CN201765486U - Cloud Computing Based Equipment Monitoring System - Google Patents
Cloud Computing Based Equipment Monitoring System Download PDFInfo
- Publication number
- CN201765486U CN201765486U CN2010201258639U CN201020125863U CN201765486U CN 201765486 U CN201765486 U CN 201765486U CN 2010201258639 U CN2010201258639 U CN 2010201258639U CN 201020125863 U CN201020125863 U CN 201020125863U CN 201765486 U CN201765486 U CN 201765486U
- Authority
- CN
- China
- Prior art keywords
- energy consumption
- energy
- cloud computing
- control
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及能源管理控制技术领域,尤其涉及一种基于云计算的设备监控系统。The utility model relates to the technical field of energy management and control, in particular to an equipment monitoring system based on cloud computing.
背景技术Background technique
随着全世界范围内能源越来越紧缺,能够实现节能的能源管理控制系统也就越来越重要。As energy becomes more and more scarce all over the world, energy management and control systems capable of saving energy are becoming more and more important.
现有技术中的能源管理控制系统通常采用传统的电气自动化技术,对单个对象(如商场、商店、酒店、办公楼工业厂房)的各个耗能设备进行能耗管理控制,属于现场级的控制。厂家不同其使用的管理节能平台也不同,通常无法不兼容,相互之间也缺乏通信,从而无法形成一个统一的平台集中进行统一的能耗管理控制,以最大程度地实现节能的目的。The energy management control system in the prior art usually adopts traditional electrical automation technology to manage and control the energy consumption of each energy-consuming equipment of a single object (such as shopping malls, stores, hotels, and industrial plants in office buildings), which belongs to field-level control. Different manufacturers use different management and energy-saving platforms, which are usually incompatible and lack communication with each other. Therefore, it is impossible to form a unified platform for centralized energy management and control to achieve the goal of energy conservation to the greatest extent.
美国TRIDIUM公司首次开发了统一平台系统进行能源管理,其可以兼容其它能源管理平台,为用户提供能耗参考数据。但本发明人发现其仍然存在以下问题:TRIDIUM Corporation of the United States has developed a unified platform system for energy management for the first time, which can be compatible with other energy management platforms and provide users with energy consumption reference data. But the inventor finds that it still has the following problems:
1、系统在处理大量历史数据时遇到处理速度不迅速、数据保护无法实现的问题;1. When the system processes a large amount of historical data, it encounters the problem that the processing speed is not fast and data protection cannot be realized;
2、系统没有从能源因素、能源方针、能源指标、管理体系、能耗基准标杆、能源绩效、能源统计、能源优化等方面进行综合的能源统计、分析和管理控制,仅仅是将能耗统计结果提供给用户,让用户自己根据统计结果去修正现场控制模式,从而无法实现能源的最优化配置。2. The system does not conduct comprehensive energy statistics, analysis and management control in terms of energy factors, energy policies, energy indicators, management systems, energy consumption benchmarks, energy performance, energy statistics, energy optimization, etc. Provided to the user, allowing the user to correct the on-site control mode according to the statistical results, so that the optimal allocation of energy cannot be achieved.
云计算是近几年发展起来的网络技术,它是将计算任务分布在大量计算机构成的资源池上,使得各种应用系统能够根据需要获取计算力、存储空间和各种软件服务。各大IT公司纷纷推出自己的基于云计算的云计算的平台服务,如谷歌(GOOGLE)、微软、雅虎、亚马逊(Amazon)等等,总结起来云计算具有以下特点:Cloud computing is a network technology developed in recent years. It distributes computing tasks on a resource pool composed of a large number of computers, enabling various application systems to obtain computing power, storage space, and various software services as needed. Major IT companies have launched their own cloud computing platform services based on cloud computing, such as Google (GOOGLE), Microsoft, Yahoo, Amazon (Amazon), etc. In summary, cloud computing has the following characteristics:
(1)超大规模。“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器,“云”能赋予用户前所未有的计算能力。(1) Very large scale. The "cloud" has a considerable scale. Google cloud computing already has more than 1 million servers, and the "clouds" of Amazon, IBM, Microsoft, Yahoo, etc. have hundreds of thousands of servers. Enterprise private cloud generally has hundreds of thousands of servers, "cloud" can give users unprecedented computing power.
(2)虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。(2) Virtualization. Cloud computing supports users to obtain application services at any location and using various terminals. The requested resource comes from the "cloud" rather than a fixed tangible entity. The application runs somewhere in the "cloud," but the user doesn't really need to know or worry about where the application is running. All we need is a laptop or a mobile phone, and everything we need can be realized through network services, even tasks such as supercomputing.
(3)高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。(3) High reliability. "Cloud" uses measures such as data multi-copy fault tolerance, isomorphic interchangeability of computing nodes and other measures to ensure high reliability of services. Using cloud computing is more reliable than using local computers.
(4)通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。(4) Versatility. Cloud computing is not aimed at specific applications, and a variety of applications can be constructed under the support of the "cloud", and the same "cloud" can support the operation of different applications at the same time.
(5)高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。(5) High scalability. The scale of the "cloud" can be dynamically expanded to meet the needs of applications and user scale growth.
(6)按需服务。“云”是一个庞大的资源池,你按需购买;云可以象自来水,电,煤气那样计费。(6) On-demand service. "Cloud" is a huge pool of resources that you can purchase on demand; cloud can be billed like tap water, electricity, and gas.
(7)极其廉价。由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。(7) Extremely cheap. Due to the special fault-tolerant measures of the "cloud", extremely cheap nodes can be used to form the cloud, and the automated centralized management of the "cloud" makes it unnecessary for a large number of enterprises to bear the increasingly high cost of data center management. Compared with the traditional system, it has been greatly improved, so users can fully enjoy the low-cost advantages of "cloud", and often only need to spend a few hundred dollars to complete tasks that previously required tens of thousands of dollars and months to complete in a few days.
实用新型内容Utility model content
为了解决现有技术的上述问题,本实用新型的目的是提供一种基于云计算的设备监控系统,能够兼容所有不同厂家的节能平台,在一个统一的平台下对很多个能耗设备集中进行监控,实现最大限度的节能降耗管理和网络化自动控制,从而实现能源的最优化配置,达到更好的节能效果。In order to solve the above-mentioned problems in the prior art, the purpose of this utility model is to provide a device monitoring system based on cloud computing, which can be compatible with all energy-saving platforms of different manufacturers, and monitor many energy-consuming devices under a unified platform , to achieve the maximum energy saving management and network automatic control, so as to realize the optimal allocation of energy and achieve better energy saving effect.
为了实现上述目的,本实用新型提供了一种基于云计算的设备监控系统,包括:In order to achieve the above purpose, the utility model provides a device monitoring system based on cloud computing, including:
现场控制器,用于根据用户设定参数对各个能耗设备进行现场控制并将所述用户设定参数传送给云计算管理控制平台;The on-site controller is used to perform on-site control of each energy-consuming device according to the user-set parameters and transmit the user-set parameters to the cloud computing management and control platform;
能耗参数采集器,用于采集与所述各个能耗设备的能耗有关的参数并传送给云计算管理控制平台;An energy consumption parameter collector, configured to collect parameters related to the energy consumption of each energy-consuming device and transmit them to the cloud computing management and control platform;
云计算管理控制平台,用于根据所述采集到的与所述各个能耗设备的能耗有关的参数和所述用户设定参数调整所述现场控制器对所述各个能耗设备的现场控制模式;A cloud computing management and control platform, configured to adjust the on-site control of the on-site controller to the various energy-consuming equipment according to the collected parameters related to the energy consumption of the various energy-consuming equipment and the parameters set by the user model;
所述现场控制器与所述云计算管理控制平台之间、所述能耗参数采器与所述云计算管理控制平台之间均通过通信网络相互通信。The on-site controller and the cloud computing management control platform, and the energy consumption parameter collector and the cloud computing management control platform communicate with each other through a communication network.
作为优选,所述云计算管理控制平台具体包括:Preferably, the cloud computing management control platform specifically includes:
接收单元,用于接收所述能耗参数采集器采集到的与所述各个能耗设备的能耗有关的参数和所述用户设定参数;a receiving unit, configured to receive the parameters related to the energy consumption of each energy-consuming device collected by the energy-consumption parameter collector and the parameters set by the user;
第一判断单元,用于判断所述采集到的与所述各个能耗设备的能耗有关的参数和所述用户设定参数是否匹配并生产判断结果;A first judging unit, configured to judge whether the collected parameters related to the energy consumption of each energy-consuming device match the user-set parameters and produce a judging result;
能耗模型生成单元,用于当所述第一判断单元的判断结果为匹配时根据所述各个能耗设备的能耗有关的参数生成相应的能耗模型;An energy consumption model generation unit, configured to generate a corresponding energy consumption model according to parameters related to energy consumption of each energy-consuming device when the judgment result of the first judgment unit is a match;
历史能耗模型数据库,用于存储各种历史能耗模型;Historical energy consumption model database, used to store various historical energy consumption models;
第二判断单元,用于判断所述生成的能耗模型与历史能耗模型数据库中对应的历史能耗模型是否匹配并生成判断结果;A second judgment unit, configured to judge whether the generated energy consumption model matches the corresponding historical energy consumption model in the historical energy consumption model database and generate a judgment result;
控制模式调整单元,用于当所述第一判断单元或所述第二判断单元的判断结果为不匹配时调整所述现场控制器对所述各个能耗设备的现场控制模式。A control mode adjustment unit, configured to adjust the on-site control mode of the on-site controller for each energy-consuming device when the judgment result of the first judging unit or the second judging unit is mismatch.
