photobioreactor and short light path flat plate photobioreactor, on the basis of following the utility model design principle, above-mentioned two types (short light path flat plate type and Column) photobioreactors can achieve high-density cultivation of high value-added microalgae.
低位底槽12的立体结构如图4所示,底槽须由具有一定刚性且不易生锈的金属材料,或者由塑料模具制成。底槽左右两端各安装一个异形法兰,图5A、5B和5C为分别为底槽的主视图、俯视图和左视图,前后平板光生物反应器的主体透明板嵌入低位底槽12的卡槽中,并用玻璃胶密封,防止水渗出。The three-dimensional structure of the
参见图6,为异型法兰的法兰盖,其上具有多个贯通的接口,朝向反应器内侧的接口为螺纹接口,外部接口为光滑接口。螺纹接口方便管路拆卸。其中61为通气管路接口,62和63分别为冷凝管的进水口和出水口,64为外循环管的连接口,65为通气管路接口。Referring to Fig. 6, it is a flange cover of a special-shaped flange, on which there are multiple through interfaces, the interface facing the inside of the reactor is a threaded interface, and the external interface is a smooth interface. The threaded interface facilitates the removal of the pipeline. Wherein 61 is the ventilation pipeline interface, 62 and 63 are the water inlet and the water outlet of the condensation pipe respectively, 64 is the connection port of the external circulation pipe, and 65 is the ventilation pipeline interface.
实施例1、耦合式光生物反应器类型一的组建
为了更好的阐述本实用新型的设计思路,现将该耦合光生物反应器类型一的组装流程详述如下:In order to better illustrate the design idea of the utility model, the assembly process of the
(1)利用焊接、切割、折弯等金属加工手段,或制作塑料技术,制作反应器低位底槽(如图4);(1) Use welding, cutting, bending and other metal processing methods, or plastic technology to make the bottom tank of the reactor (as shown in Figure 4);
(2)利用玻璃胶,将前后主体玻璃板粘合在指定位置;(2) Use glass glue to glue the front and rear main body glass plates to the designated position;
(3)将多孔有机玻璃板(如图9)粘合至低位平板光生物反应器上表面;(3) The porous plexiglass plate (as shown in Figure 9) is bonded to the upper surface of the low-position flat photobioreactor;
(4)将金属内支撑架(如图8B)固定在如图1所示位置;(4) Fix the metal inner support frame (as shown in Figure 8B) at the position shown in Figure 1;
(5)按顺序安装高位底槽(如图8A)和多孔有机玻璃板;(5) Install the elevated bottom tank (as shown in Figure 8A) and the perforated plexiglass plate in order;
(6)利用玻璃胶将柱式光生物反应器安装在指定位置;(6) Use glass glue to install the column photobioreactor at the designated location;
(7)制作高位平板光生物反应器;(7) Make a high-position flat photobioreactor;
(8)安装各类通气、冷凝和循环管路。(8) Install various ventilation, condensation and circulation pipelines.
实施例2、耦合式光生物反应器类型二的组建Embodiment 2, the formation of coupling type photobioreactor type two
在遵循本实用新型设计原理的基础上,可将柱式光生物反应器替换为短光径的平板光生物反应器(具体结构如图7),现将该耦合光生物反应器类型二的组装流程详述如下:On the basis of following the design principle of the utility model, the column photobioreactor can be replaced by a flat photobioreactor with a short optical path (the specific structure is shown in Figure 7), and the assembly of the coupling photobioreactor type two is now The process is detailed as follows:
(1)用焊接、切割、折弯等金属加工手段,或制作塑料技术,制作反应器低位底槽;(1) Use welding, cutting, bending and other metal processing methods, or plastic technology to make the bottom tank of the reactor;
(2)将内支撑架(如图8B)固定在金属低位底槽上,内支撑架主要用于支撑短光径平板光生物反应器,利用玻璃胶,将前后主体玻璃板粘合在指定位置;(2) Fix the inner support frame (as shown in Figure 8B) on the metal lower bottom groove. The inner support frame is mainly used to support the short-path flat photobioreactor. Use glass glue to glue the front and rear main glass plates to the designated position ;
(3)将中部开长槽的有机玻璃板粘合至低位平板光生物反应器上表面,并用玻璃胶密封,以防培养液渗出;(3) Bond the plexiglass plate with the long slot in the middle to the upper surface of the low-position flat photobioreactor, and seal it with glass glue to prevent the culture solution from seeping out;
(4)安装短光径平板光生物反应器至图7中指定位置;(4) Install the short light path flat plate photobioreactor to the designated position in Figure 7;
(5)将金属内支撑架固定在如图7所示位置;将中部开槽的高位底槽(如图8A)粘合在短光径平板光生物反应器上表面;(5) Fix the metal inner support frame at the position shown in Figure 7; bond the high-level bottom groove (as shown in Figure 8A) with a slot in the middle to the upper surface of the short-path flat photobioreactor;
(6)制作高位平板光生物反应器;(6) Make a high-level flat-panel photobioreactor;
(7)安装各类通气、冷凝和循环管路。(7) Install various ventilation, condensation and circulation pipelines.
