CN201717850U - 载波泄漏校正电路 - Google Patents
载波泄漏校正电路 Download PDFInfo
- Publication number
- CN201717850U CN201717850U CN2009201072904U CN200920107290U CN201717850U CN 201717850 U CN201717850 U CN 201717850U CN 2009201072904 U CN2009201072904 U CN 2009201072904U CN 200920107290 U CN200920107290 U CN 200920107290U CN 201717850 U CN201717850 U CN 201717850U
- Authority
- CN
- China
- Prior art keywords
- signal
- carrier leak
- emission
- input
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012937 correction Methods 0.000 title abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 238000001514 detection method Methods 0.000 claims description 24
- 230000010355 oscillation Effects 0.000 claims description 18
- 230000009466 transformation Effects 0.000 claims description 4
- 238000004088 simulation Methods 0.000 abstract 3
- 238000000034 method Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000009966 trimming Methods 0.000 description 7
- 238000010845 search algorithm Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 4
- 230000001915 proofreading effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 206010049244 Ankyloglossia congenital Diseases 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Transceivers (AREA)
- Superheterodyne Receivers (AREA)
Abstract
本实用新型提供了一种载波泄漏校正电路,包括:下变频模块,用于将载波泄漏信号变换为模拟基带信号;模数转换器,连接至下变频模块,用于将模拟基带信号转换为数字信号;直流补偿模块,连接至模数转换器,用于根据数字信号,对发射前端的模拟基带处理电路进行补偿。本实用新型实现了校正电路功耗和芯片面积较小的技术效果。
Description
技术领域
本实用新型涉及集成电路领域,具体而言,涉及一种载波泄漏校正电路,其为用于零中频或低中频结构的发射前端的电路。
背景技术
采用零中频或低中频结构的发射前端,不需要片外镜像抑制滤波器,功耗和面积小,集成度高,因而受到广泛应用,然而由于电容、衬底耦合或基带直流失调等导致载波(即本振)信号进入射频发射前端的输出频谱中,即产生载波泄漏(Carrier Leak,简称CL)。载波泄漏存在下列不良影响:恶化后级电路(功率放大器等)的线性度,导致发射信号星座图原点的偏移;随载波发射出去后,对其他射频前端造成干扰;在CDMA(Code Division Multiple Access,码分多址)系统中,抬高噪声本底,降低信道的容量。因而需要对载波泄漏进行抑制,以减轻上述不良影响。
在零中频或低中频发射前端中,载波泄漏信号位于信号频谱之中或者距离信号频带很近,不能利用滤波器加以抑制。提高版图的对称性和增强隔离度有利于抑制载波泄漏,但无法应付环境、温度、工艺不稳定等因素的影响。故对一些输出动态要求较大的系统而言,仅靠上述方法不能满足系统对抑制载波泄漏的要求,需要采取其他措施来进一步校正载波泄漏。
相关技术提供了一种发射前端载波泄漏校正方法,需要发射前端和数字基带芯片协同工作以完成校正,这种方法不仅增加了发射前端芯片和数字基带芯片接口的复杂度,而且缩小了数字基带芯片的可选择范围,兼容性差。
