CN202075597U - Intelligent optimization control system used in thermal power station - Google Patents
Intelligent optimization control system used in thermal power station Download PDFInfo
- Publication number
- CN202075597U CN202075597U CN2010206503054U CN201020650305U CN202075597U CN 202075597 U CN202075597 U CN 202075597U CN 2010206503054 U CN2010206503054 U CN 2010206503054U CN 201020650305 U CN201020650305 U CN 201020650305U CN 202075597 U CN202075597 U CN 202075597U
- Authority
- CN
- China
- Prior art keywords
- control
- intelligent
- control subsystem
- module
- prediction module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005457 optimization Methods 0.000 title abstract description 20
- 238000004891 communication Methods 0.000 claims abstract description 8
- 238000002485 combustion reaction Methods 0.000 abstract description 16
- 230000008859 change Effects 0.000 description 15
- 239000003245 coal Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 238000007664 blowing Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 239000004071 soot Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
本实用新型公开了一种用于火力发电厂的智能优化控制系统,所述系统包括:智能控制预测模块,用来提供不同工况状态下的控制子系统中的被控变量的预测值,所述控制子系统包括锅炉蒸汽温度控制子系统、协调控制子系统和燃烧控制子系统;DCS系统,用来提供不同工况状态下的运行数据,并对所述智能控制预测模块中的预测值进行优化控制;通讯模块,用来提供所述智能控制预测模块和所述DCS系统之间的双向数据通讯。
The utility model discloses an intelligent optimization control system for a thermal power plant. The system includes: an intelligent control prediction module, which is used to provide the predicted value of the controlled variable in the control subsystem under different working conditions. The control subsystem includes a boiler steam temperature control subsystem, a coordinated control subsystem and a combustion control subsystem; the DCS system is used to provide operating data under different working conditions, and to perform prediction on the predicted value in the intelligent control prediction module Optimal control; a communication module, used to provide two-way data communication between the intelligent control prediction module and the DCS system.
Description
技术领域 technical field
本实用新型涉及火力发电领域,尤其涉及一种用于大型火力发电厂的智能优化控制系统。 The utility model relates to the field of thermal power generation, in particular to an intelligent optimization control system for large thermal power plants. the
背景技术 Background technique
实现对大型火力发电厂锅炉、汽机的优化控制,对机组节能降耗、减少污染物排放有着重大的意义。目前,以单元机组为控制对象,火力发电厂的整体自动控制系统包括锅炉的蒸汽温度控制系统、燃烧过程控制系统以及协调控制系统等众多子系统。 Realizing the optimal control of boilers and steam turbines in large-scale thermal power plants is of great significance to the energy saving and consumption reduction of units and the reduction of pollutant emissions. At present, with the unit unit as the control object, the overall automatic control system of the thermal power plant includes many subsystems such as the steam temperature control system of the boiler, the combustion process control system, and the coordination control system. the
而锅炉的蒸汽温度控制系统,简称气温控制系统,属于典型的大惯性、多容环节系统,其控制对象具有较大的迟延及参数摄动特性,因此汽温控制是电力行业公认的难题。传统的PID控制算法因为PID控制器不需要精确的数学模型,且PID各控制参数的物理关系明确,容易在线整定,目前PID控制策略仍占主导地位。但是当出现电力负荷指令大幅度、频繁变化,炉膛吹灰,以及机组设备本身发生异常等外部扰动时,传统的控制PID策略就难以取得令人满意的控制效果,往往容易造成蒸汽温度失去控制甚至超温的发生,例如,当机组电力负荷以2%MCR/min的速率变化时,蒸汽温度就会偏离设定值10℃以上。这时只能通过手动操作来控制汽温,通过降低蒸汽温度设定值来运行,这样就降低了机组的经济性,增加了运行人员的劳动强度。 