实施例3、耦合式光生物反应器的串联放大
为了追求更大的培养规模,本实用新型提供该耦合式反应器单元的串联模型(如图10、图11)。每一反应器单元的异型法兰盖上增加一个接口,用于反应器下部的串联,高位平板光生物反应器侧面同样开具一个扩展口,用于相邻反应器单元的串联。In order to pursue a larger cultivation scale, the utility model provides a series model of the coupled reactor unit (as shown in Fig. 10 and Fig. 11 ). An interface is added to the special-shaped flange cover of each reactor unit for the series connection of the lower part of the reactor, and an expansion port is also opened on the side of the high-level flat photobioreactor for the series connection of adjacent reactor units.
如前述,高附加值微藻的低成本高密度培养技术是制约其产业化的关键,目前科研机构和企业普遍采用跑道池和封闭式光生物反应器(平板式、管道式、垂直柱式和悬袋式等)培养高附加值微藻,其生产效率普遍较低,并且上述培养系统存在诸多缺点:(1)跑道池光生物反应器产量低、光衰减严重、控温难、CO2的利用率低、循环差,且培养的微藻种类有限(小球藻、盐藻、螺旋藻等),在培养过程中容易受其它生物污染,影响产品的质量;(2)传统的封闭式光生物反应器构建成本相对较高,同样存在许多缺点,如管道式光生物反应器的氧解析问题、垂直柱式光生物反应器的串联问题、悬袋式光生物反应器透光膜的选择、平板式光生物反应器光径增大与光衰减之间矛盾的问题等。As mentioned above, the low-cost and high-density culture technology of high value-added microalgae is the key to restricting its industrialization. At present, scientific research institutions and enterprises generally use raceway pools and closed photobioreactors (flat plate, pipeline, vertical column and Hanging bag type, etc.) to cultivate high value-added microalgae, the production efficiency is generally low, and the above-mentioned culture system has many disadvantages: (1) The photobioreactor in the raceway pond has low output, serious light attenuation, difficult temperature control, and the utilization of CO2 The efficiency is low, the circulation is poor, and the types of microalgae cultivated are limited (chlorella, salina, spirulina, etc.), and they are easily contaminated by other organisms during the cultivation process, which affects the quality of the product; (2) traditional closed photobiology The construction cost of the reactor is relatively high, and there are also many disadvantages, such as the oxygen desorption problem of the pipeline photobioreactor, the series connection problem of the vertical column photobioreactor, the selection of the light-transmitting film of the hanging bag photobioreactor, and the flat panel photobioreactor. The problem of contradiction between optical path increase and light attenuation of type photobioreactor.
而本实用新型提出了一种新型耦合式光生物反应器的设计方案,通过结合平板光生物反应器和垂直管式光生物反应器各自的优势,实现了高附加值微藻的低成本高密度培养,其包括但不仅限于以下技术效果:(1)光生物反应器的有效控温;(2)光生物反应器规模放大;(3)利用气升方式,解决藻液的循环;(4)将短光径光生物反应器(管式、平板式)与平板反应器进行耦合,增大了反应器的有效照光面积,提高了藻细胞对光的利用效率。由此,较好地实现了高附加值微藻的低成本高密度培养。However, the utility model proposes a design scheme of a new type coupled photobioreactor. By combining the respective advantages of the flat photobioreactor and the vertical tubular photobioreactor, the low-cost and high-density microalgae with high added value are realized. Cultivation, which includes but not limited to the following technical effects: (1) effective temperature control of the photobioreactor; (2) scale-up of the photobioreactor; (3) solving the circulation of the algae liquid by using the air lift method; (4) Coupling the short light path photobioreactor (tube type, flat plate type) with the flat plate reactor increases the effective illumination area of the reactor and improves the light utilization efficiency of the algae cells. Thus, the low-cost and high-density cultivation of high value-added microalgae is better realized.