针对上述缺点,相关技术提供了另一种发射前端载波泄漏校正方法,该方法的校正电路完全集成在发射前端芯片中,不需要数字系带芯片或片外电路的协助,有利于降低接口复杂度,扩大数字系带芯片的选择范围,从而降低系统成本。图1示出了相关技术中载波泄漏校正方法的电路图。参考图1,这种方法通过射频(RadioFrequency,简称RF)检测器检测载波泄漏强度,经过ADC(Analogto Digital Converter,模数转换器)数字化后,输送给状态机,经状态机调谐后,输送给偏移DAC(Digital to Analog Converter,数模转换器),以实现在发射前端电路的输入端加入适当的直流补偿,从而减小载波泄漏。
在实现本实用新型过程中,实用新型人发现现有技术中发射前端载波泄漏的校正电路需要采用射频检测器,导致校正电路的功耗和芯片面积较大。
实用新型内容
本实用新型旨在提供一种载波泄漏校正电路,其为用于零中频或低中频结构的发射前端的电路,并使用相应的校正方法,能够解决现有技术中发射前端载波泄漏的校正电路需要采用射频检测器,导致校正电路的功耗和芯片面积较大的问题。
在本实用新型的实施例中,提供了一种载波泄漏校正电路,其包括:
下变频模块,用于将载波泄漏信号变换为模拟基带信号;
模数转换器ADC(Analog to Digital Converter),连接至下变频模块,用于将模拟基带信号转换为数字信号;
直流补偿模块,连接至模数转换器,用于根据数字信号,对发射前端的模拟基带处理电路进行补偿。
优选地,下变频模块包括下变频器和基带检测模块,其中,基带检测模块输入端与下变频器的输出端相连接。
优选地,直流补偿模块包括:
控制支路,用于根据数字信号确定控制字;
第一直流补偿支路,用于根据控制字对载波信号进行补偿,以减小载波泄漏信号。
优选地,基带检测模块包括基带信号强度检测器。
优选地,基带检测模块还包括低通滤波器和可变增益放大器,其中
低通滤波器的输出端与可变增益放大器的输出端相连接;
可变增益放大器的输出端与基带信号强度检测器的输入段相连接。
优选地,基带信号强度检测器是功率检测器或幅值检测器。
优选地,上述校正电路还包括:
偏移本振产生电路,其输出端与下变频器的输入端相连接。
优选地,上述校正电路还包括:
射频开关,其连接在发射前端的上变频器输出端与下变频器的输入端之间。
优选地,下变频器的输入端与发射前端的射频放大器的输出端相连接;射频放大器的输入端与发射前端的上变频器的输出端相连接。
优选地,上述校正电路还包括射频开关,其中,射频开关连接在发射前端的射频放大器的输出端与下变频器的输入端之间。
优选地,第一直流补偿支路输出端与发射前端的模拟基带处理电路的输入端相连接。
优选地,第一直流补偿支路的输入端与发射前端的模拟基带处理电路的输出端相连接。
优选地,直流补偿模块还包括:
置于上变频器中的第二直流补偿支路,其输入端与控制支路的输出端相连接。
优选地,偏移本振产生电路包括:
混频器,其射频输入端连接发射前端的本振信号,其低频输入端连接低频信号。
优选地,低频信号是片外输入的低频信号或片上晶体振荡电路产生的低频信号。
优选地,偏移本振产生电路包括:混频器和除N电路,其中
混频器的射频输入端连接发射前端的本振信号,其低频输入端与除N电路的输出端相连接;
除N电路的输入端连接发射前端的本振信号或低频信号;
N为整数。
优选地,低频信号是片外输入的低频信号或片上晶体振荡电路产生的低频信号。
优选地,偏移本振产生电路包括:一对正交混频器和除N电路,其中
正交混频器的两个正交射频输入端分别连接发射前端的两个正交本振信号,其两个低频输入端与除N电路的两个正交输出端相连接;
除N电路的输入端连接发射前端的本振信号或低频信号;
N为整数。
优选地,低频信号是片外输入的低频信号或片上晶体振荡电路产生的低频信号。
优选地,上述校正电路还包括:开关和偏置电流源,其中
开关的一端与发射前端的基带输入晶体管的源极相连接;
偏置电流源连接在开关的另一端与地之间。
因为采用模拟基带检测的技术方案,所以克服了相关技术中发射前端载波泄漏的校正电路采用射频检测器,导致校正电路的功耗和芯片面积较大的问题,进而达到了校正电路的功耗和芯片面积较小的效果。
附图说明
此处所说明的附图用来提供对本实用新型的进一步理解,构成本申请的一部分,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:
图1示出了相关技术中载波泄漏校正方法的电路图;
图2示出了根据本实用新型一个实施例的载波泄漏校正电路的示意图;
图3示出了根据本实用新型的一个优选实施例的校正电路示意图;
图4示出了根据本实用新型一个实施例的直流失调直流补偿模块的示意图;
图5示出了根据本实用新型的一个实施例的偏移本振产生电路的示意图;
图6示出了根据本实用新型一个优选实施例的载波泄漏校正电路局部电路示意图;