作为优选,所述的与所述各个能耗设备的能耗有关的参数包括实时能耗参数、运行参数和安全参数。其中,实时能耗参数通常指电计量设备直接采集的各个能耗设备的电量参数,运行参数包括温度、湿度、风量、运行时间、频率等等各个能耗设备运行时相关的参数,安全参数包括运行状态、故障、报警等情况下各个能耗设备相关的参数。Preferably, the parameters related to the energy consumption of each energy-consuming device include real-time energy consumption parameters, operating parameters and safety parameters. Among them, the real-time energy consumption parameters usually refer to the power parameters of each energy-consuming equipment directly collected by the electricity metering equipment. The operating parameters include temperature, humidity, air volume, running time, frequency, etc. Parameters related to each energy-consuming device under operating status, fault, alarm, etc.
作为优选,所述历史能耗模型数据库中对应的历史能耗模型是指能耗约束参数与所述生成的能耗模型匹配的历史能耗模型,所述能耗约束参数包括所述各个能耗设备的应用环境参数、设计参数、应用场所类型参数和能源供应类型参数中的一种或者其组合。历史能耗模型数据库中存有各种符合行业标准(设计标准)的历史能耗模型,这些历史能耗模型考虑了能耗标杆、效率标杆、绩效标杆等评价标准的,能耗相对来讲是最合理的。历史能耗模型的建立通常受到能耗约束参数的制约,能耗约束参数不同,对应的历史能耗模型就不同。各个能耗设备的应用环境参数包括地理位置、气象参数等等,设计参数包括设计功率、测量范围而、设计能耗参数、设计能效等等,应用场所类型参数包括商场、超市、酒店、办公楼、展览馆、机房、工业厂房、住宅、国家电网等等,能源供应类型参数包括煤炭、电力、天然气、石油、生物质能、热能、再生能源等等。当然,还有其他能耗约束参数,比如控制模式等等。Preferably, the corresponding historical energy consumption model in the historical energy consumption model database refers to a historical energy consumption model whose energy consumption constraint parameters match the generated energy consumption model, and the energy consumption constraint parameters include the One or a combination of the application environment parameters, design parameters, application site type parameters, and energy supply type parameters of the equipment. There are various historical energy consumption models that meet industry standards (design standards) in the historical energy consumption model database. most reasonable. The establishment of historical energy consumption models is usually restricted by energy consumption constraint parameters. Different energy consumption constraint parameters correspond to different historical energy consumption models. The application environment parameters of each energy-consuming equipment include geographic location, meteorological parameters, etc. Design parameters include design power, measurement range, design energy consumption parameters, design energy efficiency, etc. Application site type parameters include shopping malls, supermarkets, hotels, office buildings , exhibition hall, computer room, industrial plant, residence, national grid, etc., the energy supply type parameters include coal, electricity, natural gas, petroleum, biomass energy, thermal energy, renewable energy, etc. Of course, there are other energy consumption constraint parameters, such as control mode and so on.
作为优选,所述能耗参数采器和所述现场控制器均对应基于IPV4协议的网络地址或基于IPV6协议的网络地址。Preferably, both the energy consumption parameter collector and the on-site controller correspond to a network address based on the IPV4 protocol or a network address based on the IPV6 protocol.
作为优选,所述用户设定参数和采集到的与所述各个能耗设备的能耗有关的参数均通过通讯网络传送给云计算管理控制平台,所述通讯网络为无线INTERNET网、有线INTERNET网、GPRS和3G网或者更先进的下一代传输网络中的任一种。Preferably, the parameters set by the user and the collected parameters related to the energy consumption of each energy-consuming device are transmitted to the cloud computing management and control platform through a communication network, and the communication network is a wireless Internet network or a wired Internet network. , GPRS and 3G networks or any of the more advanced next-generation transmission networks.
作为优选,所述现场控制器包括网络温湿度控制器;所述能耗参数采集器包括网络温湿度传感器;所述控制模式调整单元用于将所述网络温湿度控制器的控制模式调整为根据热负荷补偿曲线动态设置设定温湿度值。Preferably, the on-site controller includes a network temperature and humidity controller; the energy consumption parameter collector includes a network temperature and humidity sensor; the control mode adjustment unit is used to adjust the control mode of the network temperature and humidity controller according to The thermal load compensation curve dynamically sets the set temperature and humidity values.
作为优选,所述现场控制器包括网络风量控制器;所述能耗参数采集器包括二氧化碳浓度传感器;所述控制模式调整单元用于将所述网络风量控制器的控制模式调整为根据所述二氧化碳浓度传感器采集的二氧化碳浓度调节风量风速。Preferably, the on-site controller includes a network air volume controller; the energy consumption parameter collector includes a carbon dioxide concentration sensor; the control mode adjustment unit is used to adjust the control mode of the network air volume controller according to the carbon dioxide The carbon dioxide concentration collected by the concentration sensor adjusts the air volume and wind speed.
本实用新型的有益效果在于,能够兼容所有不同厂家的节能平台,在一个统一的平台下对很多个能耗设备进行集中进行监控,实现最大限度的节能降耗管理和网络化自动控制,从而实现能源的最优化配置,达到更好的节能效果。The beneficial effect of the utility model is that it can be compatible with all energy-saving platforms of different manufacturers, and monitor many energy-consuming devices under a unified platform to realize maximum energy-saving and consumption-reducing management and networked automatic control, thereby realizing Optimal allocation of energy to achieve better energy-saving effects.
附图说明Description of drawings
图1是本实用新型实施例的基于云计算的设备监控系统的结构示意图。Fig. 1 is a schematic structural diagram of a cloud computing-based equipment monitoring system according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图详细说明本实用新型的实施例。Embodiments of the utility model will be described in detail below in conjunction with the accompanying drawings.
如图1所示的本实用新型实施例的基于云计算的设备监控系统的结构示意图,基于云计算的设备监控系统包括:As shown in Figure 1, the structural representation of the cloud computing-based equipment monitoring system of the utility model embodiment, the cloud computing-based equipment monitoring system includes:
现场控制器11,用于根据用户设定参数对各个能耗设备10进行现场控制并将所述用户设定参数传送给云计算管理控制平台13;现场控制器11包括用户参数设定单元111,其用于用户设定参数。比如能耗设备是空调,则用户根据需要设定空调的温度、风量等参数,并将设定的参数传送给云计算管理控制平台13。通常用于建筑物的现场控制器11包括网络水阀、风阀控制器,网络电机控制器,网络加湿控制器,网络空调控制器,网络机电设备控制器,网络安全保护控制器,网络安防、门禁、报警控制器等等。The on-
能耗参数采集器12,用于采集与所述各个能耗设备10的能耗有关的参数并传送给云计算管理控制平台13;与所述各个能耗设备的能耗有关的参数包括实时能耗参数、运行参数和安全参数。其中,实时能耗参数通常指电计量设备直接采集的各个能耗设备的电量参数,运行参数包括温度、湿度、风量、运行时间、频率等等各个能耗设备运行时相关的参数,安全参数包括运行状态、故障、报警等情况下各个能耗设备相关的参数。能耗参数采集器12一般由各类带网络传输功能的传感器、数据统计和汇总单元、数据分析和上传单元等组成,完成数据的采集和初步统计分析功能,其实际数量是根据需要而设定的,可能有很多个能耗参数采集器。传感器可以是各种网络温度传感器,网络湿度传感器,网络风量传感器,网络电度计量传感器,网络风速传感器,网络空气品质传感器,机电设备运行参数网络采集器,网络门禁、安防、报警信号采集器,特殊信号网络采集器(如CO、CO2、甲醛、水流等)等等。其将采集到的能耗参数通过通讯网络20传输到云计算管理控制平台13,通讯网络20可以是无线INTERNET网、有线INTERNET网、GPRS、3G网或者更先进的下一代传输网络等等。The energy
