CN201757808U - High positioning accuracy of all-plastic aspheric lens structure and ultra-thin optical lens - Google Patents
High positioning accuracy of all-plastic aspheric lens structure and ultra-thin optical lens Download PDFInfo
- Publication number
- CN201757808U CN201757808U CN2010205138320U CN201020513832U CN201757808U CN 201757808 U CN201757808 U CN 201757808U CN 2010205138320 U CN2010205138320 U CN 2010205138320U CN 201020513832 U CN201020513832 U CN 201020513832U CN 201757808 U CN201757808 U CN 201757808U
- Authority
- CN
- China
- Prior art keywords
- lens
- ultra
- coefficient
- positioning accuracy
- aspheric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 26
- 239000004033 plastic Substances 0.000 title claims abstract description 16
- 229920003023 plastic Polymers 0.000 title claims abstract description 16
- 239000006185 dispersion Substances 0.000 claims description 13
- 230000014509 gene expression Effects 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 230000005499 meniscus Effects 0.000 abstract 1
- 102000000429 Factor XII Human genes 0.000 description 5
- 108010080865 Factor XII Proteins 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 238000010226 confocal imaging Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Images
Landscapes
- Lenses (AREA)
Abstract
Description
【技术领域】【Technical field】
本实用新型涉及一种光学镜头,尤其涉及一种应用于高像素大尺寸触摸屏的红外线与可见光共焦成像微型光学镜头。The utility model relates to an optical lens, in particular to a miniature optical lens for confocal imaging of infrared rays and visible light applied to a high-pixel and large-size touch screen.
【背景技术】【Background technique】
目前使用的触摸屏用镜头普遍存在这样的缺点:定位精度不高、可见光和红外线成像时存在像面偏移导致成像质量下降、外形尺寸较大。The currently used lenses for touch screens generally have the following shortcomings: low positioning accuracy, image plane offset during visible light and infrared imaging, resulting in reduced imaging quality, and large dimensions.
市场上现在主要是10万像素的低配置镜头,而且体积大不方便用于超薄屏,而且对触摸位置不够灵敏。镜头的外形偏大,外径一般大于M8,大部分为圆形,从而不能用于超薄屏。对于触摸屏范围出现的物体反应不灵敏,精度不高。The market is now mainly low-configuration lenses with 100,000 pixels, and they are too bulky to be used on ultra-thin screens, and they are not sensitive enough to touch positions. The shape of the lens is too large, the outer diameter is generally larger than M8, and most of them are circular, so they cannot be used for ultra-thin screens. It is not sensitive to objects appearing in the range of the touch screen, and the precision is not high.
本实用新型是在此种情况下作出的。The utility model is made under such circumstances.
【实用新型内容】【Content of utility model】
本实用新型克服了现有技术的不足,提供了一种高像素、体积小,可使用于40英寸以上触摸屏的高定位精度及超薄光学镜头。The utility model overcomes the deficiencies of the prior art, and provides a high-pixel, small-volume, high-positioning-accuracy and ultra-thin optical lens that can be used in a touch screen of more than 40 inches.
为了解决上述存在的技术问题,本实用新型采用相关技术方案:In order to solve the above-mentioned technical problems, the utility model adopts related technical solutions:
全塑胶非球面透镜结构的高定位精度及超薄光学镜头,特征在于包括有耐高温承座和装在耐高温承座上的镜筒以及调焦环,在镜筒前端设置有光阑,在镜筒的空腔中、光阑后依次设有第一透镜、第二透镜、第三透镜和第四透镜,第一透镜与第二透镜之间、第二透镜与第三透镜之间、第三透镜与第四透镜之间相应地设有隔圈;所述的第一透镜的两个表面为弯月形状的非球面,第二透镜的两个表面为双凹形状的非球面,第三透镜的为双凸形状的非球面,而第四透镜为双曲线形状的非球面。The high positioning accuracy and ultra-thin optical lens of the all-plastic aspheric lens structure is characterized by including a high-temperature-resistant seat, a lens barrel mounted on the high-temperature-resistant seat, and a focusing ring. A diaphragm is arranged at the front end of the lens barrel. A first lens, a second lens, a third lens and a fourth lens are arranged in sequence in the cavity of the barrel and behind the diaphragm, between the first lens and the second lens, between the second lens and the third lens, and between the third lens and the third lens. A spacer ring is correspondingly arranged between the lens and the fourth lens; the two surfaces of the first lens are meniscus-shaped aspheric surfaces, the two surfaces of the second lens are biconcave-shaped aspheric surfaces, and the third lens The aspheric surface of biconvex shape is the fourth lens, and the aspheric surface of hyperbolic shape is the fourth lens.