以上仅是本实用新型的优选实施方式,应当指出的是,上述优选实施方式不应视为对本实用新型的限制,本实用新型的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本实用新型的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。The above are only preferred implementations of the present utility model. It should be pointed out that the above-mentioned preferred implementations should not be regarded as limitations on the present utility model, and the protection scope of the present utility model should be based on the scope defined by the claims. For those skilled in the art, without departing from the spirit and scope of the utility model, some improvements and modifications can also be made, and these improvements and modifications should also be regarded as the protection scope of the utility model.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201120319661 CN202246643U (en) | 2011-08-29 | 2011-08-29 | Coupling-type photo-bioreactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201120319661 CN202246643U (en) | 2011-08-29 | 2011-08-29 | Coupling-type photo-bioreactor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202246643U true CN202246643U (en) | 2012-05-30 |
Family
ID=46107914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201120319661 Expired - Fee Related CN202246643U (en) | 2011-08-29 | 2011-08-29 | Coupling-type photo-bioreactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202246643U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105462807A (en) * | 2014-09-09 | 2016-04-06 | 嘉兴泽元生物制品有限责任公司 | Novel multifunctional airlift tube photobioreactor |
CN110938533A (en) * | 2019-11-15 | 2020-03-31 | 河海大学 | Bioreactor for microalgae facultative growth mode culture and working method thereof |
-
2011
- 2011-08-29 CN CN 201120319661 patent/CN202246643U/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105462807A (en) * | 2014-09-09 | 2016-04-06 | 嘉兴泽元生物制品有限责任公司 | Novel multifunctional airlift tube photobioreactor |
CN110938533A (en) * | 2019-11-15 | 2020-03-31 | 河海大学 | Bioreactor for microalgae facultative growth mode culture and working method thereof |
CN110938533B (en) * | 2019-11-15 | 2022-12-09 | 河海大学 | Bioreactor for microalgae facultative growth mode culture and working method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Microalgal bioreactors: challenges and opportunities | |
Pulz et al. | Photobioreactors: design and performance with respect to light energy input | |
Wang et al. | Closed photobioreactors for production of microalgal biomasses | |
Koller | Design of closed photobioreactors for algal cultivation | |
WO2017190504A1 (en) | Rotating disc type photobioreactor for microalgae large-scale cultivation | |
CN102206570B (en) | Apparatus and cultivating method for scaled cultivation of microalgae | |
CN101899385B (en) | Improve the closed photo bioreactor of the efficiency of light energy utilization that microalgae mass is cultivated | |
CN101914431B (en) | Device and method for cultivating microalgae by utilizing all plastic modular photobioreactor system | |
Sero et al. | Biophotonics for improving algal photobioreactor performance: a review | |
AU2008261616A1 (en) | Apparatus and method for the culture of photosynthetic microorganisms | |
Chen et al. | Forced light/dark circulation operation of open pond for microalgae cultivation | |
CN104726321B (en) | A kind of racetrack bioreactor suitable for sunlight batch production | |
CN107189930A (en) | Indoor microalgae culture system and its cultural method | |
CN102296025B (en) | A Photobioreactor Realizing Internal and External Circulation of Algae Liquid | |
CN105368699A (en) | Microalgae photobioreactor with nano light guide plates serving as light dispersion media | |
WO2006085376A1 (en) | Culture apparatus and culture method for photosynthetic bacterium | |
Sergejevová et al. | Photobioreactors with internal illumination | |
CN106635768B (en) | Biological microalgae photosynthetic reactor and its application method | |
CN102911856B (en) | Tangential casing built-in aeration photo-bioreactor applicable to micro algae high-efficiency culture | |
CN202246643U (en) | Coupling-type photo-bioreactor | |
US10829725B2 (en) | Air accordion bioreactor | |
CN207294768U (en) | A kind of tidal type bioreactor | |
CN108285859B (en) | Novel pneumatic nostoc algae runway pond culture system | |
Griffiths | 5 Microalgal Cultivation | |
Dharmaraja et al. | Design and scale-up of photobioreactors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 Termination date: 20140829 |
|
EXPY | Termination of patent right or utility model |