CN201797604U - A base station subsystem - Google Patents
A base station subsystem Download PDFInfo
- Publication number
- CN201797604U CN201797604U CN201020156374XU CN201020156374U CN201797604U CN 201797604 U CN201797604 U CN 201797604U CN 201020156374X U CN201020156374X U CN 201020156374XU CN 201020156374 U CN201020156374 U CN 201020156374U CN 201797604 U CN201797604 U CN 201797604U
- Authority
- CN
- China
- Prior art keywords
- channel
- bbu
- dual
- channels
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013307 optical fiber Substances 0.000 claims abstract description 16
- 230000010287 polarization Effects 0.000 claims description 35
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及移动通信领域,特别涉及一种基站子系统。The utility model relates to the field of mobile communication, in particular to a base station subsystem.
背景技术Background technique
时分复用(TD)基站子系统包括基带处理单元(BBU)和射频拉远单元(RRU),所述BBU和所述RRU通过光纤连接,RRU又分为多通道RRU和单通道RRU。多通道RRU即一个射频拉远单元上提供多路(端口)射频输出,单通道RRU仅提供一路(端口)射频输出。多通道RRU主要用于宏基站场景与智能天线配合使用;单通道RRU主要用于室内覆盖场景。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。The time division multiplexing (TD) base station subsystem includes a baseband processing unit (BBU) and a remote radio unit (RRU). The BBU and the RRU are connected through optical fibers, and the RRU is further divided into a multi-channel RRU and a single-channel RRU. A multi-channel RRU means that a remote radio unit provides multiple (port) radio frequency outputs, and a single-channel RRU provides only one (port) radio frequency output. Multi-channel RRUs are mainly used in macro base station scenarios and used in conjunction with smart antennas; single-channel RRUs are mainly used in indoor coverage scenarios. The principle of the smart antenna is to direct the radio signal to a specific direction, generate a spatially directional beam, align the main beam of the antenna with the direction of arrival of the user signal, and align the side lobes or nulls with the direction of arrival of the interference signal, so as to fully and efficiently utilize the mobile user signal and for the purpose of deleting or suppressing interfering signals.
对于一些特殊的场景如高铁、地铁、隧道、磁浮等高速场景,如果采用多通道RRU+智能天线技术,由于为了实现其列车行驶方向上的覆盖要求,通常基站设置在离轨道沿线几十米范围内,其使用多通道RRU+智能天线的主要缺陷如下:For some special scenarios such as high-speed rail, subway, tunnel, maglev and other high-speed scenarios, if multi-channel RRU+smart antenna technology is used, in order to meet the coverage requirements in the direction of the train, the base station is usually set within tens of meters away from the track , the main disadvantages of using multi-channel RRU+smart antennas are as follows:
第一,在基站近端,高速列车在赋形波束间横切方向的高速切换,对智能天线赋形算法提出了极高的要求,现在业界很难实现,即使实现其成本相当高。First, at the near end of the base station, the high-speed switching of high-speed trains in the transverse direction between shaped beams places extremely high requirements on the smart antenna shaping algorithm, which is difficult to achieve in the industry, even if the cost is quite high.
第二,在远端,列车等行驶在智能天线的同一赋形波束内,智能天线与普通扇区化天线相比,体现不出智能天线波瓣跟随的优势,智能天线完全可以用较窄波束的扇区化天线加以替代,从而多通道RRU就丧失了使用的意义。Second, at the far end, trains, etc. travel in the same shaped beam of the smart antenna. Compared with the ordinary sectorized antenna, the smart antenna does not reflect the advantage of the lobe following of the smart antenna, and the smart antenna can use a narrower beam. Instead of the sectorized antenna, the multi-channel RRU loses the meaning of use.