The steam temperature control system of the boiler, referred to as the air temperature control system, is a typical large-inertia, multi-capacity link system, and its control object has a large delay and parameter perturbation characteristics. Therefore, steam temperature control is a recognized problem in the power industry. Traditional PID control algorithm Because the PID controller does not require an accurate mathematical model, and the physical relationship of each control parameter of the PID is clear, it is easy to tune online. At present, the PID control strategy is still dominant. However, when there are external disturbances such as large and frequent changes in the power load command, soot blowing in the furnace, and abnormalities in the unit itself, the traditional control PID strategy is difficult to achieve satisfactory control results, and it is often easy to cause the steam temperature to lose control or even Occurrence of over-temperature, for example, when the power load of the unit changes at a rate of 2% MCR/min, the steam temperature will deviate from the set value by more than 10°C. At this time, the steam temperature can only be controlled by manual operation, and the operation is performed by lowering the set value of the steam temperature, which reduces the economy of the unit and increases the labor intensity of the operators. the
大型火力发电厂运行中,由于电力负荷变化、燃料成分含量波动即煤质等实际因素的影响,锅炉的实际状态在不断变化中,目前采用的DCS(集散式控制系统,Distributed Control System)燃烧控制系统往往无法完全针对锅炉燃烧的特点,实时控制运行工况。而且随机组负荷的变化,运行效率的变化也非常大,不能保证机组保持在最佳的运行曲线上。随着时 间的推移,原来运行的控制基准也会发生变化,运行人员的经验可能来不及适应机组的变化。 In the operation of large-scale thermal power plants, due to the influence of actual factors such as power load changes and fuel composition fluctuations, such as coal quality, the actual state of the boiler is constantly changing. The current DCS (Distributed Control System, Distributed Control System) combustion control The system often cannot fully control the operating conditions in real time according to the characteristics of boiler combustion. Moreover, the change of the load of the random group and the change of the operating efficiency are also very large, which cannot guarantee that the unit will remain on the best operating curve. As time goes by, the original operating control standard will also change, and the experience of the operating personnel may not be able to adapt to the change of the unit in time. the
目前,不少电厂锅炉应用了燃烧优化闭环控制系统,但是该系统很难获得一个长期稳定的效果,主要因为锅炉和机组需要维持主蒸汽温度和再热蒸汽温度的稳定,但是传统的优化闭环控制系统反而使得这些控制对象更加难以控制;其次,传统的燃烧优化闭环控制技术无法处理常见的操作比如磨煤机启动停止、吹灰、升降负荷等过程。所以,该系统无法全程投入,不能长期稳定的运行,锅炉和机组的经济性和安全性无从保证。 At present, many power plant boilers have applied the combustion optimization closed-loop control system, but it is difficult to obtain a long-term stable effect of the system, mainly because the boiler and the unit need to maintain the stability of the main steam temperature and the reheat steam temperature, but the traditional optimization closed-loop control On the contrary, the system makes these control objects more difficult to control; secondly, the traditional combustion optimization closed-loop control technology cannot handle common operations such as coal mill start and stop, soot blowing, load lifting and other processes. Therefore, the system cannot be put into full operation, cannot run stably for a long time, and the economy and safety of the boiler and unit cannot be guaranteed. the
发明内容 Contents of the invention
针对现有控制系统的不足,本实用新型提供了一种用于火力发电厂的智能优化控制系统,用来实现汽温优化控制、燃烧优化控制、协调控制优化,该系统本身具有良好的鲁棒性和稳定性,兼容性强,易于实施。 Aiming at the deficiencies of the existing control systems, the utility model provides an intelligent optimization control system for thermal power plants, which is used to realize steam temperature optimization control, combustion optimization control, and coordination control optimization. The system itself has good robustness Performance and stability, strong compatibility, easy to implement. the
本实用新型提供了一种用于火力发电厂的智能优化控制系统,所述的智能优化控制系统是通过以下的技术方案实现的: The utility model provides an intelligent optimization control system for a thermal power plant, and the intelligent optimization control system is realized through the following technical solutions:
一种用于火力发电厂的智能优化控制系统,包括: An intelligent optimization control system for thermal power plants, including:
智能控制预测模块,用来提供不同工况状态下的自动控制系统中的被控变量的预测值,所述控制系统包括锅炉蒸汽温度控制子系统、协调控制子系统和燃烧控制子系统; The intelligent control prediction module is used to provide the predicted value of the controlled variable in the automatic control system under different working conditions, and the control system includes the boiler steam temperature control subsystem, the coordination control subsystem and the combustion control subsystem;
DCS系统,用来提供不同工况状态下的运行数据,并对所述智能控制预测模块中的预测值进行优化控制; The DCS system is used to provide operating data under different working conditions, and optimize the control of the predicted value in the intelligent control prediction module;
通讯模块,用来提供所述智能控制预测模块和所述DCS系统之间的双向数据通讯。 The communication module is used to provide two-way data communication between the intelligent control prediction module and the DCS system. the
本实用新型采用智能控制预测模块和智能优化控制系统,利用IHMPC(智能混合模型预测控制,Intelligent Hybrid Model Predictive Control)技术来替代原有的传统PID控制技术,把整个控制对象划分为两大类工作空间,一个是平稳工况下的较为精确的稳工况模型类,另一个是较大扰动工况的变工况模型类,如吹灰过程,升降负荷、磨煤机启停过 程等。这种混合模型预测控制,体现了预测控制的灵活性,而且在处理较大扰动工况时体现出一定的优势,能够有效实现全工况控制要求,兼容性强,易于实施。 The utility model adopts an intelligent control prediction module and an intelligent optimization control system, uses IHMPC (Intelligent Hybrid Model Predictive Control, Intelligent Hybrid Model Predictive Control) technology to replace the original traditional PID control technology, and divides the entire control object into two categories of work One is a relatively accurate steady-state model under stable conditions, and the other is a variable-condition model for relatively large disturbance conditions, such as the soot blowing process, lifting load, and the start-stop process of the coal mill. This kind of hybrid model predictive control embodies the flexibility of predictive control, and shows certain advantages when dealing with large disturbance conditions, can effectively realize the control requirements of all working conditions, has strong compatibility, and is easy to implement. the
附图说明 Description of drawings
下面结合附图和实施例对本实用新型进一步说明: Below in conjunction with accompanying drawing and embodiment the utility model is further described:
图1为本实用新型实施例1智能控制预测模块的示意图; Fig. 1 is the schematic diagram of the intelligent control prediction module of embodiment 1 of the present utility model;
图2为本实用新型实施例2智能优化控制系统的示意图。 Fig. 2 is a schematic diagram of an intelligent optimization control system in Embodiment 2 of the present utility model. the
具体实施方式 Detailed ways
如图1为本实用新型实施例1智能控制预测模块的示意图。 Fig. 1 is a schematic diagram of the intelligent control prediction module of Embodiment 1 of the present utility model. the
一种用于火力发电厂的智能控制预测模块,包括: An intelligent control prediction module for thermal power plants, including:
采集子模块,用来从DCS控制系统中采集运行数据和实时工况数据; The collection sub-module is used to collect operation data and real-time working condition data from the DCS control system;
稳态工况预测处理子模块,用来根据所述运行数据,获得当前工作状态下的被控变量的稳态预测值; The steady-state working condition prediction processing sub-module is used to obtain the steady-state predicted value of the controlled variable under the current working state according to the operating data;
扰动工况预测处理子模块,当工作状态发生变化时,用来获得当前工作状况下的被控变量的动态预测值; Disturbance condition prediction processing sub-module, when the working condition changes, it is used to obtain the dynamic forecast value of the controlled variable under the current working condition;
优化子模块,用来优化所述被控变量的预测值得到所述被控变量的优化目标值; An optimization submodule, used to optimize the predicted value of the controlled variable to obtain the optimized target value of the controlled variable;
状况切换触发子模块,用来当工作状态发生变化时,切换到所述扰动工况预测子模块。 The state switching trigger submodule is used to switch to the disturbance working condition prediction submodule when the working state changes. the