如上所述的全塑胶非球面透镜结构的高定位精度及超薄光学镜头,特征在于所述所述的第二透镜和第三透镜的非球面的表面形状满足以下方程:The high positioning accuracy of the above-mentioned all-plastic aspheric lens structure and the ultra-thin optical lens are characterized in that the surface shapes of the aspheric surfaces of the second lens and the third lens satisfy the following equation:
Z=cy2/{1+√[1-(1+k)c2y2]}+α1y2+α2y4+α3y6+α4y8+α5y10+α6y12+α7y14+α8y16;在公式中,参数c为半径所对应的曲率,y为径向坐标,k为圆锥二次曲线系数,α1至α8分别表示各径向坐标所对应的系数。Z=cy 2 /{1+√[1-(1+k)c 2 y 2 ]}+α 1 y 2 +α 2 y 4 +α 3 y 6 +α 4 y 8 +α 5 y 10 +α 6 y 12 +α 7 y 14 +α 8 y 16 ; in the formula, the parameter c is the curvature corresponding to the radius, y is the radial coordinate, k is the conic conic coefficient, and α 1 to α 8 respectively represent the The coefficient corresponding to the coordinate.
如上所述的全塑胶非球面透镜结构的高定位精度及超薄光学镜头,特征在于所述的第一透镜、第二透镜、第三透镜、第四透镜的系统元件特性满足以下表达式:-5<f1<-2,-3<f2<-1.5,1<f3<5,1<f4<5;50<vd12<60,50<vd34<60,20<vd56<40,50<vd89<60;其中,f1为第一透镜的焦距,f2为第二透镜的焦距,f3为第三透镜的焦距,f4为第四透镜的焦距,Vd12为第一透镜的色散系数,Vd34为第二透镜的色散系数,Vd56为第三透镜的色散系数,Vd89为第四透镜的色散系数。The high positioning accuracy of the above-mentioned all-plastic aspheric lens structure and the ultra-thin optical lens are characterized in that the system element characteristics of the first lens, the second lens, the third lens, and the fourth lens satisfy the following expressions:- 5<f1<-2, -3<f2<-1.5, 1<f3<5, 1<f4<5; 50<vd12<60, 50<vd34<60, 20<vd56<40, 50<vd89<60 ; Wherein, f1 is the focal length of the first lens, f2 is the focal length of the second lens, f3 is the focal length of the third lens, f4 is the focal length of the fourth lens, Vd12 is the dispersion coefficient of the first lens, Vd34 is the second lens Dispersion coefficient, Vd56 is the dispersion coefficient of the third lens, Vd89 is the dispersion coefficient of the fourth lens.
如上所述的全塑胶非球面透镜结构的高定位精度及超薄光学镜头,特征在于所述第一透镜朝光阑方向的第一面为椭圆非球面形状,第二面为扁圆椭球面;第二透镜朝第一透镜方向的第一面非抛物线形状,第二面为双曲线形状;第三透镜朝第二透镜方向的第一面为椭球面,第二面为椭球面;第四透镜朝第三透镜方向的第一面为扁椭球面,第二面为双曲线形状。The high positioning accuracy and ultra-thin optical lens of the above-mentioned all-plastic aspherical lens structure is characterized in that the first surface of the first lens facing the diaphragm direction is an elliptical aspheric surface, and the second surface is an oblate ellipsoidal surface; The first surface of the second lens toward the first lens is non-parabolic, and the second surface is hyperbolic; the first surface of the third lens toward the second lens is an ellipsoid, and the second surface is an ellipsoid; the fourth lens The first surface facing the direction of the third lens is an oblate ellipsoid, and the second surface is a hyperbolic shape.