目前的互联网是基于IPV4协议的,IPV4协议采用32位地址长度,有限的地址空间即将耗尽。因此在大规模数量的设备监控系统中,现场控制器11和能耗参数采集器12可以采用基于IPV6协议的网络地址,IPV6协议采用128位地址长度,对于整个地球来说,其地址资源可以认为是无限的(每平方米能分配1000多个网络地址),能够适应即使是全球范围里的设备监控系统。云计算管理控制平台13,用于根据所述采集到的与所述各个能耗设备10的能耗有关的参数和所述用户设定参数调整所述现场控制器11对所述各个能耗设备10的现场控制模式。调整的目的是实现能源的最优化配置,降低能耗。本实施例的云计算管理控制平台13具体包括:The current Internet is based on the IPV4 protocol. The IPV4 protocol uses a 32-bit address length, and the limited address space is about to be exhausted. Therefore, in a large-scale equipment monitoring system, the on-
接收单元131,用于接收所述能耗参数采集器12采集到的与所述各个能耗设备10的能耗有关的参数和所述用户设定参数;The receiving
第一判断单元132,用于判断所述采集到的与所述各个能耗设备10的能耗有关的参数和所述用户设定参数是否匹配并生产判断结果;The
能耗模型生成单元133,用于当所述第一判断单元的判断结果为匹配时根据所述各个能耗设备的能耗有关的参数生成相应的能耗模型;能耗模型包括整体耗能和运行耗能等等指标。An energy consumption
历史能耗模型数据库130,用于存储各种历史能耗模型;历史能耗模型数据库中存有各种符合行业标准(设计标准)的历史能耗模型以及被相关规范、标准等文件约定或承认的最优能耗模型,这些历史能耗模型是考虑了能耗标杆、效率标杆、绩效标杆等评价标准的,能耗相对来讲是最合理的。The historical energy
第二判断单元134,用于判断所述生成的能耗模型与历史能耗模型数据库中对应的历史能耗模型是否匹配并生成判断结果;历史能耗模型的建立通常受到能耗约束参数的制约,能耗约束参数不同,对应的历史能耗模型就不同。所述能耗约束参数包括所述各个能耗设备的应用环境参数、设计参数、应用场所类型参数和能源供应类型参数中的一种或者其组合以及与其他约束参数(如控制模式)的组合。各个能耗设备的应用环境参数包括地理位置、气象参数等等,设计参数包括设计功率、测量范围而、设计能耗参数、设计能效等等,应用场所类型参数包括商场、超市、酒店、办公楼、展览馆、机房、工业厂房、住宅、国家电网等等,能源供应类型参数包括煤炭、电力、天然气、石油、生物质能、热能、再生能源等等。用户通过能耗约束参数设定单元14输入当前生成的能耗模型的能耗约束参数,然后根据这些能耗约束参数在历史能耗模型数据库130中找到对应的历史能耗模型(即能耗约束参数与所述生成的能耗模型匹配的历史能耗模型),再判断生成的能耗模型与对应的历史能耗模型是否匹配,如果不匹配说明能耗不合理,需要调整。例如生成的能耗模型单位面积年耗能200~300kWh,而具有相同能耗约束参数的历史能耗模型单位面积年耗能100kWh左右,则说明能耗不合理,需要进行调整。The
控制模式调整单元135,用于当所述第一判断单元132或所述第二判断单元134的判断结果为不匹配时调整所述现场控制器11对所述各个能耗设备10的现场控制模式。不匹配说明能耗不符合要求,需要对现场控制模式进行调整以降低能耗,直到能耗匹配为止,从而实现能耗的最优化配置。当所述第一判断单元132的判断结果为不匹配时,说明能耗无法达到用户设定的要求,需要直接进行调整;当所述第二判断单元134的判断结果为不匹配时,说明能耗虽然能够达到用户设定要求,但还不是最优的,没有考虑能耗标杆、效率标杆、绩效标杆等评价标准,有必要进行调整从而进一步降低能耗。如果所述第二判断单元134的判断结果为匹配时,说明生产的能耗模型是合理的符合要求的,则将所述生成的能耗模型加入到所述历史能耗模型数据库中,丰富历史数据,为后续能耗管理控制提供参考。A control
当然,云计算管理控制平台13对现场控制器11的控制模式有很多种,上述实施例仅仅给出了其中的一种。Of course, there are many modes of controlling the on-
为了用户使用方便,本实施例的基于云计算的设备监控系统可以做成直观的显示界面,用户只需要通过显示界面进行管理控制即可。For the convenience of users, the device monitoring system based on cloud computing in this embodiment can be made into an intuitive display interface, and the user only needs to manage and control through the display interface.
使用云计算管理控制平台13进行能源管理控制的优势十分明显,云计算的规模性和可扩展性的特点使得超大规模能耗集中控制可以实现,理论上讲可以实现全球范围内的任何种类的能源管理控制,包括建筑物能耗管理控制、电力运输能耗管理控制等等,应用范围更广;云计算的虚拟化的特点使得各个用户进行能耗管理控制时无需单独配置独立的能源管理控制平台,而是在“云”中按需获得,大大降低了成本;云计算的资源共享的特点使得整个控制平台内历史数据十分丰富,可以匹配最佳历史数据作为参考,从而实现能源的最优化配置。The advantage of using cloud computing management and
下面以某建筑的能耗管理控制为例,说明本实施例的基于云计算的设备监控系统的应用过程。The following uses the energy management control of a certain building as an example to illustrate the application process of the cloud computing-based equipment monitoring system of this embodiment.
该建筑属于商务建筑,总建筑面积约38,000平方米,位于某地,结构设计为钢筋混凝土框架-核心筒结构、无柱结构,能耗设备主要分为冷热源系统、空调通风系统、给排水系统、照明插座系统、电梯系统、大型动力设备系统等。部分设计参考标准如下:The building is a commercial building with a total construction area of about 38,000 square meters. It is located in a certain place. The structure is designed as a reinforced concrete frame-core tube structure and column-free structure. Energy-consuming equipment is mainly divided into cold and heat source systems, air conditioning and ventilation systems, water supply and drainage system, lighting socket system, elevator system, large power equipment system, etc. Some design reference standards are as follows:
1、空调冷源为电制冷系统,供水温度7℃,回水温度为12℃。空调热源为市政高温热水,市政水供水温度110℃,回水温度70℃。空调热水经换热后供出,空调水供水温度60℃,回水温度50℃。1. The cold source of the air conditioner is an electric refrigeration system, the supply water temperature is 7°C, and the return water temperature is 12°C. The heat source of the air conditioner is municipal high-temperature hot water, the municipal water supply temperature is 110°C, and the return water temperature is 70°C. The hot water of the air conditioner is supplied after heat exchange, the supply water temperature of the air conditioner is 60°C, and the return water temperature is 50°C.
2、冷冻水及冷却水系统工作压力均为1.5Mpa,实验压力为工作压力加0.5Mpa。热水系统工作压力为1.5Mpa,实验压力为工作压力加0.5Mpa。2. The working pressure of chilled water and cooling water system is 1.5Mpa, and the test pressure is working pressure plus 0.5Mpa. The working pressure of the hot water system is 1.5Mpa, and the experimental pressure is the working pressure plus 0.5Mpa.
3、在室外设空气焓值感应器,可以按照室外焓熵值的变化进行最大限度利用全新风方式进行控制,实现节能降耗目标,全年具体的新风系统控制策略举例如下:3. An air enthalpy sensor is installed outdoors, which can maximize the use of fresh air for control according to changes in outdoor enthalpy and entropy, and achieve the goal of saving energy and reducing consumption. Examples of specific fresh air system control strategies throughout the year are as follows:
A、在空调季节,当回风温度低于室外新风温度4℃(假设)且回风焓值低于新风焓值4KJ/Kg(假设).干时,启动转轮热回收装置,进入排风热回收工况;当回风温度低于室外新风温度不足4℃持续一段时间,停止运行转轮热回收装置,转入旁通新风工况。A. In the air-conditioning season, when the return air temperature is 4°C lower than the outdoor fresh air temperature (assumed) and the enthalpy of the return air is lower than the enthalpy of the fresh air by 4KJ/Kg (assumed). Dry, start the runner heat recovery device and enter the exhaust air Heat recovery mode; when the return air temperature is lower than the outdoor fresh air temperature by less than 4°C for a period of time, stop running the runner heat recovery device and switch to bypass fresh air mode.
B、空调季节,新风机排风机维持最小新风比运行。当回风的CO2浓度高于设定值时,提高新排风定风量阀风量(CAV)设定值,增加新风量;当回风CO2浓度低于设定值下限,减小新排风定风量阀(CAV)风量设定值,减小新风量。B. In the air-conditioning season, the exhaust fan of the fresh air fan maintains the minimum fresh air ratio. When the CO2 concentration of the return air is higher than the set value, increase the set value of the new exhaust air constant air volume valve (CAV) to increase the fresh air volume; when the return air CO2 concentration is lower than the lower limit of the set value, reduce the new exhaust constant air volume. The air volume setting value of the air volume valve (CAV) reduces the fresh air volume.
C、当室外空气焓值低于启动全新风的设定焓值(室内设计焓值假设为5KJ/Kg.干)时,进入全新风工况,开启空调箱过渡季新风阀、关闭回风阀,连锁开启全部总新风机、总排风机。C. When the enthalpy value of the outdoor air is lower than the set enthalpy value for starting fresh air (the indoor design enthalpy value is assumed to be 5KJ/Kg.dry), enter the fresh air working condition, open the transition season fresh air valve of the air conditioning box, and close the return air valve , chain open all the total fresh air fan, the total exhaust fan.