图7示出了根据本实用新型一个实施例的I路校准时|dPCL1|max与y的关系图;
图8示出了根据本实用新型一个较佳实施例的用于零中频或低中频结构的发射前端的电路示意图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本实用新型。
图2示出了根据本实用新型一个实施例的载波泄漏校正电路的示意图,包括:
下变频模块10,用于将载波泄漏信号变换为模拟基带信号;
模数转换器20,连接至下变频模块10,用于将模拟基带信号转换为数字信号;
直流补偿模块30,连接至模数转换器20,用于根据上述数字信号,对发射前端的模拟基带处理电路进行补偿。
上述实施例利用下变频模块10将载波泄漏信号变换为模拟基带信号,利用模数转换器20将模拟基带信号转换为数字信号,并根据数字信号,利用直流补偿模块30对发射前端的模拟基带处理电路进行补偿,通过将载波泄漏由射频信号变换为模拟基带信号,并根据该模拟基带信号对发射前端的模拟基带处理电路进行补偿,使得校正电路的功耗和芯片面积较小,克服了现有技术中发射前端载波泄漏的校正电路采用射频检测器,而导致校正电路的功耗和芯片面积较大的问题。
图3示出了根据本实用新型的一个优选实施例的校正电路示意图,如图3所示,下变频模块包括下变频器DMixer(Down-Mixer)和基带检测模块,其中基带检测模块输入端与下变频器的输出端相连接。
本实施例中的下变频模块利用下变频器将载波泄漏由射频信号变换为模拟基带信号,并利用基带检测模块检测转换得到的模拟基带信号。本实施例采用模拟基带检测替代相关技术中的射频检测,在保证检测性能的同时,节省了功耗和芯片面积。
优选地,直流补偿模块包括:控制支路,用于根据数字信号确定控制字;第一直流补偿支路DCOC(DC offset Correction),用于根据控制字对载波信号进行补偿,以减小载波泄漏信号。
本实施例中直流补偿模块的控制支路,根据模数转换得到的数字信号确定控制字输入到第一直流补偿支路,第一直流补偿支路根据该控制字完成对载波信号的补偿,以达到最小化载波泄漏信号的目的。
图4示出了根据本实用新型一个实施例的直流失调直流补偿模块(DCOC)的示意图。该电路通过改变并联在输入晶体管M1或M2两端的N位可调组合晶体管的大小,在VO+和VO-之间产生一定的直流电压差,从而抵消差分电路的直流失调。
优选地,基带检测模块包括基带信号强度检测器SSI BB。
本实施例利用基带信号强度检测器实现对载波泄漏模拟基带信号的检测,基带信号强度检测器的功耗和面积显著小于射频检测器,节省了载波泄漏校正电路的功耗和芯片面积。
优选地,基带检测模块还包括低通滤波器LPF(Low-Pass Filter)和可变增益放大器VGA(Variable Gain Amplifier),其中低通滤波器的输出端与可变增益放大器的输出端相连接;可变增益放大器的输出端与基带信号强度检测器的输入端相连接。
本实施例中利用低通滤波器对下变频器输出的模拟基带信号进行低通滤波,并利用可变增益放大器调节滤波后信号的大小,再将经滤波及调节后的信号输入至基带信号强度检测器完成检测。这样,滤除了待检测模拟基带信号中不必要的高频成分,减少了高频干扰对检测结果产生的影响,同时将去除干扰后的有效信号进行调节,使其与基带信号强度检测器的检测范围相适应。
优选地,基带信号强度检测器是功率检测器或幅值检测器。
本实施例中基带信号强度检测器是功率检测器,其输出电压的大小对应于被检测模拟基带信号的功率大小;或是幅值检测器,其输出电压的大小对应于被检测模拟基带信号的幅值大小。模拟基带信号的功率和幅值是表征其强度的重要参量,故检测其功率或幅值,则得到被检测模拟基带信号的强度。
优选地,载波泄漏校正电路还包括:偏移本振产生电路LO_OFG,其输出端与下变频器的输入端相连接。
本实施例利用偏移本振产生电路生成偏移本振信号,并提供给下变频器,以实现射频信号下变频到模拟基带信号的转换。
优选地,载波泄漏校正电路还包括:射频开关RFSW(RadioFrequency Switch),其连接在发射前端的上变频器输出端与下变频器的输入端之间。
本实施例利用射频开关控制下变频模块的通断,当射频开关闭合时,射频信号输入至下变频模块的下变频器、低通滤波器、可变增益放大器和基带信号强度检测器,校正过程开始;当射频开关断开时,射频信号被阻断,不会输入至下变频模块的下变频器、低通滤波器、可变增益放大器和基带信号强度检测器,校正过程结束。
优选地,下变频器的输入端与发射前端的射频放大器的输出端相连接;射频放大器的输入端与发射前端的上变频器的输出端相连接。在本实施例中,通过对由发射前端的射频放大器输出的射频信号进行下变频并检测后,对载波信号进行补偿。
优选地,载波泄漏校正电路还包括射频开关,其中射频开关连接在发射前端的射频放大器的输出端与下变频器的输入端之间。
