CN201582822U - Concentric type axial rotational flow burner adopting high-temperature air combustion technology for industrial furnace - Google Patents
Concentric type axial rotational flow burner adopting high-temperature air combustion technology for industrial furnace Download PDFInfo
- Publication number
- CN201582822U CN201582822U CN2009200733280U CN200920073328U CN201582822U CN 201582822 U CN201582822 U CN 201582822U CN 2009200733280 U CN2009200733280 U CN 2009200733280U CN 200920073328 U CN200920073328 U CN 200920073328U CN 201582822 U CN201582822 U CN 201582822U
- Authority
- CN
- China
- Prior art keywords
- temperature air
- industrial furnace
- central circular
- layer sleeve
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005516 engineering process Methods 0.000 title claims abstract description 12
- 238000002485 combustion reaction Methods 0.000 title abstract description 29
- 230000004323 axial length Effects 0.000 claims description 2
- 230000008676 import Effects 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 abstract description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 14
- 239000001301 oxygen Substances 0.000 abstract description 14
- 239000000446 fuel Substances 0.000 abstract description 11
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 11
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 238000004134 energy conservation Methods 0.000 abstract 1
- 239000003570 air Substances 0.000 description 38
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009865 steel metallurgy Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
Abstract
Description
技术领域technical field
本实用新型属燃烧器喷嘴领域,特别是涉及一种工业炉高温空气燃烧技术的同心式轴向旋流燃烧器。The utility model belongs to the field of burner nozzles, in particular to a concentric axial swirl burner for industrial furnace high-temperature air combustion technology.
背景技术Background technique
工业炉在钢铁、冶金、机械、陶瓷、玻璃等行业应用十分广泛,是进行热加工的关键设备。在热处理和各类热加工过程的工业炉中,越来越多地采用燃气燃烧的方式作为加热的技术途径。高温空气燃烧(High temperature air combustion,HTAC)是一种采用高预热空气在超低氧浓度条件下的先进燃烧技术,以天然气或煤气为燃料,以射流的方式送入工业炉内进行燃烧,并且通过采用高效的蓄热陶瓷材料极限回收燃烧后的烟气中的余热,并用来加热进入炉膛内的空气,从而大幅度地节约了能量。同时,由于它是在超低氧浓度下的高强度燃烧,因此在燃烧过程生成的热力型氮氧化物(NOX)浓度可以很低,具有很低的NOX排放特性,因而其环保优势十分显著。此外,在超低氧条件下,使得金属元件的被氧化程度降低,从而在一定程度上提高了金属的热加工品质。高温空气燃烧技术在过去20年里得到了迅速发展,在钢铁冶金、玻璃、陶瓷、水泥等行业的工业炉中具有广阔的应用前景。Industrial furnaces are widely used in steel, metallurgy, machinery, ceramics, glass and other industries, and are key equipment for thermal processing. In industrial furnaces for heat treatment and various thermal processing processes, more and more gas combustion is used as a technical way of heating. High temperature air combustion (High temperature air combustion, HTAC) is an advanced combustion technology that uses high preheated air under ultra-low oxygen concentration conditions. It uses natural gas or coal gas as fuel and sends it into an industrial furnace for combustion in the form of a jet. And by using high-efficiency heat storage ceramic materials to limit the recovery of waste heat in the flue gas after combustion, and use it to heat the air entering the furnace, thus greatly saving energy. At the same time, because it is a high-intensity combustion under ultra-low oxygen concentration, the concentration of thermal nitrogen oxides (NO x ) generated during the combustion process can be very low, and it has very low NO x emission characteristics, so its environmental protection advantages are very significantly. In addition, under ultra-low oxygen conditions, the degree of oxidation of metal components is reduced, thereby improving the thermal processing quality of metals to a certain extent. High-temperature air combustion technology has developed rapidly in the past 20 years, and has broad application prospects in industrial furnaces in iron and steel metallurgy, glass, ceramics, cement and other industries.
从有关的实验来看,由于改变气体燃料和预热空气的喷入条件,可以有效改变它们在炉内的混合过程,对超低氧条件下的稳定燃烧、温度分布的均匀性以及NOX的局部生成量影响很大。According to relevant experiments, due to changing the injection conditions of gaseous fuel and preheated air, their mixing process in the furnace can be effectively changed, and the stability of combustion under ultra-low oxygen conditions, the uniformity of temperature distribution and the reduction of NO X The amount of local generation has a big impact.