当新风不能完全消除室内余热时,根据室内温度控制空调箱水阀开度;When fresh air cannot completely eliminate indoor waste heat, control the opening of the water valve of the air conditioning box according to the indoor temperature;
当全新风可完全消除室内余热时,关闭空调箱水阀;When the fresh air can completely eliminate the indoor waste heat, close the water valve of the air conditioning box;
当新风温度过低,根据室内温度值调节新风阀、回风阀,减少新风量,增加回风量,新风机、送风机变频运行。When the fresh air temperature is too low, adjust the fresh air valve and the return air valve according to the indoor temperature value, reduce the fresh air volume, increase the return air volume, and the fresh air fan and the supply fan operate with frequency conversion.
D、在全新风工况运行时,当室外空气焓值高于启动全新风的设定焓值,停止全新风运行,进入空调季工况。D. When running in fresh air condition, when the outdoor air enthalpy value is higher than the set enthalpy value for starting fresh air, stop the fresh air operation and enter the air-conditioning season working condition.
4、室内设计温度:夏季25℃,相对湿度55%,冬季20℃,相对湿度30%;新风量50立方米/人/小时;4. Indoor design temperature: summer 25°C, relative humidity 55%,
5、室外参数参考值:5. Reference value of outdoor parameters:
夏季空调室外计算干球温度33.2℃In summer, the calculated dry bulb temperature outside the air conditioner is 33.2°C
夏季空调室外计算湿球温度26.4℃In summer, the outdoor calculated wet bulb temperature of the air conditioner is 26.4°C
夏季通风室外计算温度30℃The calculated outdoor temperature of ventilation in summer is 30°C
夏季室外平均风速1.9m/sThe average outdoor wind speed in summer is 1.9m/s
冬季空调室外计算干球温度-12℃Calculate the dry bulb temperature outside the air conditioner in winter -12°C
冬季空调室外计算相对湿度45%Calculate the relative humidity outside the air conditioner in winter at 45%
冬季采暖室外计算干球温度-9℃Calculate the dry bulb temperature outside the heating in winter -9°C
冬季通风室外计算温度-5℃Calculated outdoor temperature for ventilation in winter -5°C
冬季室外平均风速2.8m/sThe average outdoor wind speed in winter is 2.8m/s
不同类型建筑的行业单位建筑面积能耗参考标准如下:The industry reference standards for energy consumption per unit building area of different types of buildings are as follows:
1、办公楼类建筑一般能耗较低,单位面积年电耗100kWh左右;1. Office buildings generally have low energy consumption, and the annual power consumption per unit area is about 100kWh;
2、宾馆酒店类建筑耗电量稍高,单位面积年电耗100~200kWh左右;2. The power consumption of hotels and hotels is slightly higher, and the annual power consumption per unit area is about 100-200kWh;
3、商场类建筑耗电设备较多,其照明灯具数量大,空调系统设备容量大且运行时间长,和其他类型建筑相比,商场类建筑年单位面积耗电量较大,基本为200~300kWh;3. Shopping malls consume more power equipment, the number of lighting fixtures is large, and the air-conditioning system has a large capacity and long running time. Compared with other types of buildings, shopping malls consume a lot of electricity per unit area, basically 200~ 300kWh;
4、综合性商业建筑由于包含多种类型建筑的建筑群,而各种类型建筑的面积比例不同,其能耗的变化也不同,综合性商业建筑其单位面积年耗电量为100~300kWh。4. Comprehensive commercial buildings include complexes of various types of buildings, and the area ratios of various types of buildings are different, so the energy consumption changes are also different. The annual power consumption per unit area of comprehensive commercial buildings is 100-300kWh.
基于云计算的设备监控系统对其进行能源管理控制过程如下:The energy management and control process of the equipment monitoring system based on cloud computing is as follows:
一、通过现场设备层完成检测传感器和数据信息登录工作现场设备层:包括能耗参数采集器12(一般是各类传感器)和现场控制器11,能耗参数采集器12主要完成各类信号采集,现场控制器11主要对相应的能耗设备进行现场控制。1. Complete the logging of detection sensors and data information through the field equipment layer. The field equipment layer includes the energy consumption parameter collector 12 (generally various sensors) and the
所有信号通过交换机直接接入IP网络,通过internet(无线或者有线方式皆可)上传至基于云计算的设备监控系统的信号的采集、存储、统计和分析数据库。All signals are directly connected to the IP network through the switch, and uploaded to the cloud computing-based equipment monitoring system through the internet (wireless or wired) for signal collection, storage, statistics and analysis database.
能耗设备以及建筑的相关设计参数通过云计算平台登录,信息进入云计算能源管理和控制系统的设备信号采集、存储、统计、分析和模型数据库。The relevant design parameters of energy-consuming equipment and buildings are logged in through the cloud computing platform, and the information enters the equipment signal collection, storage, statistics, analysis and model database of the cloud computing energy management and control system.
整个系统架构基于以太网(Lan/WLan),采用TCP/IP协议,云计算管理控制平台可通过OBIX,SNMP,XML等协议与现场系统(现场控制器和能耗参数采集器)通讯并获得数据。主要获取以下数据:The entire system architecture is based on Ethernet (Lan/WLan) and adopts TCP/IP protocol. The cloud computing management control platform can communicate with the field system (field controller and energy consumption parameter collector) and obtain data through OBIX, SNMP, XML and other protocols . Mainly obtain the following data:
◆控制点的各种详细状态、故障、运行等等数据,◆Various detailed status, fault, operation and other data of control points,
◆报警总表◆Alarm summary table
◆通过电计量传感器或者通过计算记录各个设备能源消耗数据◆Record the energy consumption data of each equipment through electric metering sensors or through calculation
◆所有能耗设备以及建筑的相关设计参数◆Relevant design parameters of all energy-consuming equipment and buildings
二、通过控制和分析层实现数据的分析以及相关的控制2. Realize data analysis and related control through the control and analysis layer
现场级别的控制器在现场根据检测信号以及用户的目标设定参数对相应的设备实现现场级别的控制,并将各类信号上传至云计算能源管理和控制系统的设备信号采集、存储、统计和分析数据库。The field-level controller implements field-level control on the corresponding equipment according to the detection signal and the user's target setting parameters, and uploads various signals to the cloud computing energy management and control system for equipment signal collection, storage, statistics and Analyze the database.
以空调机组的温度控制为例,现场控制器可以对空调机组实现控制的内容包括:Taking the temperature control of the air conditioning unit as an example, the on-site controller can control the air conditioning unit including:
A、启停控制:按照启停命令信号完成启停控制;A. Start and stop control: complete the start and stop control according to the start and stop command signal;
B、温度、湿度的调节控制:冬季,当室内或送风温度高于设定值(T=20℃),通过PID控制关小水阀,当室内或送风温度低于设定值时开大水阀。夏季,当室内或送风温度高于设定值(T=26℃),通过PID控制开大水阀开度,当室内或送风温度低于设定值时关小水阀;湿度同样进行;B. Adjustment and control of temperature and humidity: In winter, when the indoor or air supply temperature is higher than the set value (T=20°C), the small water valve is turned off through PID control, and the large water is turned on when the indoor or air supply temperature is lower than the set value valve. In summer, when the indoor or air supply temperature is higher than the set value (T=26°C), the opening of the large water valve is controlled by PID, and the small water valve is closed when the indoor or air supply temperature is lower than the set value; the same is done for humidity;
C、新风量的控制:通过风阀的比例调节实现风量控制,保持风量50立方米/人/小时;;C. Control of fresh air volume: the air volume control is realized through the proportional adjustment of the air valve, and the air volume is kept at 50 cubic meters/person/hour;
D、对机组运行时间的累计计量、启动次数、运行时间、电机的电计量等信号进行记录和上传;主要信号如下:D. Record and upload signals such as the cumulative measurement of unit running time, number of starts, running time, and electrical metering of the motor; the main signals are as follows:
◆送回风机运行状态、风机气流状态、手自动状态监测、启停控制;◆Back to fan running status, fan airflow status, manual and automatic status monitoring, start-stop control;
◆送回风机变频器反馈、变频器监测、变频器调节控制;◆Return fan inverter feedback, inverter monitoring, inverter adjustment control;
◆回风温/湿度测量、回风CO2浓度测量;◆Return air temperature/humidity measurement, return air CO2 concentration measurement;
◆送风温/湿度测量;◆Support air temperature/humidity measurement;
◆冷、热水盘管水阀调节控制;◆Cold and hot water coil water valve adjustment control;
◆新、回风阀调节控制;◆New, return air valve adjustment control;
◆加湿阀调节控制。◆Humidification valve adjustment control.
E、电机的节能控制:通过控制器对变频器的调节实现,当室内需要的送风量发生变化的情况下,在保证新风量的基础上尽可能降低电机转速从而实现节能控制。E. Energy-saving control of the motor: through the adjustment of the inverter by the controller, when the required air supply volume in the room changes, the motor speed should be reduced as much as possible on the basis of ensuring the fresh air volume to achieve energy-saving control.