优选地,所述工作状况变化包括电力负荷变化、磨煤机启动或停止,或吹灰过程。 Preferably, the change in working condition includes a change in electrical load, start or stop of a coal mill, or a soot blowing process. the
在本实用新型实施例1中,锅炉中的主蒸汽流量和各级减温水量虽然不直接影响锅炉效率,但对循环效率有很大影响,因为主蒸汽流量的增加使得进入凝汽器的蒸汽量增加,会使冷源损失增大。而减温水量的增加也使得水在锅炉内加热到额定参数需要的热量增加,从而使机组的热损耗增大。 In Example 1 of the utility model, although the main steam flow rate in the boiler and the desuperheating water volume at each stage do not directly affect the boiler efficiency, they have a great impact on the cycle efficiency, because the increase of the main steam flow rate makes the steam entering the condenser The increase in the amount will increase the loss of the cold source. The increase in the amount of desuperheating water also increases the heat required to heat the water to the rated parameters in the boiler, thereby increasing the heat loss of the unit. the
被控对象的动态特性随锅炉负荷(锅炉负荷就是指单位时间产生蒸汽 的能力,锅炉负荷随着电力负荷的变化而变化)的变化十分明显,传统的控制系统不能保证在整个锅炉负荷范围内均能有效控制。 The dynamic characteristics of the controlled object change significantly with the boiler load (the boiler load refers to the ability to generate steam per unit time, and the boiler load changes with the change of the electric load), and the traditional control system cannot guarantee uniformity within the entire boiler load range can be effectively controlled. the
智能控制预测模块中的稳态工况预测处理子模块通过观察各段蒸汽前后温度,锅炉燃烧状况,预测控制喷水阀门、烟气挡板、实现精确的温度控制,始终保持最优化的蒸汽温度的控制。通过IHMPC技术,利用扰动工况预测处理子模块,能够处理锅炉蒸汽温度对象的非线性,滞后性和时变性,同时解决发生如电力负荷指令大幅度频繁变化、炉膛吹灰或机组设备本身异常等外部大扰动工况下的蒸汽温度控制的问题。 The steady-state working condition prediction processing sub-module in the intelligent control prediction module observes the temperature before and after each section of steam, the combustion status of the boiler, predicts and controls the water injection valve and the flue gas baffle, realizes precise temperature control, and always maintains the optimal steam temperature control. Through IHMPC technology, using the disturbance working condition prediction and processing sub-module, it can deal with the non-linearity, hysteresis and time-varying nature of the boiler steam temperature object, and at the same time solve the problems such as large and frequent changes in power load instructions, soot blowing in the furnace or abnormalities in the unit itself, etc. The problem of steam temperature control under the condition of large external disturbance. the
另外,在锅炉的热损失当中,第一,排烟损失是最大的一项,一般占到5~7%;第二、不完全燃烧损失占到1~2%;而化学不完全燃烧损失、散热损失、灰渣物热损失只占很少份额。所以,通常减少锅炉的热损失,主要是通过对排烟量(用排烟氧量来标志大小)或排烟温度,和飞灰可燃物含量进行优化控制。 In addition, in the heat loss of boilers, first, exhaust smoke loss is the largest item, generally accounting for 5-7%; second, incomplete combustion loss accounts for 1-2%; and chemical incomplete combustion loss, Heat loss and ash heat loss account for only a small percentage. Therefore, the heat loss of the boiler is usually reduced mainly by optimizing the control of the exhaust gas volume (the oxygen content of the exhaust gas is used to mark the size) or the exhaust gas temperature, and the content of fly ash combustibles. the
这时,要控制送风机回路,送风机回路的任务是控制送风机的动叶开度,以改变二次风量的大小,从而保证锅炉所需要的总风量和氧量。而燃尽风挡板OFA和辅助风挡板,主要为了达到低NOX燃烧和优化配风的要求。当前,OFA挡板的控制主要考虑电力负荷,却没有考虑煤质的变化和锅炉操作中的工况变化,随着这些工况的变化,燃烧排放,蒸汽温度和其他相关的变量也会出现不同的特性。因此,OFA挡板的动态控制会对锅炉带来额外的效益。 At this time, it is necessary to control the blower circuit. The task of the blower circuit is to control the opening of the moving blade of the blower to change the size of the secondary air volume, so as to ensure the total air volume and oxygen volume required by the boiler. The overburned air baffle OFA and auxiliary air baffle are mainly to meet the requirements of low NOX combustion and optimized air distribution. Currently, the control of OFA baffles mainly considers the power load, but does not take into account changes in coal quality and operating conditions during boiler operation. As these operating conditions change, combustion emissions, steam temperature, and other related variables will also vary. characteristics. Therefore, the dynamic control of OFA baffles will bring additional benefits to the boiler. the