目前,工程中应用的高温空气燃烧工业炉的燃烧器结构通常都是高温预热空气和气体燃料以直射流的方式高速喷入炉膛,这几股射流在炉膛的有限空间内的湍流运动引起烟气回流和燃料、空气与烟气之间的混合,来保证炉内的温度分布、局部氧浓度分布等特性,从而维持在低氧条件下的稳定燃烧和局部热力型NOX的生成。多股直射流的相互干扰引起的炉内的回流范围和程度比较有限。如果能使高温预热空气和燃料在炉内能更充分地混合,则将使炉内的局部氧浓度和温度分布更加合理,从而使燃烧能够在更低的进口氧浓度下实现燃烧和降低局部NOX的生成量。At present, the burner structure of high-temperature air-fired industrial furnaces used in engineering is usually high-temperature preheated air and gas fuel injected into the furnace at high speed in the form of direct jets. The turbulent movement of these jets in the limited space of the furnace causes smoke Gas recirculation and mixing between fuel, air and flue gas to ensure the temperature distribution in the furnace, local oxygen concentration distribution and other characteristics, so as to maintain stable combustion and local thermal NO X generation under low oxygen conditions. The range and degree of reflow in the furnace caused by the mutual interference of multiple straight jets are relatively limited. If the high-temperature preheated air and fuel can be mixed more fully in the furnace, the local oxygen concentration and temperature distribution in the furnace will be more reasonable, so that the combustion can be achieved at a lower inlet oxygen concentration and reduce the local The amount of NO X produced.
旋流能够起到更好地混合作用。在本发明设计的燃烧器喷嘴结构中,外层为几股旋流高温预热空气射流,中心为燃气直射流,它们在进入炉膛后,多股旋流射流包围一股直流射流,在炉膛的有限空间内能够实现比直射流更充分的混合,从而实现在更低氧浓度下的稳定燃烧和更低的NOX排放。Swirls provide better mixing. In the burner nozzle structure designed by the present invention, the outer layer is several swirling high-temperature preheating air jets, and the center is a direct jet of gas. After they enter the furnace, a plurality of swirling jets surround a straight jet. In a confined space, more thorough mixing can be achieved than straight jet flow, so that stable combustion and lower NO X emissions can be achieved at lower oxygen concentrations.
发明内容Contents of the invention
本实用新型所要解决的技术问题是提供一种工业炉高温空气燃烧技术的同心式轴向旋流燃烧器,以解决现有技术中直射流难以使炉内气体间的更充分混合和使温度分布更均匀、NOX生成量更低的难题。The technical problem to be solved by the utility model is to provide a concentric axial swirl burner for industrial furnace high-temperature air combustion technology, so as to solve the problem that the direct jet flow in the prior art is difficult to make the gas in the furnace more fully mixed and the temperature distribution More uniform, lower NO X generation problem.
本实用新型解决其技术问题所采用的技术方案是:提供一种工业炉高温空气燃烧技术的同心式轴向旋流燃烧器,由中心圆形直通管,外层套管,旋转通道,螺旋肋片组成,所述的中心圆形直通管位于外层套管内部同轴位置。The technical scheme adopted by the utility model to solve the technical problems is: to provide a concentric axial swirl burner of industrial furnace high-temperature air combustion technology, which consists of a central circular straight pipe, an outer casing, a rotating channel, and a spiral rib. Composed of sheets, the central circular straight-through pipe is located coaxially inside the outer casing.
所述的旋转通道的高温空气进口和出口的旋转角度为90度到360度变化。The rotation angle of the high-temperature air inlet and outlet of the rotating channel varies from 90 degrees to 360 degrees.
所述的旋转通道由2-4条螺旋肋片沿轴向按90度到360度螺旋角度和1~3无因次螺旋伸展长度R(R=l/h,l为螺旋肋片的轴向长度,h为螺旋肋片高度)旋转布置于中心圆形直通管与外层套管之间。The said rotating channel consists of 2-4 spiral fins along the axial direction according to the spiral angle of 90° to 360° and 1 to 3 dimensionless spiral extension lengths R (R=l/h, l is the axial direction of the spiral fins. Length, h is the height of the spiral fin) is rotated and arranged between the central circular straight-through pipe and the outer casing.