三、基于云计算的设备监控3. Equipment monitoring based on cloud computing
首先在云计算控制分析平台判断采集到的参数和用户设定的参数比较是否匹配,如果匹配则保持现有的控制模式,计算叠加整个建筑总能耗及各个参数指标的能耗,生成能耗模型;如果不匹配则需要及时调整控制模式。主要考虑的参数指标有:First, judge whether the collected parameters match the parameters set by the user on the cloud computing control analysis platform. If they match, maintain the existing control mode, calculate and superimpose the total energy consumption of the entire building and the energy consumption of each parameter index, and generate energy consumption model; if it does not match, the control mode needs to be adjusted in time. The main parameters considered are:
■建筑能耗总量指标;■ Total building energy consumption index;
■常规能耗总量指标;■General energy consumption index;
■特殊区域能耗总量指标;■Total energy consumption indicators in special areas;
■暖通空调系统能耗指标:■HVAC system energy consumption indicators:
1)空调通风系统能耗指标;2)供暖系统能耗指标;1) Energy consumption index of air conditioning and ventilation system; 2) Energy consumption index of heating system;
■照明系统能耗指标:■Lighting system energy consumption indicators:
1)普通照明;2)应急照明;3)景观照明;1) General lighting; 2) Emergency lighting; 3) Landscape lighting;
■室内设备能耗指标;■ Indoor equipment energy consumption indicators;
■综合服务系统能耗指标;■Integrated service system energy consumption index;
■建筑水耗总量指标;等等。■Total water consumption indicators for buildings; and so on.
然后在云计算运行数据模型平台判断生成的能耗模型是否符合行业标准,如果不符合,还需要调整控制模式,以进一步降低能耗。在云计算运行数据模型平台中存有各种符合行业标准(设计标准)的历史能耗模型,将生成的能耗模型和对应的历史能耗模型进行对比,如果耗能高于历史能耗模型,则需要调整控制模式,如果低于历史能耗模型,则保持现有控制模式不变,并把生成的能耗模型加入为历史能耗模型。以下给出几种常见的控制模型作为参考:Then judge whether the generated energy consumption model conforms to the industry standard on the cloud computing operation data model platform. If not, the control mode needs to be adjusted to further reduce energy consumption. There are various historical energy consumption models that meet industry standards (design standards) in the cloud computing operation data model platform. Compare the generated energy consumption model with the corresponding historical energy consumption model. If the energy consumption is higher than the historical energy consumption model , you need to adjust the control mode, if it is lower than the historical energy consumption model, keep the existing control mode unchanged, and add the generated energy consumption model as the historical energy consumption model. Several common control models are given below for reference:
A、室内温湿度控制模型:根据不同的建筑类型,分别构建控制细节不同的温湿度控制模型,提高控制精度。主要依据为热负荷补偿曲线来设置浮动的设定点(不再是单一的定点),即更加有效的自动调整室内温度设定值,使其在大厦负荷允许的范围内尽可能的节省能量。这种情况下现场控制器包括网络温湿度控制器;所述能耗参数采集器包括网络温湿度传感器;所述控制模式调整单元将所述网络温湿度控制器的控制模式调整为根据热负荷补偿曲线动态设置设定温湿度值。A. Indoor temperature and humidity control model: according to different building types, build temperature and humidity control models with different control details to improve control accuracy. The main basis is to set a floating set point (no longer a single fixed point) based on the thermal load compensation curve, that is, to automatically adjust the indoor temperature set point more effectively, so that it can save energy as much as possible within the allowable range of the building load. In this case, the site controller includes a network temperature and humidity controller; the energy consumption parameter collector includes a network temperature and humidity sensor; the control mode adjustment unit adjusts the control mode of the network temperature and humidity controller to be based on thermal load compensation The curve dynamic setting sets the temperature and humidity value.
室内温湿度的变化与建筑节能有着紧密的相关性。据美国国家标准局统计资料表明,如果在夏季将设定值温度下调1℃,将增加9%的能耗,如果在冬季将设定值温度上调1℃,将增加12%的能耗。因此将室内温湿度控制在设定值精度范围内是空调节能的有效措施。The change of indoor temperature and humidity is closely related to building energy saving. According to the statistics of the US National Bureau of Standards, if the set point temperature is lowered by 1°C in summer, energy consumption will increase by 9%, and if the set point temperature is raised by 1°C in winter, energy consumption will increase by 12%. Therefore, controlling the indoor temperature and humidity within the accuracy range of the set value is an effective measure for air conditioning to save energy.
在可能的情况下对室内温湿度控制精度可以实现要求为:温度为±1.5℃,湿度为±5%的变化范围。这样尽可能避免出现夏季室温过冷(低于标准设定值)或冬季室温过热(高于标准设定值)现象,从而实现节能降耗。Where possible, the indoor temperature and humidity control accuracy can be achieved as follows: the temperature is ±1.5°C, and the humidity is ±5%. In this way, it is possible to avoid the phenomenon that the room temperature is too cold in summer (lower than the standard setting value) or the room temperature is overheated in winter (higher than the standard setting value), thereby realizing energy saving and consumption reduction.
B、室外气候补偿调节模型:云计算能源管理和控制平台根据室外温湿度的和季节变化情况,改变室内温度的设定,使其更加满足人们的需要,充分发挥空调设备的功能。当室外温度达到适宜焓值时,开启全新风系统,停止冷热水供应。或在焓值低于一定值时,开启免费制冷系统,停开空调主机。B. Outdoor climate compensation adjustment model: The cloud computing energy management and control platform changes the indoor temperature setting according to the outdoor temperature and humidity and seasonal changes, so that it can better meet people's needs and give full play to the functions of air-conditioning equipment. When the outdoor temperature reaches the appropriate enthalpy value, the fresh air system is turned on and the hot and cold water supply is stopped. Or when the enthalpy value is lower than a certain value, the free refrigeration system is turned on and the air conditioner is turned off.
C、新风量的控制模型C. Control model of fresh air volume
根据卫生要求,建筑内每人都必须保证有一定的新风量。但新风量取得过多,将增加新风耗能量。在设计工况(夏季室外温26℃,相对温度60%,冬季室温22℃,相对湿度55%)下,处理一公斤(千克)室外新风量需冷量6.5kWh,热量12.7kWh,故在满足室内卫生要求的前提下,减少新风量,有显着的节能效果。实施新风量控制模型主要几种控制要素:According to hygienic requirements, everyone in the building must ensure a certain amount of fresh air. But getting too much fresh air will increase the energy consumption of fresh air. Under the design working conditions (outdoor temperature 26°C in summer, relative temperature 60%, room temperature 22°C in winter, relative humidity 55%), 6.5kWh cooling capacity and 12.7kWh heat capacity are required to process one kilogram (kg) of outdoor fresh air, so it meets the Under the premise of indoor sanitation requirements, the fresh air volume is reduced, which has a significant energy-saving effect. There are several main control elements to implement the fresh air volume control model:
1)根据室内允许二氧化碳(CO2)浓度来确定新风量,CO2允许浓度值一般取0.1%(1000ppm)。根据室内或回风中的CO2浓度,自动调节新风量,以保证室内空气的新鲜度,控制功能较完善的建筑设备自动化系统可以满足这些控制要求。根据二氧化碳浓度调节风量风速,反映了室内的实际情况,能最大限度地节能。1) The fresh air volume is determined according to the allowable indoor carbon dioxide (CO2) concentration, and the allowable concentration of CO2 is generally 0.1% (1000ppm). According to the CO2 concentration in the indoor or return air, the fresh air volume is automatically adjusted to ensure the freshness of the indoor air. The building equipment automation system with relatively complete control functions can meet these control requirements. The air volume and wind speed are adjusted according to the carbon dioxide concentration, which reflects the actual situation in the room and can save energy to the greatest extent.
2)根据大厦内人员的变动规律,采用统计学的方法,建立新风风阀控制模型,以相应的时间而确定运行程序进行过程控制新风风阀,以达到对新风风量的控制。2) According to the changing law of personnel in the building, use statistical methods to establish a fresh air damper control model, and determine the operating procedure to control the fresh air damper in the corresponding time, so as to achieve the control of the fresh air volume.
3)使用新风和回风比来调整、影响被控温度并不是调节新风阀的主要依据,调节温度主要由表冷器调节阀完成,如果风阀的调节也基于温度,那么在控制上,两个设备同时受一个参数的影响并且都同时努力使参数趋于稳定,结果就是系统产生自激,不会或很难达到稳定,所以可以放大新风调节温度的死区值,使风阀为粗调,水阀为精调。空调系统中的新风占送风量的百分比不应低于10%。不论每人占房间体积多少,新风量按大于等于30m3/h.人采用。3) Using the ratio of fresh air and return air to adjust and affect the controlled temperature is not the main basis for adjusting the fresh air valve. The adjustment of temperature is mainly completed by the regulating valve of the surface cooler. If the adjustment of the air valve is also based on temperature, then in terms of control, the two Each device is affected by a parameter at the same time and they all try to stabilize the parameter at the same time. The result is that the system is self-excited, and it is difficult or impossible to achieve stability. Therefore, the dead zone value of the fresh air adjustment temperature can be enlarged to make the damper a coarse adjustment. , the water valve is fine-tuned. The fresh air in the air conditioning system should not be less than 10% of the supply air volume. Regardless of the volume of the room occupied by each person, the fresh air volume should be greater than or equal to 30m3/h.