智能控制预测模块中的稳态工况预测处理子模块通过实时监控锅炉的主要热损失如排烟热损失、机械未完全燃烧损失等,同时关注氮氧化物的排放,在电力负荷变化或磨煤机启动磨煤等情况下,扰动工况预测处理子模块根据相关的参数变化,控制送风机出口风量偏置以及锅炉配煤、配风相结合来使锅炉运行在经济欠氧状态和最低氮氧化物排放状态。 The steady-state working condition prediction processing sub-module in the intelligent control prediction module monitors the main heat loss of the boiler in real time, such as exhaust heat loss, mechanical incomplete combustion loss, etc., and pays attention to the emission of nitrogen oxides. When the machine is started to grind coal, etc., the disturbance working condition prediction and processing sub-module controls the air volume bias at the outlet of the blower and the boiler coal blending and air blending to make the boiler operate in an economical hypoxic state and the lowest nitrogen oxides according to the relevant parameter changes. emission status. the
在协调控制方式下,锅炉控制主蒸汽压力,机组控制电力负荷。电力负荷指令的前馈回路作为锅炉主控中的粗调部分,经过扰动工况预测处理子模块的作用来调整煤量,而主蒸汽压力偏差经稳态工况预测处理子模块 作用后的指令起到细调作用。这样,智能控制预测模块可以根据相关干扰量和前馈量进行模型预测控制,达到稳定控制的目的。 In the coordinated control mode, the boiler controls the main steam pressure, and the unit controls the electrical load. The feed-forward loop of the power load command is used as the coarse adjustment part of the main control of the boiler, and the coal quantity is adjusted through the function of the sub-module of the prediction and processing of the disturbance working condition, and the command of the main steam pressure deviation after the action of the sub-module of the prediction and processing of the steady-state working condition play a fine-tuning role. In this way, the intelligent control prediction module can carry out model predictive control according to the relevant disturbance quantity and feedforward quantity, so as to achieve the purpose of stable control. the
本实用新型实施例2提供的用于火力发电厂的智能优化控制系统,包括: The intelligent optimization control system for a thermal power plant provided by Embodiment 2 of the utility model includes:
智能控制预测模块,用来提供不同工况状态下的自动控制系统中的被控变量的预测值,所述控制系统包括锅炉蒸汽温度控制子系统、协调控制子系统和燃烧控制子系统; The intelligent control prediction module is used to provide the predicted value of the controlled variable in the automatic control system under different working conditions, and the control system includes the boiler steam temperature control subsystem, the coordination control subsystem and the combustion control subsystem;
DCS系统,用来提供不同工况状态下的运行数据,并对所述智能控制预测模块中的预测值进行优化控制; The DCS system is used to provide operating data under different working conditions, and optimize the control of the predicted value in the intelligent control prediction module;
通讯模块,用来提供所述智能控制预测模块和所述DCS系统之间的双向数据通讯。 The communication module is used to provide two-way data communication between the intelligent control prediction module and the DCS system. the
其中,所述智能控制预测模块,包括: Wherein, the intelligent control prediction module includes:
采集子模块,用来从DCS控制系统中采集运行数据; The collection sub-module is used to collect operation data from the DCS control system;
稳态工况预测处理子模块,用来根据所述运行数据,获得当前工作状态下的被控变量的稳态预测值; The steady-state working condition prediction processing sub-module is used to obtain the steady-state predicted value of the controlled variable under the current working state according to the operating data;