本实施例利用射频开关控制下变频模块的通断,当射频开关闭合时,由射频放大器输出的射频信号输入至下变频模块的下变频器、低通滤波器、可变增益放大器和基带信号强度检测器,校正过程开始;当射频开关断开时,射频信号被阻断,不会输入至下变频模块的下变频器、低通滤波器、可变增益放大器和基带信号强度检测器,校正过程结束。
优选地,第一直流补偿支路输出端与发射前端的模拟基带处理电路的输入端相连接,在模拟基带处理电路的输入端对载波信号进行补偿。
优选地,第一直流补偿支路的输出端与发射前端的模拟基带处理电路的输出端相连接,在模拟基带处理电路的输出端对载波信号进行补偿。
优选地,直流补偿模块还包括:置于上变频器中的第二直流补偿支路,其输入端与控制支路的输出端相连接,对由上变频器造成的载波信号进行补偿,较适合本实施例。
优选地,偏移本振产生电路包括:混频器,其射频输入端连接发射前端的本振信号,其低频输入端连接低频信号。
优选地,低频信号是片外输入的低频信号或片上晶体振荡电路产生的低频信号。
优选地,偏移本振产生电路包括:混频器和除N电路,其中混频器的射频输入端连接发射前端的本振信号,其低频输入端与除N电路的输出端相连接;除N电路的输入端连接发射前端的本振信号或低频信号;N为整数。图5示出了根据本实用新型的一个实施例的偏移本振产生电路(LO_OFG)的示意图。包含两个正交混频器(IMixer、QMixer)和一个除N电路。其连接关系为:除N电路的输入端连接到发射前端的本振信号LO,该除N电路的两个正交输出端分别连接到两个正交混频器的低频输入端,正交混频器的两个正交射频输入端连接到发射前端的两个正交本振信号LOI和LOQ。可见,偏移本振产生电路的输出信号与载波泄漏信号的频率差为LO/N。
优选地,低频信号是片外输入的低频信号或片上晶体振荡电路产生的低频信号。
优选地,偏移本振产生电路包括:一对正交混频器和除N电路,其中正交混频器的两个正交射频输入端分别连接发射前端的两个正交本振信号,其两个低频输入端与除N电路的两个正交输出端相连接;除N电路的输入端连接发射前端的本振信号或低频信号;N为整数。
优选地,低频信号是片外输入的低频信号或片上晶体振荡电路产生的低频信号。
图6示出了根据本实用新型一个优选实施例的载波泄漏校正电路局部示意图,如图6所示,载波泄漏校正电路还包括:开关和偏 置电流源,其中开关的一端与发射前端的基带输入晶体管的源极相连接;偏置电流源连接在开关的另一端与地之间。
在本实施例中,当开关断开时,对同相电路进行校正,当开关闭合时,对正交电路进行校正,通过将同相和正交支路分开校正,降低了模数转换器ADC的分辨率要求,进一步减小了校正电路的芯片面积和功耗,克服了现有技术中在校正I(In-Phase,同相)支路的载波泄漏时,没有切断Q(Quadrature,正交)支路的影响,因此需要高分辨率的ADC,增大了功耗和芯片面积的问题。
在上述实施例中,将同相和正交支路分开校正,即校正同相支路I时,切断正交支路Q的影响。
当不切断Q支路时,载波泄漏CL来源于I和Q两部分,可以表示为:
其中,ACL,I和ACL,Q分别表示I支路和Q支路引起的载波泄漏信号幅度,ωLO表示本振(Local Oscillator,简称LO)信号的频率。载波泄漏的功率(PCLI)可以表示为:
如果I路的载波泄漏幅度减小了dACL,I=x·ACL,I,并且将ACL,I表示为y·ACL,Q,那么载波泄漏的功率变化量为:
当x=1时,功率变化量达到最大值:
|dPCL1(y)|max=10log(1+y2) (4)
可见,载波泄漏的功率变化量依赖于I/Q两路的载波泄漏信号幅度ACL,I和ACL,Q之间的大小关系。为了保证功率检测的顺利进行,载波泄漏的功率变化量应该大于功率检测电路可检测的精度。假设功率检测电路可检测的精度为1.5dB,即要求dPCL1(x,y)大于1.5,则必然有:
|dPCL1(y)|max=10log(1+y2)>1.5 (5)
图7示出了根据本实用新型一个实施例的同相校正示意图,如图7所示,计算可以得出y>0.64(-3.8dB)。这就意味着I路的载波泄漏最多只能被抑制到比Q路的载波泄漏低3.8dB。如果Q路的载波泄漏是-30dBm,那么I路只能被抑制到-33.8dBm。如果I路的载波泄漏本来就比Q路低3.8dB以上,I路的校正就无法正确进行。
在Q路的载波泄漏是-30dBm的情况下,要把I路载波泄漏抑制到-50dBm以下,则y应该小于0.1,因此
|dPCL1(y)|max<0.04dB (6)
所以,功率检测电路的精度也要小于0.04dB。对于50dB输入范围的功率检测器,要求ADC的精度达到10bit。如果功率检测的范围增大,ADC的精度要求还会进一步提高。