D、对机电设备最佳启停的控制模型:D. The control model for the optimal start and stop of electromechanical equipment:
云计算管理控制平台通过对空调设备的最佳启停时间的计算和自适应控制,可以在保证环境舒适的前提下,缩短不必要的空调启停宽容时间,达到节能的目的;同时在预冷或预热时,关闭新风风阀,不仅可以减少设备容量,而且可以减少获取新风而带来冷却或加热的能量消耗。对于小功率的风机或者带软启动的风机可以考虑风机间歇式的控制方法,如果使用得当,一般每一个小时风机只运行40~50分钟,节能效果比较明显。空调设备采用节能运行算法后,运行时间更趋合理。数据记录表明,每台空调机一天24小时中实际供能工作的累计时间仅仅2小时左右。The cloud computing management control platform can shorten the unnecessary start-stop tolerance time of the air conditioner and achieve the purpose of energy saving under the premise of ensuring a comfortable environment through the calculation and adaptive control of the optimal start-stop time of the air-conditioning equipment; at the same time, the pre-cooling Or when preheating, closing the fresh air valve can not only reduce the capacity of the equipment, but also reduce the energy consumption of cooling or heating caused by fresh air. For low-power fans or fans with soft start, intermittent fan control methods can be considered. If used properly, the fan only runs for 40-50 minutes per hour, and the energy-saving effect is more obvious. After the air-conditioning equipment adopts the energy-saving operation algorithm, the running time becomes more reasonable. Data records show that the cumulative time of actual energy supply work of each air conditioner is only about 2 hours in 24 hours a day.
E、灯光照明系统控制模型E. Lighting system control model
对公共照明设备实行定时开关控制,按照作息时间和室外光线进行预程调光控制和窗际调光控制,可以极大降低能源消耗。Timing switch control is implemented for public lighting equipment, and pre-program dimming control and window dimming control are performed according to work and rest time and outdoor light, which can greatly reduce energy consumption.
F、峰谷值电价差控制模型:F. Peak-to-valley electricity price difference control model:
充分利用峰谷电价的政策,云计算能源管理和控制平台系统制定出合理的冰蓄冷控制策略,并在用电高峰时,选择卸除大厦内某些相对不重要的机电设备减少高峰负荷,或投入应急发电机以及释放存储的冷量等措施,实现避峰运行,降低运行费用。Making full use of the policy of peak and valley electricity prices, the cloud computing energy management and control platform system formulates a reasonable ice storage control strategy, and chooses to unload some relatively unimportant electromechanical equipment in the building to reduce the peak load during peak power consumption, or Measures such as investing in emergency generators and releasing stored cooling capacity can realize off-peak operation and reduce operating costs.
G、对空调水系统平衡与变流量的控制:G. Control of air conditioning water system balance and variable flow:
根据空调系统的热交换本质:一定流量的水通过表冷器与风机驱动的送风气流进行能量交换,因此能量交换的效率不但与风速和表冷器温度对热效率的影响有关,同时更与冷热供水流量与热效率相关。According to the heat exchange nature of the air conditioning system: a certain flow of water exchanges energy with the air supply air driven by the fan through the surface cooler, so the efficiency of energy exchange is not only related to the influence of wind speed and surface cooler temperature on thermal efficiency, but also to the cooling effect. Hot water flow is related to thermal efficiency.
云计算管理控制平台通过对空调系统最远端和最近端(相对于空调系统供回水分、集水器而言)的空调机在不同供能状态和不同运行状态下的流量和控制效果的测量参数的分析可知空调系统具有明显的动态特点,运行状态中云计算能源管理和控制系统按照热交换的实际需要动态地调节着各台空调机的调节阀,控制流量进行相应变化,因此总的供回水流量值也始终处于不断变化的中,为了响应这种变化,供回水压力差必须随的有所调整以求得新的平衡。通过实验和历史数据建立变流量控制数学模型(算法),将空调供回水系统由开环系统变为闭环系统。The cloud computing management control platform measures the flow and control effects of the air conditioners at the farthest and nearest ends of the air conditioning system (relative to the water supply and return water and water collectors of the air conditioning system) in different energy supply states and different operating states The analysis of the parameters shows that the air conditioning system has obvious dynamic characteristics. In the running state, the cloud computing energy management and control system dynamically adjusts the regulating valves of each air conditioner according to the actual needs of heat exchange, and the control flow changes accordingly. Therefore, the total supply The flow value of the return water is also constantly changing. In order to respond to this change, the pressure difference between the supply and return water must be adjusted accordingly to obtain a new balance. The variable flow control mathematical model (algorithm) is established through experiments and historical data, and the air-conditioning water supply and return system is changed from an open-loop system to a closed-loop system.
实测数据表明,当空气处理机流量达到额定流量工况时,调节阀两端压力仅为0.66kg/cm2-1kg/cm2。根据空气处理机实际运行台数和运行流量工况动态调整供水泵投入运行的台数,并辅助旁通阀的微调来达到变流量控制的方式,可以避免泄漏,提高控制精度,并减少不必要的流量损失和动力冗余,从而带来明显的节能效果。据实际数据计算,节能效果在25%以上。并且将供回水流量动态参数作为反馈量,调整冷水机组的运行工况,实现明显的节能降耗效果。The measured data shows that when the flow of the air handler reaches the rated flow condition, the pressure at both ends of the regulating valve is only 0.66kg/cm2-1kg/cm2. Dynamically adjust the number of water supply pumps put into operation according to the actual number of air handlers in operation and the operating flow conditions, and assist the fine-tuning of the bypass valve to achieve variable flow control, which can avoid leakage, improve control accuracy, and reduce unnecessary flow. Loss and power redundancy, resulting in obvious energy saving effect. According to actual data calculation, the energy-saving effect is more than 25%. And the dynamic parameters of the water supply and return flow are used as feedback to adjust the operating conditions of the chiller to achieve obvious energy-saving and consumption-reducing effects.
由于智能建筑科学地运用云计算管理控制平台的节能控制模式和算法,动态调整设备运行,有效地克服由于暖通设计带来的设备容量和动力冗余而造成的能源浪费。据统计,在供暖系统的调节中,用48小时的日平均气温预报来确定锅炉房的供水、回水温度,比凭经验供暖,在确保室温不低于18℃的情况下,可节省大约3%的能源。只是采纳了气候补偿方式就可以节省3%~5%的能源,并且本系统供热部分能够自动检测室外温度和采集室内温度,以其为供热负荷的重要依据,在供暖季节省的能量不低于5%。Since the smart building scientifically uses the energy-saving control mode and algorithm of the cloud computing management control platform to dynamically adjust the operation of the equipment, it can effectively overcome the energy waste caused by the equipment capacity and power redundancy caused by the HVAC design. According to statistics, in the adjustment of the heating system, using the 48-hour daily average temperature forecast to determine the water supply and return water temperature of the boiler room, compared with heating by experience, can save about 3 % energy. Just adopting the climate compensation method can save 3% to 5% of energy, and the heating part of the system can automatically detect the outdoor temperature and collect the indoor temperature, which is an important basis for the heating load, and the energy saved in the heating season is not large. less than 5%.
H、春季过渡模式、秋季过渡模式的控制模型:H. The control model of spring transition mode and autumn transition mode:
1)本地区的历史室外计算(干球)温度记录,2)是室外日平均气温是否达到10℃。当满足上述两个条件时进入春季过渡季节模式,此时系统将根据时间表自动调节空调机组新风量的大小,以保证室内的舒适度。1) The historical outdoor calculation (dry bulb) temperature record of the region, and 2) whether the outdoor daily average temperature has reached 10°C. When the above two conditions are met, it will enter the spring transitional season mode. At this time, the system will automatically adjust the fresh air volume of the air conditioning unit according to the schedule to ensure indoor comfort.
当室外最高温度超过26℃时,系统将采取秋季过渡季节的控制模式,采用夜间吹扫的办法,充分利用室外凉爽的空气净化房间并且把房间的余热带走。吹扫时间可以跟据气候的变化进行调整,夜间扫风系统主要依据热负荷曲线,而不是主要使用时间程序。When the maximum outdoor temperature exceeds 26°C, the system will adopt the control mode of autumn transitional season, adopt the method of night purge, make full use of the cool outdoor air to purify the room and take away the residual heat in the room. The blowing time can be adjusted according to the climate change. The night sweeping system is mainly based on the heat load curve, rather than the main use time program.
1)本地区的历史室外(干球)温度记录,2)是室外日平均气温是否达到8℃。满足上述两个条件时系统进入秋季过渡季节模式,此时系统将根据运行的热湿负荷曲线以及时间表自动调节空调机组新风量的大小。但是如果室外最高温度低于15℃时,系统将采取春季过渡季节的控制模式,取消夜间吹扫的办法。1) The historical outdoor (dry-bulb) temperature records of the region, and 2) whether the daily average outdoor temperature reaches 8°C. When the above two conditions are met, the system enters the autumn transition season mode. At this time, the system will automatically adjust the fresh air volume of the air conditioning unit according to the operating heat and humidity load curve and schedule. However, if the maximum outdoor temperature is lower than 15°C, the system will adopt the control mode of the transitional season in spring and cancel the method of purging at night.