如上所述的全塑胶非球面透镜结构的高定位精度及超薄光学镜头,特征在于镜筒的空腔中、第四透镜的后部还设有滤光片。The high positioning accuracy and ultra-thin optical lens of the above-mentioned all-plastic aspheric lens structure is characterized in that a filter is provided in the cavity of the lens barrel and at the rear of the fourth lens.
如上所述的全塑胶非球面透镜结构的高定位精度及超薄光学镜头,特征在于所述耐高温承座与镜筒通过调焦环之间的螺纹配合固定。The high positioning accuracy and ultra-thin optical lens of the above-mentioned all-plastic aspheric lens structure is characterized in that the high-temperature-resistant seat and the lens barrel are fixed through the screw thread between the focus ring.
本实用新型与现有技术相比具有本实用新型有如下的优点:Compared with the prior art, the utility model has the following advantages:
1、本实用新型的微型数位镜头能够达到200万像素以上,而现有微型数位镜头一般是10万、30万像素。1. The micro-digital lens of the present utility model can reach more than 2 million pixels, while the existing micro-digital lens generally has 100,000 or 300,000 pixels.
2、本实用新型的可实现最薄位置为3MM的厚度最厚也不超过5MM厚度的体积。2. The volume of the utility model that can realize the thickness of the thinnest position is 3MM and the thickest is no more than 5MM.
3、本实用新型的红外线和可见光成像共焦提高了不同光照度下的定位精度及一致性。3. The confocal infrared and visible light imaging of the present invention improves the positioning accuracy and consistency under different illuminations.
4、本实用新型可以用于200万像素的CMOS感光片及CCD。4. The utility model can be used for CMOS photosensitive film and CCD with 2 million pixels.
5、本实用新型还解决了以前方形非对称形状镜片加工困难而导致的良品率低和成本相对较高的问题。5. The utility model also solves the problems of low yield rate and relatively high cost caused by the difficulty in processing the square asymmetric lens.
【附图说明】【Description of drawings】
图1是承座和镜筒之间的装配图;Figure 1 is an assembly diagram between the seat and the lens barrel;
图2是透镜的示意图。Figure 2 is a schematic diagram of a lens.
【具体实施方式】【Detailed ways】
下面结合附图与具体实施方式对本实用新型作进一步详细描述:Below in conjunction with accompanying drawing and specific embodiment the utility model is described in further detail:
如图所示,全塑胶非球面透镜结构的高定位精度及超薄光学镜头,包括有耐高温承座1和装在耐高温承座1上的镜筒2以及调焦环3,镜筒2通过卡装方式装在耐高温承座1中,限制了镜筒2的横向移动。As shown in the figure, the high positioning accuracy and ultra-thin optical lens of the all-plastic aspheric lens structure includes a high-temperature-
在所述镜筒2前端设置有光阑4,在镜筒2的空腔中、光阑4后依次设有第一透镜5、第二透镜6、第三透镜7和第四透镜8。所述第一透镜5与第二透镜6之间、第二透镜6与第三透镜7之间、第三透镜7与第四透镜8之间相应地设有隔圈9。A
所述的第一透镜5的两个表面为弯月形状的非球面,第二透镜6的两个表面为双凹形状的非球面,第三透镜7的为双凸形状的非球面,而第四透镜8为双曲线形状的非球面。The two surfaces of the
具体来说,所述第一透镜5朝光阑方向的第一面51为椭圆非球面形状,第二面52为扁圆椭球面;第二透镜6朝第一透镜方向的第一面61非抛物线形状,第二面62为双曲线形状;第三透镜7朝第二透镜方向的第一面71为椭球面,第二面72为椭球面;第四透镜8朝第三透镜方向的第一面81为扁椭球面,第二面82为双曲线形状。这有效的解决了各种像差均衡的问题。Specifically, the first surface 51 of the
同时,第三透镜7它具有高折射本领,由于本身在光学系统中的位置和高折射率而使其能角度程度减小畸变和减小第四透镜的有效通光孔径。第四透镜8的第一个面是扁椭球面,而第二个表面必须采用双曲线形的非球面,它可以有效地使得场曲减小。系统的第一透镜5具有正折射本领,第二透镜6具有负折射本领,第三透镜7和第四透镜8具有正折射本领。第二透镜6、第三透镜7和第四透镜8的组合具有负折射本领,从而使得光学系统的像方主面前移,从而使得系统长度缩短。系统全塑胶透镜结构的高像质光学镜头,可在430nm至870nm的波长范围内成像清晰,实现在可见光和红外光的高精度定位摄像的共焦微型光学镜头。At the same time, the