在室内覆盖、小区覆盖建设中,由于诸多场景中智能天线使用的限制,往往在TD网络建设过程中选用单通道RRU加常规垂直极化小型平板天线或吸顶天线(或者使用多通道RRU时,每一独立通道覆盖不同区域的方式)。而此方式牺牲了TD的赋形波束能力,上下行都丧失了赋形增益,上行更失去了赋形波束所带来的减少干扰的优点,从系统级链路估算而言,对上行容量和覆盖的影响更大。智能天线是TD特有的关键技术之一,其赋形增益(6-7dB)是影响系统链路设计的关键指标之一。使用单通道RRU进行室内覆盖,由于赋形增益的丧失,使TD系统上下行链路性能急剧下降,TD系统容量损失严重,经仿真,系统容量将损失2/3左右(根据不同具体场景有所不同)。In the construction of indoor coverage and community coverage, due to the restrictions on the use of smart antennas in many scenarios, single-channel RRUs and conventional vertically polarized small flat-panel antennas or ceiling antennas are often used in the TD network construction process (or when multi-channel RRUs are used, each independent channel to cover a different area). However, this method sacrifices the shaped beam capability of TD, the uplink and downlink both lose the shaped gain, and the uplink loses the advantage of reducing interference brought by the shaped beam. Overrides have a bigger impact. Smart antenna is one of TD's unique key technologies, and its shaped gain (6-7dB) is one of the key indicators affecting system link design. Using a single-channel RRU for indoor coverage, due to the loss of shape-forming gain, the uplink and downlink performance of the TD system will drop sharply, and the capacity of the TD system will be seriously lost. After simulation, the system capacity will be lost by about 2/3 (depending on different scenarios) different).
实用新型内容Utility model content
本实用新型所要解决的技术问题是提供一种基站子系统,以改善上下行无线链路性能,进而提高系统容量。The technical problem to be solved by the utility model is to provide a base station subsystem to improve the performance of the uplink and downlink wireless links, and further increase the system capacity.
为解决上述技术问题,本实用新型提供技术方案如下:In order to solve the problems of the technologies described above, the utility model provides technical solutions as follows:
一种基站子系统,包括:A base station subsystem, comprising:
一基带处理单元BBU和一对单通道射频拉远单元RRU,所述BBU与所述一对单通道RRU通过光纤连接,所述一对单通道RRU分别通过射频馈缆连接至一双极化天线的两个端口;A baseband processing unit BBU and a pair of single-channel remote radio unit RRU, the BBU and the pair of single-channel RRU are connected through optical fibers, and the pair of single-channel RRU are respectively connected to a dual-polarized antenna through a radio frequency feeder cable two ports;
在下行方向,所述BBU将同一基带信号发送到所述一对单通道RRU,所述一对单通道RRU分别将所述基带信号转换为射频信号后输出至所述双极化天线,实现下行极化发射;In the downlink direction, the BBU sends the same baseband signal to the pair of single-channel RRUs, and the pair of single-channel RRUs respectively convert the baseband signal into a radio frequency signal and output it to the dual-polarized antenna to realize the downlink polarized emission;
在上行方向,所述一对单通道RRU将来自所述双极化天线的两路射频信号转换为两路基带信号后发送到所述BBU,所述BBU对所述两路基带信号进行信号合并,实现上行极化分集接收。In the uplink direction, the pair of single-channel RRUs convert the two-way radio frequency signals from the dual-polarized antenna into two-way baseband signals and send them to the BBU, and the BBU performs signal combination on the two-way baseband signals , realizing uplink polarization diversity reception.
上述的基站子系统,其中,包括多级通过光纤级联的射频拉远部分,每级射频拉远部分包括所述一对单通道RRU。The above-mentioned base station subsystem includes multiple stages of remote radio parts cascaded through optical fibers, and each stage of remote radio parts includes the pair of single-channel RRUs.
上述的基站子系统,其中,所述BBU对所述两路基带信号进行的信号合并为最大比合并或者选择性合并。In the above-mentioned base station subsystem, the signal combination performed by the BBU on the two baseband signals is maximum ratio combination or selective combination.