I、采用等效温度和区域的控制模型I. Control model using equivalent temperature and area
人体对于温度的反应比较敏感,但对于相对湿度的反应则要迟钝很多,相对湿度在35%~65%之间人体的反应比较迟钝,但是超越65%以后或低于35%,人体对湿度的反应非常激烈等等原则。在能源管理控制过程中,不单一的采用温度作为控制指标,而是采用舒适度为控制指标,即使用等效温度为控制指标(T=25℃,φ=50%)。除了采用等效温度作为控制指标,还要采用区域控制的方法,即人体对外界环境在一定区域内感觉都是比较舒适的,所以没有必要将等效温度控制在一个点,而是将其控制在一定的范围内,这样可以使系统更加容易稳定,能够非常有效的节能,仅此一项技术,年节能就可以在普通策略的基础上再节省10%。The human body is more sensitive to the temperature response, but the response to the relative humidity is much slower. The human body’s response to the relative humidity is relatively slow between 35% and 65%, but after exceeding 65% or lower than 35%, the human body’s response to humidity The reaction is very intense and so on principle. In the process of energy management control, not only temperature is used as the control index, but comfort is used as the control index, that is, the equivalent temperature is used as the control index (T=25°C, φ=50%). In addition to using the equivalent temperature as the control index, it is also necessary to use the method of regional control, that is, the human body feels more comfortable with the external environment in a certain area, so it is not necessary to control the equivalent temperature at one point, but to control it. Within a certain range, this can make the system easier to stabilize and can save energy very effectively. With this technology alone, the annual energy saving can save another 10% on the basis of ordinary strategies.
云计算管理控制平台的模型算法种类有很多种,主要分为定期算法和事件触发算法,其中定期算法包括:代数计算、总值计算、设备运行时间、布尔Boolean运算、数据整合、分段线性函数、最大及最小值记录等,事件触发算法包括:报表任务和显示事件、站点组群控制、区域或组群报警、组合结构的报警等。使用时根据具体需要选择算法,建立控制模型。There are many types of model algorithms for the cloud computing management control platform, which are mainly divided into periodic algorithms and event-triggered algorithms. The regular algorithms include: algebraic calculation, total value calculation, equipment running time, Boolean operation, data integration, piecewise linear function , Maximum and minimum value records, etc. The event trigger algorithm includes: report task and display event, station group control, area or group alarm, combined structure alarm, etc. When using, select the algorithm according to the specific needs and establish the control model.
以上实施例仅为本实用新型的示例性实施例,不用于限制本实用新型,本实用新型的保护范围由附加的权利要求书限定。本领域技术人员可以在本实用新型的实质和保护范围内,对本实用新型做出各种修改或等同替换,这种修改或等同替换也应视为落在本实用新型的保护范围内。The above embodiments are only exemplary embodiments of the utility model, and are not intended to limit the utility model, and the protection scope of the utility model is defined by the appended claims. Those skilled in the art can make various modifications or equivalent replacements to the utility model within the spirit and protection scope of the utility model, and such modifications or equivalent replacements should also be deemed to fall within the protection scope of the utility model.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201258639U CN201765486U (en) | 2010-03-05 | 2010-03-05 | Cloud Computing Based Equipment Monitoring System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010201258639U CN201765486U (en) | 2010-03-05 | 2010-03-05 | Cloud Computing Based Equipment Monitoring System |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201765486U true CN201765486U (en) | 2011-03-16 |
Family
ID=43718095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010201258639U Expired - Fee Related CN201765486U (en) | 2010-03-05 | 2010-03-05 | Cloud Computing Based Equipment Monitoring System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201765486U (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102193525A (en) * | 2010-03-05 | 2011-09-21 | 朗德华信(北京)自控技术有限公司 | System and method for monitoring device based on cloud computing |
CN102563814A (en) * | 2012-02-08 | 2012-07-11 | 广东志高空调有限公司 | Cloud air conditioning system based on cloud computation technology |
CN102721228A (en) * | 2012-06-28 | 2012-10-10 | 广东志高空调有限公司 | Air cooled cold/hot water unit |
CN102721227A (en) * | 2012-06-28 | 2012-10-10 | 广东志高空调有限公司 | Air-cooling direct cooling unit |
WO2012149838A1 (en) * | 2011-07-30 | 2012-11-08 | 华为技术有限公司 | Method and device for managing and presenting station energy consumption |
CN102882945A (en) * | 2012-09-14 | 2013-01-16 | 广东志高空调有限公司 | Cloud household appliance adopting wired or wireless technology |
CN102882909A (en) * | 2011-07-15 | 2013-01-16 | 易云捷讯科技(北京)有限公司 | Cloud computing service monitoring system and method thereof |
WO2013040853A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of water pump |
WO2013040852A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of elevator apparatus |
WO2013040854A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of water chiller |
WO2013040850A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of air processing apparatus |
CN103016171A (en) * | 2011-09-20 | 2013-04-03 | 朗德华信(北京)自控技术有限公司 | System and method for managing and controlling generator set based on cloud computing |
CN103018545A (en) * | 2012-12-26 | 2013-04-03 | 北京百度网讯科技有限公司 | Whole cabinet power consumption test method |
CN103062863A (en) * | 2012-12-05 | 2013-04-24 | 四川长虹电器股份有限公司 | Method and system for multi-dimension ecological environment automatic adjustment based on intelligent air conditioner |
CN103246268A (en) * | 2013-05-02 | 2013-08-14 | 秦皇岛云立方环保工程有限公司 | Cloud computing environmental space optimizing management system of smart city and implementation method |
CN103345706A (en) * | 2013-07-11 | 2013-10-09 | 浪潮电子信息产业股份有限公司 | Method for evaluating carbon emission efficiency of data center |
CN103412086A (en) * | 2013-06-19 | 2013-11-27 | 成都佳锂科技有限公司 | Air quality remote monitoring and purifying system in cloud technology |
CN103423840A (en) * | 2012-05-14 | 2013-12-04 | 珠海格力电器股份有限公司 | Control system and method for central air conditioner |
CN103792425A (en) * | 2014-02-12 | 2014-05-14 | 南京物联传感技术有限公司 | Electric parameter measurement system based on wireless network and electricity saving method |
CN104132872A (en) * | 2013-05-03 | 2014-11-05 | 上海恒锐知识产权服务有限公司 | Real-time atmosphere particle substance measurement data generation system |
CN105955149A (en) * | 2016-07-01 | 2016-09-21 | 合肥天馈信息技术有限公司 | Energy consumption supervision device and management system based on cloud management platform |
CN106292408A (en) * | 2015-06-01 | 2017-01-04 | 南京索乐优节能科技有限公司 | A kind of multiple-energy-sources based on RSMC's data comprehensive utilization control system |
CN106556190A (en) * | 2016-11-30 | 2017-04-05 | 深圳汇通智能化科技有限公司 | Cooling-water machine management control system based on cloud computing |
CN106625705A (en) * | 2016-12-16 | 2017-05-10 | 深圳汇通智能化科技有限公司 | Intelligent medical service robot |
CN107329405A (en) * | 2017-08-09 | 2017-11-07 | 浙江伯飞节能科技有限公司 | A kind of Intelligent power saving system and its control method based on Internet of Things |
CN107741710A (en) * | 2017-10-16 | 2018-02-27 | 深圳技师学院 | A kind of building energy consumption intelligent cloud management control system and method |
CN108731189A (en) * | 2017-04-13 | 2018-11-02 | 易微电(天津)科技发展有限公司 | A kind of continuous Operation Optimization Systerm of central air-conditioning and method |
CN109634198A (en) * | 2011-10-05 | 2019-04-16 | 奥普唐公司 | For monitoring and/or generating the methods, devices and systems of dynamic environment |
CN116643506A (en) * | 2023-07-22 | 2023-08-25 | 山西智恒华锐科技有限公司 | Energy consumption equipment adjusting method, device, controller and system of intelligent energy system |
-
2010
- 2010-03-05 CN CN2010201258639U patent/CN201765486U/en not_active Expired - Fee Related
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102193525B (en) * | 2010-03-05 | 2014-07-02 | 朗德华信(北京)自控技术有限公司 | System and method for monitoring device based on cloud computing |
CN102193525A (en) * | 2010-03-05 | 2011-09-21 | 朗德华信(北京)自控技术有限公司 | System and method for monitoring device based on cloud computing |
CN102882909A (en) * | 2011-07-15 | 2013-01-16 | 易云捷讯科技(北京)有限公司 | Cloud computing service monitoring system and method thereof |
CN102882909B (en) * | 2011-07-15 | 2015-05-06 | 易云捷讯科技(北京)有限公司 | Cloud computing service monitoring system and method thereof |
US9046883B2 (en) | 2011-07-30 | 2015-06-02 | Huawei Technologies Co., Ltd. | Method and apparatus for station energy consumption management and presentation |
WO2012149838A1 (en) * | 2011-07-30 | 2012-11-08 | 华为技术有限公司 | Method and device for managing and presenting station energy consumption |
CN103019159A (en) * | 2011-09-20 | 2013-04-03 | 朗德华信(北京)自控技术有限公司 | Elevator equipment management and control system and method based on cloud computing |
CN103019160A (en) * | 2011-09-20 | 2013-04-03 | 朗德华信(北京)自控技术有限公司 | Water chiller management and control system and method based on cloud computing |