为减小光线在各透镜之间的折射变化角度,控制成像畸变,结构上需要尽量减小第一透镜和第二透镜之间的距离;同时第三透镜和第四透镜之间的距离则需尽量增大;为改善场曲像差,第四透镜8的第二面82设计成双曲线非球面。In order to reduce the refraction change angle of light between the lenses and control the imaging distortion, the distance between the first lens and the second lens needs to be reduced as much as possible in structure; at the same time, the distance between the third lens and the fourth lens needs to be Increase as much as possible; in order to improve field curvature aberration, the second surface 82 of the
所述所述的第二透镜和第三透镜的非球面的表面形状满足以下方程:The surface shapes of the aspheric surfaces of the second lens and the third lens satisfy the following equation:
Z=cy2/{1+√[1-1+kc2y2]}+α1y2+α2y4+α3y6+α4y8+α5y10+α6y12+α7y14+α8y16;在公式中,参数c为半径所对应的曲率,y为径向坐标,k为圆锥二次曲线系数,α1至α8分别表示各径向坐标所对应的系数。当k系数小于-1时面形曲线为双曲线,等于-1时为抛物线,介于-1到0之间时为椭圆,等于0时为圆形,大于0时为扁圆形。通过以上参数可以精确设定透镜前后两面非球面的形状尺寸。Z=cy 2 /{1+√[1-1+kc 2 y 2 ]}+α 1 y 2 +α 2 y 4 +α 3 y 6 +α 4 y 8 +α 5 y 10 +α 6 y 12 +α 7 y 14 +α 8 y 16 ; in the formula, the parameter c is the curvature corresponding to the radius, y is the radial coordinate, k is the coefficient of the conic conic curve, α 1 to α 8 represent the respective radial coordinates corresponding coefficients. When the k coefficient is less than -1, the surface curve is a hyperbola, when it is equal to -1, it is a parabola, when it is between -1 and 0, it is an ellipse, when it is equal to 0, it is a circle, and when it is greater than 0, it is an oblate circle. Through the above parameters, the shape and size of the aspheric surfaces on the front and rear sides of the lens can be precisely set.
所述的第一透镜5、第二透镜6、第三透镜7、第四透镜8的系统元件特性满足以下表达式:-5<f1<-2,-3<f2<-1.5,1<f3<5,1<f4<5;50<vd12<60,50<vd34<60,20<vd56<40,50<vd89<60;其中,f1为第一透镜的焦距,f2为第二透镜的焦距,f3为第三透镜的焦距,f4为第四透镜的焦距,Vd12为第一透镜的色散系数,Vd34为第二透镜的色散系数,Vd56为第三透镜的色散系数,Vd89为第四透镜的色散系数。The system element characteristics of the
所述耐高温承座1与镜筒2通过调焦环3之间的螺纹配合固定,转动调焦环3,可使镜筒2沿着承座上、下滑动。The high-temperature-resistant bearing 1 and the
镜筒2的空腔中、第四透镜8的后部还设有滤光片10。光线是经过滤光片10进入CMOS感光芯片的,滤光片10对CMOS感光芯片有一定的保护作用,同时也过滤一部分光线,使图像色彩亮丽和锐利的同时具有良好的色彩还原性。滤光片10除了解决色彩方面的问题以外,还保证了后面调焦环有足够的空间可以调焦及模具的设计和加工。A
设计实例:Design example:
序号 类型 半径 间隔(厚度) 光学材料 直径圆 锥系数No. Type Radius Interval (Thickness) Optical Material Diameter Circle Cone Coefficient
1 非球面 7 0.6 PMMA 5.568 -61
2 非球面 1.3 1.43 3.14 -0.61939342 Aspherical 1.3 1.43 3.14 -0.6193934
3 非球面 -20 0.8 PMMA 3.096 453 Aspherical -20 0.8 PMMA 3.096 45
4 非球面 1.2 0.071 1.682 -2.1511864 Aspheric 1.2 0.071 1.682 -2.151186
5 非球面 2 1.16 PC 1.522 0.31692575
6 非球面 14 0.093 1.054 906 Aspherical 14 0.093 1.054 90
7 光圈 无穷大 0.058 1.306826 07 Aperture Infinity 0.058 1.306826 0
8 非球面 7.48151 1 PMMA 1.168 1358 Aspheric 7.48151 1 PMMA 1.168 135
9 非球面 -1.2 0.1 1.99 -0.39257539 Aspherical -1.2 0.1 1.99 -0.3925753
10 标准 无穷大 0.3 K9 1.918661 010 Standard Infinity 0.3 K9 1.918661 0
11 标准 无穷大 2.7 2.005836 011 Standard Infinity 2.7 2.005836 0
12 标准 无穷大 0.4 K9 3.890846 012 Standard Infinity 0.4 K9 3.890846 0
13 标准 无穷大 0.05 4.141398 013 Standard Infinity 0.05 4.141398 0