上述的基站子系统,其中,所述双极化天线为±45°双极化天线。In the above base station subsystem, the dual-polarized antenna is a ±45° dual-polarized antenna.
一种基站子系统,包括:A base station subsystem, comprising:
一基带处理单元BBU和一多通道射频拉远单元RRU,所述BBU与所述多通道RRU通过光纤连接,所述多通道RRU中的两个通道分别通过射频馈缆连接至一双极化天线的两个端口;A baseband processing unit BBU and a multi-channel remote radio unit RRU, the BBU is connected to the multi-channel RRU through an optical fiber, and the two channels in the multi-channel RRU are respectively connected to a dual-polarized antenna through a radio frequency feeder cable two ports;
在下行方向,所述BBU将同一基带信号发送到所述多通道RRU中的所述两个通道,所述两个通道分别将所述基带信号转换为射频信号后输出至所述双极化天线,实现下行极化发射;In the downlink direction, the BBU sends the same baseband signal to the two channels in the multi-channel RRU, and the two channels respectively convert the baseband signal into a radio frequency signal and output it to the dual-polarized antenna , to achieve downlink polarized emission;
在上行方向,所述两个通道将来自所述双极化天线的两路射频信号转换为两路基带信号后发送到所述BBU,所述BBU对所述两路基带信号进行信号合并,实现上行极化分集接收。In the uplink direction, the two channels convert the two channels of radio frequency signals from the dual-polarized antenna into two channels of baseband signals and send them to the BBU, and the BBU performs signal combination on the two channels of baseband signals to realize Uplink polarization diversity reception.
上述的基站子系统,其中,包括多级通过光纤级联的射频拉远部分,每级射频拉远部分包括一个所述多通道RRU。The above-mentioned base station subsystem includes multiple stages of remote radio parts cascaded through optical fibers, and each stage of remote radio parts includes one multi-channel RRU.
上述的基站子系统,其中,所述BBU对所述两路基带信号进行的信号合并为最大比合并或者选择性合并。In the above-mentioned base station subsystem, the signal combination performed by the BBU on the two baseband signals is maximum ratio combination or selective combination.
上述的基站子系统,其中,所述双极化天线为±45°双极化天线。In the above base station subsystem, the dual-polarized antenna is a ±45° dual-polarized antenna.
与现有技术相比,本实用新型的有益效果是:通过上下行极化的增加,改善、提高了TD系统在使用非智能天线(丧失赋形增益)情况下的上下行无线链路性能,尤其对于TD上行链路的性能有更大的助益;由于上下行无线链路性能的提升,改善了系统载干比,对于非智能天线(丧失赋形增益)情况下TD的系统容量也得到了提升。Compared with the prior art, the beneficial effect of the utility model is: through the increase of the uplink and downlink polarization, the uplink and downlink wireless link performance of the TD system in the case of using non-smart antennas (loss of shaped gain) is improved, Especially for the performance of the TD uplink, it is more helpful; due to the improvement of the performance of the uplink and downlink wireless links, the system carrier-to-interference ratio is improved, and the system capacity of TD is also improved in the case of non-smart antennas (loss of shaped gain). uplifted.
附图说明Description of drawings
图1为本实用新型实施例一的基站子系统的结构示意图;FIG. 1 is a schematic structural diagram of a base station subsystem in Embodiment 1 of the present invention;
图2为本实用新型实施例二的基站子系统的结构示意图;FIG. 2 is a schematic structural diagram of a base station subsystem in Embodiment 2 of the present invention;
图3为本实用新型实施例三的基站子系统的结构示意图。FIG. 3 is a schematic structural diagram of a base station subsystem in Embodiment 3 of the present invention.