有益效果Beneficial effect
本实用新型可强化气体燃料和高温空气在工业炉炉膛内的充分混合,从而保证了在更低的进口空气氧浓度下实现稳定的燃烧,室炉膛内的温度分布更加均匀,减少局部高温,同时极大地降低了氮氧化物(NOX)的排放,实现节能和环保的目标。The utility model can strengthen the sufficient mixing of gaseous fuel and high-temperature air in the hearth of the industrial furnace, thereby ensuring stable combustion at a lower inlet air oxygen concentration, making the temperature distribution in the chamber more uniform, reducing local high temperature, and at the same time The emission of nitrogen oxides (NO x ) is greatly reduced, and the goals of energy saving and environmental protection are achieved.
附图说明Description of drawings
图1为同心式轴向旋流燃烧器主视图;Figure 1 is a front view of a concentric axial swirl burner;
图2为同心式轴向旋流燃烧器进气示意图;Figure 2 is a schematic diagram of the air intake of a concentric axial swirl burner;
图3为轴向螺旋肋片结构示意图。Fig. 3 is a schematic diagram of the structure of the axial spiral fins.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本实用新型。应理解,这些实施例仅用于说明本实用新型而不用于限制本实用新型的范围。此外应理解,在阅读了本实用新型讲授的内容之后,本领域技术人员可以对本实用新型作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。Below in conjunction with specific embodiment, further set forth the utility model. It should be understood that these embodiments are only used to illustrate the present utility model and are not intended to limit the scope of the present utility model. In addition, it should be understood that after reading the content taught by the utility model, those skilled in the art can make various changes or modifications to the utility model, and these equivalent forms also fall within the scope defined by the appended claims of the application.
实施例1Example 1
一种工业炉高温空气燃烧技术的同心式轴向旋流燃烧器,由中心圆形直通管1,外层套管2,旋转通道3,螺旋肋片4组成,中心圆形直通管1位于外层套管2内部同轴位置。旋转通道3的高温空气进口和出口的旋转角度为90度到360度变化。旋转通道3由2-4条螺旋肋片4沿轴向按90度到360度螺旋角度和1~3无因次螺旋伸展长度R(R=l/h,l为螺旋肋片的轴向长度,h为螺旋肋片高度)旋转布置于中心圆形直通管1与外层套管2之间。A concentric axial swirl burner with high temperature air combustion technology for industrial furnaces. It consists of a central circular straight-through
空气旋转通道旋流角度为0°(直射流)时,进口参数分别为:燃料为城市天然气,中心圆管射流速度29.5m/s;空气旋转通道射流速度35.6m/s。预热空气1273K,过量空气系数1.2,空气中氧浓度8%,炉膛底部散热为恒定热流密度,大小为28580W/m2。When the swirl angle of the air swirling channel is 0° (straight jet flow), the inlet parameters are: the fuel is city natural gas, the jet velocity of the central circular tube is 29.5m/s; the jet velocity of the air swirling channel is 35.6m/s. The preheated air is 1273K, the excess air coefficient is 1.2, the oxygen concentration in the air is 8%, and the heat dissipation at the bottom of the furnace is a constant heat flux density of 28580W/m 2 .
工业炉高温空气燃烧后,燃烧室平均温度为:1556K,最终NOX排放浓度为38.2ppm,燃烧室内平均CO、O2浓度分别为:80.6ppm和1.98%。After the high-temperature air combustion of the industrial furnace, the average temperature of the combustion chamber is: 1556K, the final NO X emission concentration is 38.2ppm, and the average CO and O 2 concentrations in the combustion chamber are: 80.6ppm and 1.98%, respectively.