当切断Q支路,仅校正I支路,那么校正的结果就跟I/Q两路载波泄漏的大小关系无关。因此,只要载波泄漏的功率变化量绝对 值大于功率检测精度,校正过程就能正常进行。对于90dB输入检测范围的RSSI(Received Signal Strength Indicator,接收信号强度指示)来说,6bit精度的ADC能够提供1.4dB的功率检测精度。只要载波泄漏的功率在检测范围内,而且功率的变化量大于1.4dB,这个变化就能被检测出来。因此I路的载波泄漏能够被抑制的较低。然而在Q路不切断的时候,1.4dB的检测精度只能把I路的载波泄漏抑制到比Q路的载波泄漏低约4dB。除非Q路的载波泄漏本身很小,否则I路的载波泄漏的校正就起不到多大效果。
图8示出了根据本实用新型一个较佳实施例的用于零中频或低中频结构的发射前端的电路示意图。
根据本实用新型一个实施例的用于发射前端的载波泄漏校正方法,包括以下步骤:
S102,对载波泄漏信号进行下变频变换,得到载波泄漏的模拟基带信号;
S104,由基带信号强度检测器检测载波泄漏的模拟基带信号,并对检测后的信号进行模数转换,得到载波泄漏的数字信号;
S106,直流补偿模块根据载波泄漏的数字信号,对发射前端的模拟基带处理电路进行直流失调补偿。
本实施例通过将载波泄漏由射频信号变换为模拟基带信号,并根据该模拟基带信号对发射前端的模拟基带处理电路进行补偿,使得校正电路的功耗和芯片面积较小,克服了现有技术中发射前端载波泄漏的校正电路采用射频检测器,而导致校正电路的功耗和芯片面积较大的问题。
优选地,对发射前端的模拟基带处理电路进行直流失调补偿具体包括:关闭所述发射前端的正交支路,采用二分法查找算法找到最优的直流失调补偿信号对所述发射前端的同相支路进行补偿;开启所述正交支路,采用二分法查找算法找到最优的直流失调补偿信号对所述正交支路进行补偿。
本实施例采用二分法查找比较的算法,较计算求解的算法简单,且不受温度、工艺、环境等因素的影响,稳定性好。采用二分法查找的算法,校正时间较短,使得可以在上电或者发射数据间隔进行校正。
优选地,对所述同相支路/正交支路进行补偿具体包括:采用二分法查找算法找到最优的直流失调补偿信号对所述发射前端的模拟基带处理电路进行补偿;采用二分法查找算法找到最优的直流失调补偿信号对所述发射前端的上变频混频器进行补偿。
从以上的描述中,可以看出,本实用新型上述的实施例实现了如下技术效果:
1、校正电路完全集成在发射前端芯片中,不需要数字基带芯片或片外电路协助,接口简单,兼容性好;
2、通过将载波泄漏信号下变频到模拟基带,经基带信号检测器检测,由模数转换器数字化检测后的信号,并输送给控制支路调谐直流失调直流补偿模块以达到校正载波泄漏的目的。
3、由于所有电路均集成在前端芯片里,不需要数字基带芯片或片外电路的协助。校正过程只关心信号检测的单调性,对下变频混频器的线性度和噪声要求不高。因此下变频混频器的面积和功耗可以得到优化。在保证检测范围的情况下,基带检测器的功耗和面 积也显著小于射频检测器。因此,模拟基带检测的方法在保证检测性能的同时,节省了功耗和芯片面积。
4、采用二分法查找比较的算法,校正时间短,鲁棒性好。
5、校正过程当中射频放大器处于关闭状态,避免了对外界产生干扰。
显然,本领域的技术人员应该明白,上述的本实用新型的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本实用新型不限制于任何特定的硬件和软件结合。
以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
Claims (17)
1.一种载波泄漏校正电路,其特征在于,包括:
下变频模块,用于将载波泄漏信号变换为模拟基带信号;
模数转换器,连接至所述下变频模块,用于将所述模拟基带信号转换为数字信号;
直流补偿模块,连接至所述模数转换器,用于根据所述数字信号,对所述发射前端的模拟基带处理电路进行补偿。
2.根据权利要求1所述的载波泄漏校正电路,其特征在于,所述下变频模块包括下变频器和基带检测模块,其中
所述基带检测模块输入端与所述下变频器的输出端相连接。
3.根据权利要求1所述的载波泄漏校正电路,其特征在于,所述直流补偿模块包括:
控制支路,用于根据所述数字信号确定控制字;
第一直流补偿支路,用于根据所述控制字对所述载波信号进行补偿,以减小载波泄漏信号。
4.根据权利要求2所述的载波泄漏校正电路,其特征在于,所述基带检测模块包括基带信号强度检测器。
5.根据权利要求4所述的载波泄漏校正电路,其特征在于,所述基带检测模块还包括低通滤波器和可变增益放大器,其中
所述低通滤波器的输出端与所述可变增益放大器的输出端相连接;
所述可变增益放大器的输出端与所述基带信号强度检测器的输入段相连接。
6.根据权利要求4所述的载波泄漏校正电路,其特征在于,所述基带信号强度检测器是功率检测器或幅值检测器。
7.根据权利要求2所述的载波泄漏校正电路,其特征在于,还包括:
偏移本振产生电路,其输出端与所述下变频器的输入端相连接。