具体实施方式Detailed ways
为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本实用新型进行详细描述。In order to make the purpose, technical solution and advantages of the utility model clearer, the utility model will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例一Embodiment one
参照图1,本实用新型实施例的基站子系统包括:一BBU101和一对单通道RRU102、103,BBU101与单通道RRU102、103通过光纤连接,单通道RRU102、103分别通过射频馈缆连接至一双极化天线104的两个端口。图中,实线代表光纤,虚线代表射频馈缆。Referring to Fig. 1, the base station subsystem of the embodiment of the present invention includes: a BBU101 and a pair of single-channel RRU102, 103, BBU101 and single-channel RRU102, 103 are connected by optical fiber, single-channel RRU102, 103 are respectively connected to a pair of Two ports of the polarized
所述基站子系统对下行信号的处理过程如下:The processing process of the downlink signal by the base station subsystem is as follows:
BBU101将同一基带信号发送到单通道RRU102、103,单通道RRU102、103分别将所述基带信号转换为射频信号后输出至双极化天线104,由双极化天线104以不同的极化方式(例如,±45°极化)将所述射频信号发送出去,如此,实现了下行极化发射。The BBU101 sends the same baseband signal to the single-channel RRU102, 103, and the single-channel RRU102, 103 respectively converts the baseband signal into a radio frequency signal and outputs it to the dual-polarized
所述基站子系统对上行信号的处理过程如下:The processing process of the uplink signal by the base station subsystem is as follows:
双极化天线104以不同的极化方式接收(例如,±45°极化)射频信号,得到两路射频信号,将所述两路射频信号分别发送至单通道RRU102、103,单通道RRU102、103将来自双极化天线104的两路射频信号转换为两路基带信号后发送到BBU101,由BBU101对所述两路基带信号进行信号合并,如此,实现了上行极化分集接收。The dual-polarized
其中,BBU101对所述两路基带信号进行的信号合并可以为最大比合并或者选择性合并。Wherein, the signal combining performed by the
实施例二Embodiment two
在本实施例中,由一多通道RRU替代实施例一中的一对单通道RRU。In this embodiment, a pair of single-channel RRUs in Embodiment 1 is replaced by a multi-channel RRU.
参照图2,本实用新型实施例的基站子系统包括:一BBU201和一多通道RRU202,BBU201与多通道RRU202通过光纤连接,多通道RRU202中的两个通道分别通过射频馈缆连接至一双极化天线203的两个端口。图中,实线代表光纤,虚线代表射频馈缆。Referring to Fig. 2, the base station subsystem of the utility model embodiment includes: a BBU201 and a multi-channel RRU202, the BBU201 and the multi-channel RRU202 are connected by optical fibers, and the two channels in the multi-channel RRU202 are respectively connected to a dual-polarized The two ports of the
所述基站子系统对下行信号的处理过程如下:The processing process of the downlink signal by the base station subsystem is as follows:
BBU201将同一基带信号发送到多通道RRU202中的所述两个通道,所述两个通道分别将所述基带信号转换为射频信号后输出至双极化天线203,由双极化天线203以不同的极化方式(例如,±45°极化)将所述射频信号发送出去,如此,实现了下行极化发射。The BBU201 sends the same baseband signal to the two channels in the multi-channel RRU202, and the two channels respectively convert the baseband signal into a radio frequency signal and output it to the dual-polarized
所述基站子系统对上行信号的处理过程如下:The processing process of the uplink signal by the base station subsystem is as follows:
双极化天线203以不同的极化方式接收(例如,±45°极化)射频信号,得到两路射频信号,将所述两路射频信号分别发送至所述两个通道,所述两个通道将来自双极化天线203的两路射频信号转换为两路基带信号后发送到BBU201,由BBU201对所述两路基带信号进行信号合并,如此,实现了上行极化分集接收。The dual-polarized
其中,BBU201对所述两路基带信号进行的信号合并可以为最大比合并或者选择性合并。Wherein, the signal combining performed by the BBU201 on the two channels of baseband signals may be maximum ratio combining or selective combining.
实施例三Embodiment three
本实施例为对RRU的级联应用。This embodiment is a cascading application to RRUs.