实施例2Example 2
空气旋转通道旋流角度为180°时,进口参数分别为:燃料为城市天然气,中心圆管射流速度29.5m/s;空气旋转通道射流速度35.6m/s。预热空气1273K,过量空气系数1.2,空气中氧浓度8%,炉膛底部散热为恒定热流密度,大小为28580W/m2。When the swirl angle of the air swirling channel is 180°, the inlet parameters are: the fuel is city natural gas, the jet velocity of the central circular tube is 29.5m/s; the jet velocity of the air swirling channel is 35.6m/s. The preheated air is 1273K, the excess air coefficient is 1.2, the oxygen concentration in the air is 8%, and the heat dissipation at the bottom of the furnace is a constant heat flux density of 28580W/m 2 .
工业炉高温空气燃烧后,燃烧室平均温度为:1577K,最终NOX排放浓度为34.3ppm,燃烧室内平均CO、O2浓度分别为:30.4ppm和1.31%。After the high-temperature air of the industrial furnace is burned, the average temperature of the combustion chamber is 1577K, the final NO X emission concentration is 34.3ppm, and the average CO and O 2 concentrations in the combustion chamber are 30.4ppm and 1.31%, respectively.
实施例3Example 3
空气旋转通道旋流角度为210°时,进口参数分别为:燃料为城市天然气,中心圆管射流速度29.5m/s;空气旋转通道射流速度35.6m/s。预热空气1273K,过量空气系数1.2,空气中氧浓度8%,炉膛底部散热为恒定热流密度,大小为28580W/m2。When the swirl angle of the air swirling channel is 210°, the inlet parameters are: the fuel is city natural gas, the jet velocity of the central circular tube is 29.5m/s; the jet velocity of the air swirling channel is 35.6m/s. The preheated air is 1273K, the excess air coefficient is 1.2, the oxygen concentration in the air is 8%, and the heat dissipation at the bottom of the furnace is a constant heat flux density of 28580W/m 2 .
工业炉高温空气燃烧后,燃烧室平均温度为:1584K,最终NOX排放浓度为34.1ppm,燃烧室内平均CO、O2浓度分别为:28.6ppm和1.29%。After the high-temperature air of the industrial furnace is burned, the average temperature of the combustion chamber is 1584K, the final NO X emission concentration is 34.1ppm, and the average CO and O 2 concentrations in the combustion chamber are 28.6ppm and 1.29%, respectively.
对比实施例1和2、3可知,当采用旋流式燃烧器时,在相同的条件下,燃烧室内的平均温度增大,NOX最终的排放量减少,而燃料的燃烬程度(以CO的浓度表征)提高,结果表明,旋流式燃烧器能使采用高温空气燃烧技术工业炉的性能得到显著改善。Comparing Examples 1 and 2, 3 as can be known, when adopting the swirl type burner, under the same condition, the average temperature in the combustion chamber increases, the final emission of NOx reduces, and the degree of burnout of the fuel (in terms of CO Concentration characterization) increased, and the results show that the swirl burner can significantly improve the performance of industrial furnaces using high-temperature air combustion technology.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009200733280U CN201582822U (en) | 2009-06-03 | 2009-06-03 | Concentric type axial rotational flow burner adopting high-temperature air combustion technology for industrial furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009200733280U CN201582822U (en) | 2009-06-03 | 2009-06-03 | Concentric type axial rotational flow burner adopting high-temperature air combustion technology for industrial furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201582822U true CN201582822U (en) | 2010-09-15 |
Family
ID=42724823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009200733280U Expired - Fee Related CN201582822U (en) | 2009-06-03 | 2009-06-03 | Concentric type axial rotational flow burner adopting high-temperature air combustion technology for industrial furnace |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201582822U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852434A (en) * | 2010-06-23 | 2010-10-06 | 东华大学 | Swirl burners for high temperature air fired industrial furnaces |
CN102537958A (en) * | 2012-02-20 | 2012-07-04 | 北京交通大学 | Cone rotor type gas burner |
CN104235849A (en) * | 2014-10-09 | 2014-12-24 | 中冶南方(武汉)威仕工业炉有限公司 | Staged oxygen-enriched flameless combustion gas burner and control method thereof |
CN104266190A (en) * | 2014-10-09 | 2015-01-07 | 中冶南方(武汉)威仕工业炉有限公司 | Oxygen-enriched flameless gas burner and control method thereof |
CN105021075A (en) * | 2015-05-26 | 2015-11-04 | 北京恩吉节能科技有限公司 | Dual-preheating rotation type heat-storage heat exchanger and combustion system |