扰动工况预测处理子模块,当工作状态发生变化时,用来获得当前工作状况下的被控变量的动态预测值; Disturbance condition prediction processing sub-module, when the working condition changes, it is used to obtain the dynamic forecast value of the controlled variable under the current working condition;
优化子模块,用来优化所述被控变量的预测值得到所述被控变量的优化目标值; An optimization submodule, used to optimize the predicted value of the controlled variable to obtain the optimized target value of the controlled variable;
状况切换触发子模块,用来当工作状态发生变化时,切换到所述扰动工况预测子模块。 The state switching trigger submodule is used to switch to the disturbance working condition prediction submodule when the working state changes. the
智能优化控制系统内部计算流程:从DCS系统实时数据库中采集运行数据,数据先进入智能控制预测模块,通过事先的多模型预测处理后,形成一个动态预测值和稳态预测值。其中动态预测值到扰动工况预测处理子模块,稳态预测值通过DCS系统的优化处理后得到被控变量的稳态目标值,再通过扰动工况预测处理子模块把被控变量的值输出到DCS系统进行优化控制。 The internal calculation process of the intelligent optimization control system: the operation data is collected from the real-time database of the DCS system, and the data first enters the intelligent control prediction module, and after multi-model prediction processing in advance, a dynamic prediction value and a steady state prediction value are formed. Among them, the dynamic prediction value is transferred to the disturbance working condition prediction processing sub-module, and the steady-state prediction value is optimized by the DCS system to obtain the steady-state target value of the controlled variable, and then the value of the controlled variable is output through the disturbance working condition prediction processing sub-module To the DCS system for optimal control. the
具体实施上,我们可将上述智能控制预测模块所采用的多模型混合预 测控制方式应用于以下各个功能性的控制子系统中。例如,燃烧控制子系统,用来动态监控锅炉的实时操作参数,控制送风机回路的总风量和氧量等,所述实时操作参数包括煤质参数,排烟量,排烟温度,飞灰可燃物含量及氮含量和蒸汽温度;汽温控制子系统,用来实时监控锅炉的蒸汽温度数据和工况变化数据,根据所述工况变化数据,例如电力负荷变化,获得所述电力负荷的前馈回路的前馈量,和所述蒸汽温度的非线性变化量,所述非线性变化量为干扰量;协调控制子系统,用来根据所述前馈量和干扰量进行预测控制。 In terms of specific implementation, we can apply the multi-model hybrid predictive control method adopted by the above-mentioned intelligent control prediction module to the following functional control subsystems. For example, the combustion control subsystem is used to dynamically monitor the real-time operating parameters of the boiler, and control the total air volume and oxygen volume of the blower circuit. The real-time operating parameters include coal quality parameters, exhaust gas volume, exhaust gas temperature, and fly ash combustibles content and nitrogen content and steam temperature; the steam temperature control subsystem is used to monitor the steam temperature data and working condition change data of the boiler in real time, and obtain the feedforward of the electric load according to the working condition change data, such as the electric load change The feedforward quantity of the loop, and the nonlinear change quantity of the steam temperature, the said nonlinear change quantity is a disturbance quantity; the coordinated control subsystem is used to perform predictive control according to the feedforward quantity and the disturbance quantity. the
本实用新型采用智能控制预测模块的智能优化控制系统,利用IHMPC(智能混合模型预测控制,Intelligent Hybrid Model Predictive Control)技术来替代原有的传统PID控制技术,把整个控制对象划分为两大类工作空间,一个是平稳工况下的较为精确的稳工况模型类,另一个是较大扰动工况的变工况模型类,如吹灰过程,升降负荷、磨煤机启停过程等。这种混合模型预测控制,体现了预测控制的灵活性,而且在处理较大扰动工况时体现出一定的优势,能够有效实现全工况控制要求,兼容性强,易于实施。 The utility model adopts the intelligent optimization control system of the intelligent control prediction module, uses IHMPC (Intelligent Hybrid Model Predictive Control, Intelligent Hybrid Model Predictive Control) technology to replace the original traditional PID control technology, and divides the entire control object into two categories of work Space, one is a relatively accurate steady-state model under stable conditions, and the other is a variable-condition model for relatively large disturbance conditions, such as the soot blowing process, lifting and lowering loads, and the start-stop process of coal mills. This kind of hybrid model predictive control embodies the flexibility of predictive control, and shows certain advantages when dealing with large disturbance conditions, can effectively realize the control requirements of all working conditions, has strong compatibility, and is easy to implement. the