在一些特殊场景中,如高速移动干线场景(磁悬浮、高铁等),由于高速状态下,为使越区切换正常进行,系统需要更长的切换过渡区域,在不降低网络性能的前提下,为了减少沿线越区切换发生的次数从而降低切换掉话的可能性,一种解决方式是:将多个由“RRU+天线”组成的物理扇区合并为一个逻辑扇区,将一个逻辑小区的覆盖范围加以延伸,将原来的越区切换区域转变成同一逻辑小区(在原切换点不再发生越区切换)。In some special scenarios, such as high-speed mobile main line scenarios (maglev, high-speed rail, etc.), the system needs a longer handover transition area in order to make the handover work normally under high-speed conditions. On the premise of not reducing network performance, in order To reduce the number of handovers along the line and reduce the possibility of dropped calls, one solution is to combine multiple physical sectors composed of "RRU+antenna" into one logical sector, and combine the coverage of one logical cell To be extended, the original handover area is transformed into the same logic cell (handover does not occur at the original handover point).
现有厂家设备对于同一逻辑小区下RRU设备的级联受该级联链路总载扇通道数CA的限制,由于多通道RRU一般情况下为6通道或8通道,我们以8通道为例,假定逻辑小区的载扇配置为6载扇,采用一个多通道RRU后,总载扇通道数CA为:6载扇×8通道=48CA,已经达到现有业界设备的极限值,即对于8通道RRU在6载扇配置下,不能进行RRU的级联,亦即不能通过多级级联实现逻辑小区覆盖范围的延伸。The cascading of RRU devices under the same logical cell by the existing manufacturer’s equipment is limited by the total number of fan channels CA of the cascading link. Since multi-channel RRUs generally have 6 or 8 channels, let’s take 8 channels as an example. Assuming that the carrier sector configuration of the logical cell is 6 carrier sectors, after using a multi-channel RRU, the total number of carrier sector channels CA is: 6 carrier sectors × 8 channels = 48CA, which has reached the limit value of existing industry equipment, that is, for 8 channels Under the configuration of 6 carrier sectors, the RRU cannot be cascaded, that is, the extension of the coverage of the logical cell cannot be realized through multi-level cascading.
假设使用2个单通道RRU双极化连接,每一级2个RRU提供2个端口,则RRU的级联数=48CA/6载扇/2通道=4级RRU,即可以进行4级双极化连接(即一个逻辑小区覆盖区域扩展为原来的4倍)。Assuming that two single-channel RRUs are used for dual-polarization connections, and each level of 2 RRUs provides 2 ports, then the number of cascaded RRUs = 48CA/6 carrier fans/2 channels = 4 levels of RRUs, that is, 4 levels of bipolar Optimized connection (that is, the coverage area of a logical cell is expanded to 4 times of the original).