CN111911923A (en) * | 2020-09-11 | 2020-11-10 | 黄湛明 | Central burner for low NOx production of grate-rotary kiln pellets |
-
2009
- 2009-06-03 CN CN2009200733280U patent/CN201582822U/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852434A (en) * | 2010-06-23 | 2010-10-06 | 东华大学 | Swirl burners for high temperature air fired industrial furnaces |
CN102537958A (en) * | 2012-02-20 | 2012-07-04 | 北京交通大学 | Cone rotor type gas burner |
CN102537958B (en) * | 2012-02-20 | 2014-08-13 | 北京交通大学 | Cone rotor type gas burner |
CN104235849A (en) * | 2014-10-09 | 2014-12-24 | 中冶南方(武汉)威仕工业炉有限公司 | Staged oxygen-enriched flameless combustion gas burner and control method thereof |
CN104266190A (en) * | 2014-10-09 | 2015-01-07 | 中冶南方(武汉)威仕工业炉有限公司 | Oxygen-enriched flameless gas burner and control method thereof |
CN104235849B (en) * | 2014-10-09 | 2017-02-01 | 中冶南方(武汉)威仕工业炉有限公司 | Staged oxygen-enriched flameless combustion gas burner and control method thereof |
CN105021075A (en) * | 2015-05-26 | 2015-11-04 | 北京恩吉节能科技有限公司 | Dual-preheating rotation type heat-storage heat exchanger and combustion system |
CN105021075B (en) * | 2015-05-26 | 2018-12-07 | 北京恩吉节能科技有限公司 | It is double to preheat rotary regenerative heat exchanger and combustion system |
CN111911923A (en) * | 2020-09-11 | 2020-11-10 | 黄湛明 | Central burner for low NOx production of grate-rotary kiln pellets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103727536B (en) | The multistage adjustable strong and weak rotation flow impact gas burner of ultralow nitrogen | |
CN201582822U (en) | Concentric type axial rotational flow burner adopting high-temperature air combustion technology for industrial furnace | |
CN212005648U (en) | A supercritical carbon dioxide coal-fired boiler with ammonia injection burner | |
CN111450681B (en) | Denitration, desulfurization and dust removal integrated system for supercritical carbon dioxide coal-fired boiler | |
CN104235849A (en) | Staged oxygen-enriched flameless combustion gas burner and control method thereof | |
CN204141584U (en) | Burner | |
CN203628654U (en) | Ultralow-nitrogen multistage intensity adjustable swirl-opposed gas combustor | |
CN102628589B (en) | Combustion method and device for pulverized coal at high temperature and low NOx | |
CN204165044U (en) | The premixed coal dust low NO of a kind of adverse current | |
CN107559858A (en) | Turbulent burner W flame boiler with interior straight outward turning ammonia-gas spraying device | |
CN111237759A (en) | A low nitrogen gas burner suitable for medium and low calorific value fuels | |
CN105546521B (en) | The W flame boiler of vortex burner primary and secondary air arranged off-centre | |
CN107525067A (en) | A kind of center feeding rotational flow coal dust burner for preventing water-cooling wall slagging | |
CN101852434A (en) | Swirl burners for high temperature air fired industrial furnaces | |
CN105423294B (en) | The vortex burner that a kind of Secondary Air for W flame boiler biases | |
CN204084375U (en) | Staged Oxygen-enriched Flameless Combustion Gas Burner | |
CN104048502B (en) | A kind of burning-aid method of cement rotary kiln burner oxygen-enriching device | |
CN111450682B (en) | A deep denitration process for supercritical carbon dioxide coal-fired boiler | |
CN202733892U (en) | Semi-pre-mixed-type secondary combustor energy-saving device | |
CN205782905U (en) | A kind of new type high temperature rotational flow air burner | |
CN201521960U (en) | Regenerative flat flame burner | |
CN112524606B (en) | A radiant tube burner that can roll smoke to achieve flameless combustion | |
CN201983269U (en) | Pre-combustion burner | |
CN201582823U (en) | Outward winding type axial rotational flow burner adopting high-temperature air combustion technology for industrial furnace | |
CN201634702U (en) | High-temperature low-oxygen top-fired hot blast stove |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100915 Termination date: 20130603 |