本领域技术人员应该认识到,上述的具体实施方式只是示例性的,是为了使本领域技术人员能够更好的理解本专利内容,不应理解为是对本专利保护范围的限制,只要是根据本专利所揭示精神所作的任何等同变更或修饰,均落入本专利保护范围。 Those skilled in the art should realize that the above-mentioned specific embodiments are only exemplary, and are intended to enable those skilled in the art to better understand the content of this patent, and should not be construed as limiting the scope of protection of this patent. Any equivalent changes or modifications made to the spirit disclosed in the patent fall within the protection scope of this patent. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010206503054U CN202075597U (en) | 2010-12-09 | 2010-12-09 | Intelligent optimization control system used in thermal power station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010206503054U CN202075597U (en) | 2010-12-09 | 2010-12-09 | Intelligent optimization control system used in thermal power station |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202075597U true CN202075597U (en) | 2011-12-14 |
Family
ID=45113692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010206503054U Expired - Fee Related CN202075597U (en) | 2010-12-09 | 2010-12-09 | Intelligent optimization control system used in thermal power station |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202075597U (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621945A (en) * | 2012-03-05 | 2012-08-01 | 内蒙古自治区电力科学研究院 | Efficiency dynamic optimizing operation closed-loop optimization control method based on optimum operating conditions of thermal generator set |
CN104613468A (en) * | 2015-01-27 | 2015-05-13 | 华北电力大学 | Circulating fluidized bedboiler combustion optimizing control method based on fuzzy adaptive inference |
CN107420874A (en) * | 2017-08-16 | 2017-12-01 | 江苏大唐国际吕四港发电有限责任公司 | A kind of ultra supercritical Coordinate Control of Fossil-fired Generating Sets |
CN109213099A (en) * | 2018-08-28 | 2019-01-15 | 天津闪速炼铁技术有限公司 | The application method and system of mathematical model control production Internet-based |
CN109654517A (en) * | 2018-12-05 | 2019-04-19 | 中北大学 | A kind of boiler soot-blowing optimization method based on the prediction of heating surface health status |
CN109917641A (en) * | 2017-12-12 | 2019-06-21 | 南京凯盛国际工程有限公司 | A kind of denitration system optimizing control based on model of mind PREDICTIVE CONTROL |
CN111736637A (en) * | 2020-05-20 | 2020-10-02 | 山东中实易通集团有限公司 | Steam temperature control system and method based on hearth temperature measurement |
CN112180876A (en) * | 2020-10-19 | 2021-01-05 | 广东省特种设备检测研究院 | Big data based energy-saving control method for gas-fired boiler |
-
2010
- 2010-12-09 CN CN2010206503054U patent/CN202075597U/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621945A (en) * | 2012-03-05 | 2012-08-01 | 内蒙古自治区电力科学研究院 | Efficiency dynamic optimizing operation closed-loop optimization control method based on optimum operating conditions of thermal generator set |
CN102621945B (en) * | 2012-03-05 | 2014-03-26 | 内蒙古自治区电力科学研究院 | Efficiency dynamic optimizing operation closed-loop optimization control method based on optimum operating conditions of thermal generator set |
CN104613468A (en) * | 2015-01-27 | 2015-05-13 | 华北电力大学 | Circulating fluidized bedboiler combustion optimizing control method based on fuzzy adaptive inference |
CN107420874A (en) * | 2017-08-16 | 2017-12-01 | 江苏大唐国际吕四港发电有限责任公司 | A kind of ultra supercritical Coordinate Control of Fossil-fired Generating Sets |