参照图3,本实用新型实施例的基站子系统包括:一BBU301和多级(本实施例为3级)通过光纤级联的射频拉远部分,每级射频拉远部分包括一对单通道RRU,分别为单通道RRU302、303,单通道RRU304、305,单通道RRU306、307,单通道RRU302、303分别通过射频馈缆连接至一双极化天线308的两个端口,单通道RRU304、305分别通过射频馈缆连接至一双极化天线309的两个端口,单通道RRU306、307分别通过射频馈缆连接至一双极化天线310的两个端口。图中,实线代表光纤,虚线代表射频馈缆。Referring to Fig. 3, the base station subsystem of the embodiment of the present invention includes: a BBU301 and multi-level (3 levels in this embodiment) radio remote part cascaded through optical fibers, and each stage of radio remote part includes a pair of single-channel RRUs , are single-channel RRU302, 303, single-channel RRU304, 305, single-channel RRU306, 307, single-channel RRU302, 303 are respectively connected to two ports of a dual-polarized
在下行方向,BBU101将同一基带信号发送到单通道RRU302、303,单通道RRU302、303分别将所述基带信号转换为射频信号后输出至双极化天线308,由双极化天线308以不同的极化方式(例如,±45°极化)将所述射频信号发送出去,如此,实现了下行极化发射。In the downlink direction, the BBU101 sends the same baseband signal to the single-channel RRU302, 303, and the single-channel RRU302, 303 respectively converts the baseband signal into a radio frequency signal and outputs it to the dual-polarized
另外,单通道RRU302、303还将所述基带信号传送至单通道RRU304、305,单通道RRU304、305分别将所述基带信号转换为射频信号后输出至双极化天线309,由双极化天线309以不同的极化方式(例如,±45°极化)将所述射频信号发送出去,如此,实现了下行极化发射。In addition, the single-
另外,单通道RRU304、305还将所述基带信号传送至单通道RRU306、307,单通道RRU306、307分别将所述基带信号转换为射频信号后输出至双极化天线310,由双极化天线310以不同的极化方式(例如,±45°极化)将所述射频信号发送出去,如此,实现了下行极化发射。In addition, the single-
在上行方向,双极化天线310以不同的极化方式接收(例如,±45°极化)射频信号,得到两路射频信号,将所述两路射频信号分别发送至单通道RRU306、307,单通道RRU306、307将来自双极化天线310的两路射频信号转换为两路基带信号后通过单通道RRU304、305,单通道RRU302、303发送到BBU301,由BBU301对所述两路基带信号进行信号合并,如此,实现了上行极化分集接收。In the uplink direction, the dual-polarized
另外,双极化天线309以不同的极化方式接收(例如,±45°极化)射频信号,得到两路射频信号,将所述两路射频信号分别发送至单通道RRU304、305,单通道RRU304、305将来自双极化天线309的两路射频信号转换为两路基带信号后通过单通道RRU302、303发送到BBU301,由BBU301对所述两路基带信号进行信号合并,如此,实现了上行极化分集接收。In addition, the dual-polarized
另外,双极化天线307以不同的极化方式接收(例如,±45°极化)射频信号,得到两路射频信号,将所述两路射频信号分别发送至单通道RRU302、303,单通道RRU302、303将来自双极化天线104的两路射频信号转换为两路基带信号后发送到BBU301,由BBU301对所述两路基带信号进行信号合并,如此,实现了上行极化分集接收。In addition, the dual-polarized
其中,BBU301对所述两路基带信号进行的信号合并可以为最大比合并或者选择性合并。其中多级RRU级联方式的上行信号处理中,BBU301对于“多级RRU信号的小区合并”和“每一级RRU的极化合并”,可以根据具体实现方式选择先后进行。Wherein, the signal combining performed by the BBU301 on the two channels of baseband signals may be maximum ratio combining or selective combining. Among them, in the uplink signal processing of the multi-level RRU cascading mode, the
在实施例三中,每个射频拉远处理级为一对单通道RRU,在其他实施例种,每个射频拉远处理级也可以为一多通道RRU,所述多通道RRU中的两个通道分别通过射频馈缆连接至一双极化天线的两个端口,该种实施方式下的上下行信号处理流程与实施例三类似,这里不作赘述。In Embodiment 3, each radio remote processing stage is a pair of single-channel RRUs. In other embodiments, each radio remote processing stage may also be a multi-channel RRU, and two of the multi-channel RRUs The channels are respectively connected to two ports of a dual-polarized antenna through radio frequency feeder cables. The uplink and downlink signal processing procedures in this implementation mode are similar to those in Embodiment 3, and will not be repeated here.