WO2013040852A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of elevator apparatus |
WO2013040854A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of water chiller |
WO2013040850A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of air processing apparatus |
CN103016171A (en) * | 2011-09-20 | 2013-04-03 | 朗德华信(北京)自控技术有限公司 | System and method for managing and controlling generator set based on cloud computing |
CN103019161A (en) * | 2011-09-20 | 2013-04-03 | 朗德华信(北京)自控技术有限公司 | Air processing equipment management and control system and method based on cloud computing |
CN103019160B (en) * | 2011-09-20 | 2016-03-02 | 朗德华信(北京)自控技术有限公司 | Based on cooling-water machine management control system and the method for cloud computing |
CN103016321A (en) * | 2011-09-20 | 2013-04-03 | 朗德华信(北京)自控技术有限公司 | System and method for managing and controlling water pump based on cloud computing |
WO2013040853A1 (en) * | 2011-09-20 | 2013-03-28 | Jiang Yongdong | Cloud computing-based system and method for management and control of water pump |
US10983493B2 (en) | 2011-10-05 | 2021-04-20 | Opteon Corporation | Methods, apparatus, and systems for monitoring and/or controlling dynamic environments |
CN109634198A (en) * | 2011-10-05 | 2019-04-16 | 奥普唐公司 | For monitoring and/or generating the methods, devices and systems of dynamic environment |
CN109634198B (en) * | 2011-10-05 | 2021-06-22 | 奥普唐公司 | Method, apparatus and system for monitoring and/or generating dynamic environments |
US12061455B2 (en) | 2011-10-05 | 2024-08-13 | Opteon Corporation | Methods, apparatus, and systems for monitoring and/or controlling dynamic environments |
WO2013117144A1 (en) * | 2012-02-08 | 2013-08-15 | 广东志高空调有限公司 | Cloud computation technology-based cloud air-conditioning system |
CN102563814A (en) * | 2012-02-08 | 2012-07-11 | 广东志高空调有限公司 | Cloud air conditioning system based on cloud computation technology |
CN103423840A (en) * | 2012-05-14 | 2013-12-04 | 珠海格力电器股份有限公司 | Control system and method for central air conditioner |
CN102721227A (en) * | 2012-06-28 | 2012-10-10 | 广东志高空调有限公司 | Air-cooling direct cooling unit |
CN102721228A (en) * | 2012-06-28 | 2012-10-10 | 广东志高空调有限公司 | Air cooled cold/hot water unit |
CN102721228B (en) * | 2012-06-28 | 2015-04-15 | 广东志高空调有限公司 | Air cooled cold/hot water unit |
CN102882945A (en) * | 2012-09-14 | 2013-01-16 | 广东志高空调有限公司 | Cloud household appliance adopting wired or wireless technology |
CN103062863B (en) * | 2012-12-05 | 2015-07-15 | 四川长虹电器股份有限公司 | Method and system for multi-dimension ecological environment automatic adjustment based on intelligent air conditioner |
CN103062863A (en) * | 2012-12-05 | 2013-04-24 | 四川长虹电器股份有限公司 | Method and system for multi-dimension ecological environment automatic adjustment based on intelligent air conditioner |
CN103018545B (en) * | 2012-12-26 | 2015-04-08 | 北京百度网讯科技有限公司 | Whole cabinet power consumption test method |
CN103018545A (en) * | 2012-12-26 | 2013-04-03 | 北京百度网讯科技有限公司 | Whole cabinet power consumption test method |
CN103246268A (en) * | 2013-05-02 | 2013-08-14 | 秦皇岛云立方环保工程有限公司 | Cloud computing environmental space optimizing management system of smart city and implementation method |
CN104132872A (en) * | 2013-05-03 | 2014-11-05 | 上海恒锐知识产权服务有限公司 | Real-time atmosphere particle substance measurement data generation system |
CN103412086A (en) * | 2013-06-19 | 2013-11-27 | 成都佳锂科技有限公司 | Air quality remote monitoring and purifying system in cloud technology |
CN103345706A (en) * | 2013-07-11 | 2013-10-09 | 浪潮电子信息产业股份有限公司 | Method for evaluating carbon emission efficiency of data center |
CN103792425A (en) * | 2014-02-12 | 2014-05-14 | 南京物联传感技术有限公司 | Electric parameter measurement system based on wireless network and electricity saving method |
CN106292408A (en) * | 2015-06-01 | 2017-01-04 | 南京索乐优节能科技有限公司 | A kind of multiple-energy-sources based on RSMC's data comprehensive utilization control system |
CN105955149A (en) * | 2016-07-01 | 2016-09-21 | 合肥天馈信息技术有限公司 | Energy consumption supervision device and management system based on cloud management platform |
CN106556190A (en) * | 2016-11-30 | 2017-04-05 | 深圳汇通智能化科技有限公司 | Cooling-water machine management control system based on cloud computing |
CN106625705A (en) * | 2016-12-16 | 2017-05-10 | 深圳汇通智能化科技有限公司 | Intelligent medical service robot |
CN108731189A (en) * | 2017-04-13 | 2018-11-02 | 易微电(天津)科技发展有限公司 | A kind of continuous Operation Optimization Systerm of central air-conditioning and method |
CN108731189B (en) * | 2017-04-13 | 2021-01-26 | 易微电(天津)科技发展有限公司 | Central air conditioner continuous tuning system and method |
CN107329405A (en) * | 2017-08-09 | 2017-11-07 | 浙江伯飞节能科技有限公司 | A kind of Intelligent power saving system and its control method based on Internet of Things |
CN107741710A (en) * | 2017-10-16 | 2018-02-27 | 深圳技师学院 | A kind of building energy consumption intelligent cloud management control system and method |
CN116643506A (en) * | 2023-07-22 | 2023-08-25 | 山西智恒华锐科技有限公司 | Energy consumption equipment adjusting method, device, controller and system of intelligent energy system |
CN116643506B (en) * | 2023-07-22 | 2023-10-20 | 山西智恒华锐科技有限公司 | Energy consumption equipment adjusting method, device, controller and system of intelligent energy system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201765486U (en) | Cloud Computing Based Equipment Monitoring System | |
CN201812187U (en) | Cloud Computing-based Energy Management Control System for Computer Room of Electronic Information System | |
WO2011106914A1 (en) | Device monitoring system and method based on cloud computing | |
WO2011106917A1 (en) | Energy management control system based on cloud computing and method thereof | |
WO2011106918A1 (en) | Computer room energy management control system and method for electronic information system based on cloud computing | |
WO2021249461A1 (en) | Method and apparatus for controlling refrigeration device, computer device, and computer readable medium | |
WO2021208313A1 (en) | Natural energy intelligent system integrating heating, power supply, and cooling functions, and control method therefor | |
CN104238531B (en) | Railway station energy management system and energy-saving control method | |
CN101216207B (en) | 26 degree central air-conditioning intelligent energy-saving management system | |
CN101090335B (en) | Method and system for remote adjustment of indoor temperature and load of household air conditioner | |
CN102538133B (en) | Method for controlling running of air conditioners, control system and intelligent controller of air conditioners | |
CN101968651B (en) | Building energy-saving monitoring system based on wireless mode | |
CN110543713B (en) | Heat pump-floor heating system control method considering user comfort and building heat storage | |
CN107274303A (en) | Intelligent management and control technology platform for urban heat supply energy consumption | |
CN101655272A (en) | Energy-saving control management system of network central air conditioner and method thereof | |
CN108895633A (en) | Central air-conditioning system control method using building structure as cold accumulation medium | |
CN102607143A (en) | Remote monitoring method and remote monitoring system for air conditioners of base stations | |
CN214536620U (en) | Network architecture of air-conditioning and air-water coordination energy-saving control device of subway station | |
CN205505299U (en) | Central air conditioning intelligence temperature control system | |
CN118856502A (en) | A method, system, device and medium for controlling multiple types of air conditioning loads | |
CN105717899A (en) | Heat energy monitoring and management platform | |
CN202119044U (en) | Mixing type ground source heat pump monitoring system based on health evaluation technology | |
CN108583212A (en) | A kind of new-energy automobile heat pump air conditioner fission control system | |
Ma et al. | Intelligent Building Equipment Control Technology and Energy Saving Analysis | |
CN201382515Y (en) | Energy storage air conditioning optimization control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: LONGDHUA (BEIJING) CONTROLS TECHNOLOGY CO., LTD. Free format text: FORMER OWNER: JIANG YONGDONG Effective date: 20110427 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20110427 Address after: 100086 No. 111, ideal building, Haidian District, Beijing, Zhichun Road 1203 Patentee after: Longdhua (Beijing) Automatic Control Technology Co., Ltd. Address before: 100086 No. 111, ideal building, Haidian District, Beijing, Zhichun Road 1203 Patentee before: Jiang Yongdong |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110316 Termination date: 20190305 |
|
CF01 | Termination of patent right due to non-payment of annual fee |