8.根据权利要求2所述的载波泄漏校正电路,其特征在于,还包括:
射频开关,其连接在所述发射前端的上变频器输出端与所述下变频器的输入端之间。
9.根据权利要求2所述的载波泄漏校正电路,其特征在于,
所述下变频器的输入端与所述发射前端的射频放大器的输出端相连接;
所述射频放大器的输入端与所述发射前端的上变频器的输出端相连接。
10.根据权利要求2所述的载波泄漏校正电路,其特征在于,还包括射频开关,其中
所述射频开关连接在所述发射前端的射频放大器的输出端与所述下变频器的输入端之间。
11.根据权利要求3所述的载波泄漏校正电路,其特征在于,所述第一直流补偿支路输出端与所述发射前端的模拟基带处理电路的输入端相连接。
12.根据权利要求3所述的载波泄漏校正电路,其特征在于,所述第一直流补偿支路的输入端与所述发射前端的模拟基带处理电路的输出端相连接。
13.根据权利要求12所述的载波泄漏校正电路,其特征在于,所述直流补偿模块还包括:
置于所述上变频器中的第二直流补偿支路,其输入端与所述控制支路的输出端相连接。
14.根据权利要求7所述的载波泄漏校正电路,其特征在于,所述偏移本振产生电路包括:
混频器,其射频输入端连接所述发射前端的本振信号,其低频输入端连接低频信号。
15.根据权利要求7所述的载波泄漏校正电路,其特征在于,所述偏移本振产生电路包括:混频器和除N电路,其中
所述混频器的射频输入端连接所述发射前端的本振信号,其低频输入端与所述除N电路的输出端相连接;
所述除N电路的输入端连接所述发射前端的本振信号或低频信号;
所述N为整数。
16.根据权利要求7所述的载波泄漏校正电路,其特征在于,所述偏移本振产生电路包括:一对正交混频器和除N电路,其中
所述正交混频器的两个正交射频输入端分别连接所述发射前端的两个正交本振信号,其两个低频输入端与所述除N电路的两个正交输出端相连接;
所述除N电路的输入端连接所述发射前端的本振信号或低频信号;
所述N为整数。
17.根据权利要求1-16中任一项所述的载波泄漏校正电路,其特征在于,还包括:开关和偏置电流源,其中
所述开关的一端与所述发射前端的基带输入晶体管的源极相连接;
所述偏置电流源连接在所述开关的另一端与地之间。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201072904U CN201717850U (zh) | 2009-04-28 | 2009-04-28 | 载波泄漏校正电路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201072904U CN201717850U (zh) | 2009-04-28 | 2009-04-28 | 载波泄漏校正电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201717850U true CN201717850U (zh) | 2011-01-19 |
Family
ID=43463858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009201072904U Expired - Fee Related CN201717850U (zh) | 2009-04-28 | 2009-04-28 | 载波泄漏校正电路 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201717850U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105139049A (zh) * | 2015-08-25 | 2015-12-09 | 华东师范大学 | 工作于860~960MHz的CMOS全集成UHF RFID读写器射频接收前端电路 |
CN107547145A (zh) * | 2016-06-27 | 2018-01-05 | 中兴通讯股份有限公司 | 一种本振泄漏信号的检测方法及装置 |
CN110542887A (zh) * | 2019-08-23 | 2019-12-06 | 中国科学院电子学研究所 | 一种雷达系统线性调频信号载波抑制方法 |
-
2009
- 2009-04-28 CN CN2009201072904U patent/CN201717850U/zh not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105139049A (zh) * | 2015-08-25 | 2015-12-09 | 华东师范大学 | 工作于860~960MHz的CMOS全集成UHF RFID读写器射频接收前端电路 |