综上所述,本实用新型实施例的基站子系统,在下行方向,连接至同一个BBU的两个单通道RRU(或一个多通道RRU的两个独立通道)输出同一路下行信号,实现了极化发射;在上行方向,±45°双极化天线接收的两路上行信号在基站端的信号合并,形成了极化增益。与常规单通道RRU单极化连接方式比较,上下行通过极化应用可以分别得到3dB的极化增益,在丧失了赋形增益的TD系统中,3dB的极化增益对于改善提升上下行的无线链路性能,提升无线网络空口容量至关重要,理论上其空口容量将有80%~100%的提升。To sum up, in the base station subsystem of the embodiment of the utility model, in the downlink direction, two single-channel RRUs (or two independent channels of a multi-channel RRU) connected to the same BBU output the same downlink signal, realizing Polarized transmission: In the uplink direction, the two uplink signals received by the ±45° dual-polarized antenna are combined at the base station to form a polarization gain. Compared with the conventional single-channel RRU single-polarization connection mode, the uplink and downlink can obtain 3dB polarization gain through polarization application respectively. In the TD system that loses the shaping gain, the 3dB polarization gain can improve the uplink and downlink wireless For link performance, it is very important to improve the air interface capacity of the wireless network. Theoretically, the air interface capacity will be increased by 80% to 100%.
与多通道RRU级联方式比较,使用两个单通道RRU(或一个多通道RRU的两个独立通道)双极化连接并级联后,在同样达到4级级联的情况下,小区最大可配置为6载扇,底噪没有明显抬升,空口容量得到保护,在不降低网络性能的前提下,使逻辑小区载扇配置能力得到保护,同时逻辑小区的覆盖能力得到有效提升,提升了高速场景下的越区切换成功的概率。Compared with the multi-channel RRU cascading method, after using two single-channel RRUs (or two independent channels of a multi-channel RRU) for dual-polarization connection and cascading, the cell can reach a maximum of 4 levels of cascading. Configured as 6 carrier fans, the noise floor does not increase significantly, and the capacity of the air interface is protected. On the premise of not degrading the network performance, the carrier fan configuration capability of the logical cell is protected. At the same time, the coverage capability of the logical cell is effectively improved, and the high-speed scenario is improved. The probability of successful handover under .
最后应当说明的是,以上实施例仅用以说明本实用新型的技术方案而非限制,本领域的普通技术人员应当理解,可以对本实用新型的技术方案进行修改或者等同替换,而不脱离本实用新型技术方案的精神范围,其均应涵盖在本实用新型的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the utility model without limitation. Those of ordinary skill in the art should understand that the technical solution of the utility model can be modified or equivalently replaced without departing from the utility model. The spirit scope of the new technical solution should be included in the scope of the claims of the present utility model.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201020156374XU CN201797604U (en) | 2010-03-26 | 2010-03-26 | A base station subsystem |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201020156374XU CN201797604U (en) | 2010-03-26 | 2010-03-26 | A base station subsystem |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201797604U true CN201797604U (en) | 2011-04-13 |
Family
ID=43852500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201020156374XU Expired - Lifetime CN201797604U (en) | 2010-03-26 | 2010-03-26 | A base station subsystem |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201797604U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103259571A (en) * | 2012-02-15 | 2013-08-21 | 系通科技股份有限公司 | Expansion module of multiple input multiple output wireless communication system |
WO2015027675A1 (en) * | 2013-09-02 | 2015-03-05 | 华为技术有限公司 | Communication device, baseband unit and communication method |
CN104469826A (en) * | 2013-09-13 | 2015-03-25 | 中国移动通信集团海南有限公司 | An antenna scheduling method and system |
CN105519233A (en) * | 2014-07-17 | 2016-04-20 | 华为技术有限公司 | Distributed base station |
CN106533525A (en) * | 2016-11-30 | 2017-03-22 | 北京全路通信信号研究设计院集团有限公司 | Rail transit broadband mobile communication system and method |
CN107635294A (en) * | 2017-09-22 | 2018-01-26 | 中国移动通信集团江苏有限公司 | Base station subsystem, signal transmission method, base station equipment and storage medium |
US20210314029A1 (en) * | 2017-05-22 | 2021-10-07 | Teko Telecom S.R.L. | Wireless communication system and related method for processing uplink fronthaul data |
-
2010