非球面面形系数Aspheric Surface Coefficient
面1:Side 1:
系数2: 0Coefficient 2: 0
系数4: 0.012122036Coefficient 4: 0.012122036
系数6: -0.0007779814Coefficient 6: -0.0007779814
系数8: -4.586116e-005Coefficient 8: -4.586116e-005
系数10: 6.782423e-006Factor 10: 6.782423e-006
系数12: 0Factor 12: 0
系数14: 0Factor 14: 0
系数16: 0Factor 16: 0
面2:EVENASPHSide 2: EVENASPH
系数2: 0Coefficient 2: 0
系数4: -0.003164936Coefficient 4: -0.003164936
系数6: 0.01672424Coefficient 6: 0.01672424
系数8: -0.001256694Coefficient 8: -0.001256694
系数10: -0.0031619364Coefficient 10: -0.0031619364
系数12: 0Factor 12: 0
系数14: 0Factor 14: 0
系数16: 0Factor 16: 0
面3:Side 3:
系数2: 0Coefficient 2: 0
系数4: -0.008811447Coefficient 4: -0.008811447
系数6: -0.006245692Coefficient 6: -0.006245692
系数8: 0.0009056553Coefficient 8: 0.0009056553
系数10: 0.00060505Coefficient 10: 0.00060505
系数12: 0Factor 12: 0
系数14: 0Factor 14: 0
系数16: 0Factor 16: 0
面4:Side 4:
系数2: 0Coefficient 2: 0
系数4: 0.19309118Coefficient 4: 0.19309118
系数6: -0.0658172Coefficient 6: -0.0658172
系数8: -0.21396205Coefficient 8: -0.21396205
系数10: -0.29119433Coefficient 10: -0.29119433
系数12: 0Factor 12: 0
系数14: 0Factor 14: 0
系数16: 0Factor 16: 0
面5:Face 5:
系数2: 0Coefficient 2: 0
系数4: 0.0203221Coefficient 4: 0.0203221
系数6: -0.0042487Coefficient 6: -0.0042487
系数8: -0.15060459Coefficient 8: -0.15060459
系数10: -0.28382886Coefficient 10: -0.28382886
系数12: 0.0022979714Coefficient 12: 0.0022979714
系数14: 0Factor 14: 0
系数16: 0Factor 16: 0
面6
系数2: 0Coefficient 2: 0
系数4: 0.06853734Coefficient 4: 0.06853734
系数6: 0.60105972Coefficient 6: 0.60105972
系数8: -0.12904987Coefficient 8: -0.12904987
系数10: -5.0603828Factor 10: -5.0603828
系数12: 15.077425Factor 12: 15.077425
系数14: 0Factor 14: 0
系数16: 0Factor 16: 0
面8
系数2: 0Coefficient 2: 0
系数4: -0.03931131Coefficient 4: -0.03931131
系数6: -0.07185864Coefficient 6: -0.07185864
系数8: 1.0158389Coefficient 8: 1.0158389
系数10: 0.07768973Coefficient 10: 0.07768973
系数12: -4.489426Coefficient 12: -4.489426
系数14: 0Factor 14: 0
系数16: 0Factor 16: 0
面9
系数2: 0Coefficient 2: 0
系数4: 0.038780933Coefficient 4: 0.038780933
系数6: 0.00652536Coefficient 6: 0.00652536
系数8: 0.0169406Coefficient 8: 0.0169406
系数10: -0.0411658Coefficient 10: -0.0411658
系数12: 0.03614294Coefficient 12: 0.03614294
系数14: 0Factor 14: 0
系数16: 0。Factor 16: 0.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205138320U CN201757808U (en) | 2010-08-27 | 2010-08-27 | High positioning accuracy of all-plastic aspheric lens structure and ultra-thin optical lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010205138320U CN201757808U (en) | 2010-08-27 | 2010-08-27 | High positioning accuracy of all-plastic aspheric lens structure and ultra-thin optical lens |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201757808U true CN201757808U (en) | 2011-03-09 |
Family