CN107420874B (en) * | 2017-08-16 | 2021-12-14 | 江苏大唐国际吕四港发电有限责任公司 | Ultra-supercritical thermal generator set coordination control system |
CN109917641A (en) * | 2017-12-12 | 2019-06-21 | 南京凯盛国际工程有限公司 | A kind of denitration system optimizing control based on model of mind PREDICTIVE CONTROL |
CN109213099A (en) * | 2018-08-28 | 2019-01-15 | 天津闪速炼铁技术有限公司 | The application method and system of mathematical model control production Internet-based |
CN109213099B (en) * | 2018-08-28 | 2020-10-16 | 天津闪速炼铁技术有限公司 | Application method and system for controlling production based on internet mathematical model |
CN109654517A (en) * | 2018-12-05 | 2019-04-19 | 中北大学 | A kind of boiler soot-blowing optimization method based on the prediction of heating surface health status |
CN111736637A (en) * | 2020-05-20 | 2020-10-02 | 山东中实易通集团有限公司 | Steam temperature control system and method based on hearth temperature measurement |
CN112180876A (en) * | 2020-10-19 | 2021-01-05 | 广东省特种设备检测研究院 | Big data based energy-saving control method for gas-fired boiler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202075597U (en) | Intelligent optimization control system used in thermal power station | |
CN101713536B (en) | A control method for a circulating fluidized bed boiler combustion system | |
CN113266843B (en) | Combustion optimization method, system and device for coal-fired boiler | |
CN103322547B (en) | Boiler control and combustion optimization method | |
CN106594793B (en) | Fired power generating unit medium-speed pulverizer outlet temperature controls optimization method | |
CN103423740A (en) | System and method for automatically controlling combustion process of circulating fluidized bed boiler | |
CN202018027U (en) | Automatic control system for full-automatic coal burning boiler | |
WO2022252414A1 (en) | Coal-air synchronous dynamic coordinated control method for coal-fired unit | |
CN111486472A (en) | Medium-speed mill automatic start-stop control system suitable for deep peak shaving of direct-blowing coal-fired unit | |
CN111708333A (en) | Intelligent prediction coordination control system of power plant | |
CN111045321B (en) | Method for coordinately controlling embedded internal model controller under deep peak regulation | |
CN102902215B (en) | Direct-firing fired power generating unit control method of coal | |
CN205874470U (en) | Blast funnace hot blast stove optimal control system | |
CN202512382U (en) | Chain boiler burning rolling self-optimization - proportion integration differentiation (PID) compound control system | |
CN118630725A (en) | A digital adaptive wide load control method and system for coal-fired power plants | |
CN106524141A (en) | Quick load change control method of subcritical circulating fluidized bed boiler unit | |
CN201909989U (en) | Automatically-controlled energy-saving system of boiler | |
CN113374539B (en) | Steam inlet control system of double-cylinder double-pressure waste heat generating set and steam supplementing control method thereof | |
CN116146983A (en) | Solid waste adaptive pyrolysis system and method for load adjustment of coal-fired boilers | |
CN209622755U (en) | Gas-steam boiler control system based on Internet of Things | |
Shen et al. | Design of Boiler Steam Temperature Control System | |
CN109140492B (en) | Boiler smoke-wind coupling waste heat recovery system | |
CN111736637A (en) | Steam temperature control system and method based on hearth temperature measurement | |
Tan et al. | The study of the optimal three wind distribution in biomass boiler | |
CN112344348A (en) | A combustion optimization control method of a waste incinerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111214 Termination date: 20131209 |