- 2010-03-26 CN CN201020156374XU patent/CN201797604U/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103259571A (en) * | 2012-02-15 | 2013-08-21 | 系通科技股份有限公司 | Expansion module of multiple input multiple output wireless communication system |
WO2015027675A1 (en) * | 2013-09-02 | 2015-03-05 | 华为技术有限公司 | Communication device, baseband unit and communication method |
CN104469826A (en) * | 2013-09-13 | 2015-03-25 | 中国移动通信集团海南有限公司 | An antenna scheduling method and system |
CN105519233A (en) * | 2014-07-17 | 2016-04-20 | 华为技术有限公司 | Distributed base station |
CN106533525A (en) * | 2016-11-30 | 2017-03-22 | 北京全路通信信号研究设计院集团有限公司 | Rail transit broadband mobile communication system and method |
US20210314029A1 (en) * | 2017-05-22 | 2021-10-07 | Teko Telecom S.R.L. | Wireless communication system and related method for processing uplink fronthaul data |
US11509356B2 (en) * | 2017-05-22 | 2022-11-22 | Teko Telecom S.R.L. | Wireless communication system and related method for processing uplink fronthaul data |
US20230035330A1 (en) * | 2017-05-22 | 2023-02-02 | Teko Telecom S.R.L. | Wireless communication system and related method for processing uplink fronthaul data |
US11962369B2 (en) * | 2017-05-22 | 2024-04-16 | Teko Telecom S.R.L. | Wireless communication system and related method for processing uplink fronthaul data |
CN107635294A (en) * | 2017-09-22 | 2018-01-26 | 中国移动通信集团江苏有限公司 | Base station subsystem, signal transmission method, base station equipment and storage medium |
CN107635294B (en) * | 2017-09-22 | 2021-06-29 | 中国移动通信集团江苏有限公司 | Base station subsystem, signal transmission method, base station equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201797604U (en) | A base station subsystem | |
CN101399588B (en) | Base station system, baseband unit and processing method and device for base band signal | |
CN101325549B (en) | Network coding communication method for wireless relay network | |
WO2013178132A1 (en) | Antenna beam alignment method and device | |
CN102547771A (en) | Multichannel indoor distribution system and signal transmission method thereof | |
CN102857282A (en) | Distributed antenna structure applied to high-speed railway | |
CN102545972A (en) | Short-distance wireless communication device and method | |
CN204425662U (en) | A kind of full system type pictorial mobile communications network drawing-in system | |
CN1917388B (en) | Distribution type antenna system, and communication method | |
WO2025055437A1 (en) | Mimo system feeding signals at two ends of leaky coaxial cable, and signal intensity equalization method | |
WO2015158221A1 (en) | Combiner, base station, signal combiner system and signal transmission method | |
JP2018182660A (en) | Radio communication device and retransmission control method | |
CN107087277B (en) | A dual-spin device, system and method for realizing ultra-far coverage | |
WO2009039712A1 (en) | Method and system for realizing covering sectors by using enantiomorphous radio units | |
US10205572B2 (en) | Signal processing system and signal processing method | |
CN104660320A (en) | Device, system and method for signal transmission | |
CN104796919A (en) | Dual-frequency combined terahertz wireless local area network protocol architecture | |
CN103139789A (en) | Network coverage method of continuous tunnel in high-speed scene | |
CN102651873B (en) | Signal transmission method, system and equipment for indoor distribution system | |
KR101301300B1 (en) | Apparatus for processing digital signal, system for processing signal including same and method for processing signal | |
Ren et al. | A robust inter beam handover scheme for 5G mmWave mobile communication system in HSR scenario | |
CN202713298U (en) | Multiaerial system suitable for electric power wireless communication private network | |
CN205430226U (en) | No linear light and mixed communication system of radio frequency | |
CN204634050U (en) | Light signal access type LTE quorum sensing inhibitor system | |
CN104080202A (en) | Two-channel radio remote unit and distributed base station system used in tunnel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20110413 |