ID=43645091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010205138320U Expired - Lifetime CN201757808U (en) | 2010-08-27 | 2010-08-27 | High positioning accuracy of all-plastic aspheric lens structure and ultra-thin optical lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201757808U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105022139A (en) * | 2014-04-29 | 2015-11-04 | 佳凌科技股份有限公司 | Optical lens group |
CN112213845A (en) * | 2020-09-09 | 2021-01-12 | 彭欣 | Novel lens of mixed aspheric surface lens of glass fat |
-
2010
- 2010-08-27 CN CN2010205138320U patent/CN201757808U/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105022139A (en) * | 2014-04-29 | 2015-11-04 | 佳凌科技股份有限公司 | Optical lens group |
CN112213845A (en) * | 2020-09-09 | 2021-01-12 | 彭欣 | Novel lens of mixed aspheric surface lens of glass fat |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202522757U (en) | optical image capturing lens | |
CN105700117B (en) | Optical imaging system | |
CN201017093Y (en) | High-image-quality optical lens with all-plastic aspheric lens structure | |
CN202916488U (en) | A High Image Quality Miniature Aspherical Optical Lens with Hybrid Lens Structure | |
CN202433590U (en) | A day and night dual-purpose high-resolution surveillance lens | |
CN112099189B (en) | Optical lens, camera module and electronic equipment | |
CN109782419A (en) | A kind of wide-angle high-res camera lens | |
CN113625425A (en) | Optical lens, camera module and electronic equipment | |
CN204287585U (en) | A high-quality wide-angle optical lens | |
CN205301692U (en) | A low-cost zoom optical system with large viewing angle and small volume | |
CN101295069A (en) | High-image-quality miniature zoom optical system | |
CN107807439B (en) | Interchangeable of dolly-out,ing dolly-back tight shot | |
CN107450168B (en) | In dolly-out, dolly-back interchangeable tight shot | |
CN201757808U (en) | High positioning accuracy of all-plastic aspheric lens structure and ultra-thin optical lens | |
CN205404938U (en) | A mobile phone imaging lens | |
CN105572845B (en) | Mobile phone imaging lens | |
CN205581383U (en) | A high-frame and high-quality optical imaging system | |
CN211577546U (en) | Optical imaging system, image capturing device with same and electronic device | |
CN104765131B (en) | A low-sensitivity high-fidelity camera assembly | |
CN110737075B (en) | A high-pixel, large-aperture, all-glass motion DV lens | |
CN207529007U (en) | Standard interchangeable tight shot | |
CN105607230B (en) | electronic viewfinder lens | |
CN109782420A (en) | Wide-angle high-res camera lens | |
CN206020797U (en) | Fisheye optical system | |
CN212623314U (en) | A miniature optical lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP03 | Change of name, title or address |
Address after: 528400 Zhongshan Torch Development Zone, Guangdong Road, No. 10 Patentee after: Zhong Shan joint opto-electronic Science and Technology Co., Ltd. Address before: 528400 Zhongshan Torch Development Zone, Guangdong Patentee before: Union Optech (Zhongshan) Co., Ltd. |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20110309 |