CN105139049B (zh) * | 2015-08-25 | 2018-02-27 | 华东师范大学 | 工作于860~960MHz的CMOS全集成UHF RFID读写器射频接收前端电路 |
CN107547145A (zh) * | 2016-06-27 | 2018-01-05 | 中兴通讯股份有限公司 | 一种本振泄漏信号的检测方法及装置 |
CN107547145B (zh) * | 2016-06-27 | 2021-10-12 | 中兴通讯股份有限公司 | 一种本振泄漏信号的检测方法及装置 |
CN110542887A (zh) * | 2019-08-23 | 2019-12-06 | 中国科学院电子学研究所 | 一种雷达系统线性调频信号载波抑制方法 |
CN110542887B (zh) * | 2019-08-23 | 2021-03-09 | 中国科学院电子学研究所 | 一种雷达系统线性调频信号载波抑制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101552754B (zh) | 用于射频收发机的载波泄漏校正系统 | |
US8280327B2 (en) | Receiver capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof | |
CN101540640B (zh) | 用于发射前端的载波泄漏校正电路和方法 | |
CN103916345A (zh) | 一种无线局域网芯片发射机本振泄漏校正的方法和装置 | |
JP3721144B2 (ja) | 周波数変換器、直交復調器及び直交変調器 | |
CN101364968A (zh) | 使用卡笛尔环的无线电发射机 | |
WO2003063336A3 (en) | System and method for i-q mismatch compensation in a low if or zero if receiver | |
US11057069B2 (en) | Radio frequency (RF) front end of low power consumption and fully automatic adjustable broadband receiver | |
WO2006118317A1 (en) | Polar modulation transmitter circuit and communications device | |
CN201409128Y (zh) | 用于零中频或低中频结构的射频收发机校正装置 | |
CN110708084A (zh) | 一种基于包络检测的发端的iq校正电路及方法 | |
CN203775241U (zh) | 应用于射频收发机中发射机的正交失配校正电路 | |
CN201717850U (zh) | 载波泄漏校正电路 | |
CN100576830C (zh) | 补偿直流偏移、增益偏移与相位偏移的方法及校正系统 | |
CN103731391A (zh) | 射频收发机中发射机的正交失配校正方法及校正电路 | |
US11171636B2 (en) | Methods and apparatus for phase imbalance correction | |
CN109150231A (zh) | 一种本振泄漏校正装置和方法 | |
CN101409701A (zh) | 本振缓冲器及相位失配校正方法 | |
JP5263081B2 (ja) | 送信回路 | |
US9264079B2 (en) | Apparatus and method for DC offset calibration in signal transmission device | |
US20060068725A1 (en) | Feedback control loop for amplitude modulation in a polar transmitter with a translational loop | |
US20070002968A1 (en) | Independent LO IQ tuning for improved image rejection | |
CN101304256B (zh) | 一种消除直流偏置的方法 | |
CN113079117B (zh) | 一种接收链路iq失配估计的方法及装置 | |
CN201303346Y (zh) | 本振缓冲器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110119 Termination date: 20150428 |
|
EXPY | Termination of patent right or utility model |